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Treatment of the Exchange Interactions in Hartree-Fock Linear Combination of Atomic 
Orbital Calculations of Periodic Systems 

M. Causi, R. DOvesi, R. Orlando, C. Pisani,* 

Institute of Theoretical Chemistry, University of Turin, via P. Giura 5, I-10125 Torino, Italy 

and V. R. Saunders 

Daresbury Laboratory, Science and Engineering Research Council, Daresbury, Warrington, 
WA44AD, United Kingdom (Received: April 2, 1987) 

The range of exchange interactions in realistic H F  computations for solids is discussed. Results are reported for graphite, 
hexagonal boron nitride, all-trans-polyacetylenes, lithium, and silicon. It is shown that for insulators the convergence of 
the series is very rapid; for silicon, for example, the inclusion of the second (sixth) neighbors in the summation reduces the 
total energy error to 1 X lo-) ( 5  X 10”) au per cell. In the case of zero gap or metallic systems, long-range interactions 
are shown to give nonnegligible contributions to the total energy of the system (terms involving distances of 40 au can be 
as large as 1 X 10“ au per cell in graphite) but do not appreciably affect the wave function of the system. 

I. Introduction 
The nonlocal exchange term in the Hartree-Fock (HF) Ham- 

iltonian is believed to represent the bottleneck preventing an 
extensive use of this approach in solid-state physics; with respect 
to this problem, the introduction of correlation corrections is 
considered to be a relatively easy task.’ As a matter of fact, the 
implementation of efficient truncation criteria of the exchange 
series is of primary importance; otherwise, the number of two- 
electron integrals that are to be calculated and manipulated may 
become enormous and may represent the rate-determining step 
in crystalline calculations. This problem has been therefore the 
object of careful investigation in recent years.24 

When a representative set of atomic orbitals (AO) is adopted, 
the exchange contribution to the crystal energy per unit cell can 
be written as follows5 

E’” = 3 1 / 4 1  Z ~ A Z ( X ! X ! ’ I X S X P )  (1) 
g.1,1,2,3,4 Q 

where xf is the j th  A 0  in the crystal cell identified by the direct 
lattice vector g (0 labels the reference zero cell), and (ablcd) 
represents as usual the bielectronic integral invovling the overlap 
distributions ab and cd. PQ, is the element of the density matrix 
referring to the AO’s xi  and xi, and is obtained by summing over 
the manifold of the occupied crystalline orbitals Ia/(k)) ( I  being 
the band index, k the wave vector index, and q(k) the corre- 
sponding eigenvalue) the product of the coefficients of the involved 
AO’s: 

= 2x1 a*dk) a,/(k) exp(ik.g) I 9 [ +  - tI(k)] dk (2) 
I BZ 

The integral is extended to the Brillouin zone (BZ), and the step 
function 19 annihilates the integrand if the eigenvalue q(k)  is above 
the Fermi energy tF. 

In eq 1, the sum over m can be limited to the first few terms 
because the two-electron integral decays exponentially with m. 
The infinite sums over the lattice vectors g and 1 can be limited 
to within a spherical region of radius Rex, corresponding to the 
range of the exchange interaction. PX can loosely be defined as 
the shortest distance such that all flj elements are negligible when 
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referring to two AO’s x: and xf separated by a distance larger 
than Rex. In some cases the exchange range is, however, quite 
large so that this “distance-only” truncation criterion (same for 
all ij couples) can be not very effective. A detailed study of the 
long-range behavior of the P matrix in one-dimensional periodic 
systems has been effected by Kertbz eta1.2-3 with reference to an 
infinite chain comprising two A O s  per unit cell. In the conducting 
case (nonalternant polymer), the P matrix elements were found 
to asymptotically exhibit 1/r  decay, a result well-known for this 
kind of for insulators, long-range exponential decay 
was observed, with the decay constant critically dependent on the 
ratio between the interband gap and the bandwidth of the occupied 
band. These results were essentially independent of the kind of 
Hamiltonian used, either a model extended Hiickel, or an ab initio 
HF one. Quite similar conclusions were independently reached 
by Piela et aL4 in their HF study of periodic chains of hydrogen 
atoms. 

Information of comparable detail is lacking in the case of two- 
and three-dimensional periodic systems. Elementary considera- 
tions’ suggest that a similar distinction applies in those cases 
between insulators and conductors, as far as the asymptotic trend 
of P matrix elements is concerned. In the presence of a free- 
electron-like conduction band, the long-range behavior of P is 
nearly independent from the crystalline structure and is mainly 
determined by the discontinuity in the integrand function of eq 
2 across the Fermi surface. Apart from an oscillating factor, the 
asymptotic decay rate of P follows a 1/# law, d being the di- 
mensionality of the system. In insulators, all bands are either 
vacant or fully occupied, and no Fermi surface exists. In the 
simplest case where an occupied band is associated with a specific, 
exponentially decaying A 0  ( x ,  say), the contribution of that band 
to P is simply the inverse of the overlap submatrix associated with 
the x,, AO’s on the crystal atoms; the range of P is then strictly 
dependent on crystal structure and orbital size, but its asymptotic 
decay rate must be exponential. This classification is important 
in principle but is of scarce practical relevance. Real systems may 
bear little resemblance with these extreme situations, and exhibit 
intermediate behavior within the range which is of interest from 
the point of view of the numerical convergence of the results. 

As will be documented in the following, for many systems, both 
conductors and semiconductors, the exchange range may encom- 
pass a large number of direct lattice vectors. 

In such cases, the associated problem arises of the accurate 
evaluation of e, elements referring to large lgl values, which 

(6) Ukrainskii, I. I. Theor. Chim. Acta 1975, 38, 139. 
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TABLE I: Systems Considered in This Work" 
system 

all-trans-polyacet ylene 
alternant (insulator) 
symmetric (conductor) 

graphite monolayer 
hexagonal BN monolayer 
lithium 
silicon 

basis set n k ( N k )  

STO-3G 24 (48) 
STO-3G 24 (48) 
STO-2G 61 (576) 
STO-2G 109 (576) 
minimal (see text) 72 (1728) 
STO-2G 72 (1728) 

''nk is the number of k sampling points in the irreducible part of the 
Brillouin zone, where the Fock equations have been solved; Nk is the 
corresponding number of points in the full Brillouin zone. 

requires performing an integral over the Brillouin zone, involving 
strongly oscillating integrand functions. In practice, the integral 
is performed on the knowledge of eigenvectors and eigenvalues 
a t  a selected number of sampling k points. Using a simple cu- 
bature formula for calculating P up to infinite distance leads to 
a nonphysical divergence of the exchange contribution.* This 
problem is particularly evident when the large unit cell (LUC) 
approach9 is adopted for the solution of the periodic problem, since 
then the Fock equations are solved at  a single point (k = 0) of 
the reduced Brillouin zone. For ensuring the correct asymptotic 
behavior of the P matrix, some authors have proposed 
"modulating functions" of finite range that correct the P matrix 
as calculated by the simple cubature formula.8J&12 In the present 
work this problem has been bypassed by considering a sufficiently 
dense net of sampling k points, such that the P matrix is correctly 
described within the exchange sphere. 

One of the purposes of this paper is to provide for the first time 
a rather detailed documentation of the importance of long-range 
exchange contributions in realistic HF multiband calculations of 
crystals. The systems considered here (the graphite and hexagonal 
boron nitride monolayer, polyacetylene, lithium, and silicon) cover 
a wide range of cases, both regarding their dimensionality and 
their chemical characteristics. The documentation collected here 
shows the feasibility of a flexible criterion for truncating the 
exchange series, which takes into account the different ranges of 
the various terms that enter in a given calculation. 

11. Computational Details 
All computations reported here were performed using CRYSTAL, 

an a b  initio HF program for periodic  system^.^^'^ Table I lists 
the systems considered in the present work, the adopted basis sets, 
and the number of sampling k points. The STO-nG basis functions 
are the Gaussian-type AO's described by Hehre etal.I4 The 
minimal basis set used for lithium comprises two s-type A O s  per 
atom, the core one consisting of six contracted Gaussians as 
employed in previous work,15 and the valence one of a single 
Gaussian with exponent coefficient 0.2 au. The experimental 
geometries were employed where available; for polyacetylenes, 
the C-C bond lengths were taken to be 1.37 and 1.41 A in the 
alternant structure, and 1.39 8, in the symmetric (metallic) 
structure, while the C-C-C bond angle was fixed at 124O in both 
cases.I6 

The main parameters that will be discussed in the following 
are the values of individual elements of the P matrix, and total 
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Figure 1. Absolute value of four kind of P matrix elements (ev), for the 
graphite monolayer, as a function of the distance r between the centers 
of the involved A O s  x; and xt. The various symbols refer to different 
matrix elements as specified in the inset. a and b refer to the two atoms 
in the unit cell; z pz. 

energy data. The latter refer to the high-precision limit, that is, 
to the result obtained with a cutoff radius Rex such that the sum 
of the excluded contributions is less than au per cell. The 
Pe matrix elements of interest are evaluated by using an integration 
technique previously described;" the number of sampling k points 
will be indicated in each case. 

The influence of exchange terms on the calculated crystal energy 
is estimated according to one of two possible criteria: 

(a) after obtaining the P matrix from a high-precision self- 
consistent calculation, different truncations of the sums indicated 
in eq 1 are considered, corresponding to different values of the 
cutoff exchange radius; 

(b) different self-consistent calculations are performed by in- 
cluding specified subsets of exchange integrals; the truncation of 
the exchange series, in this case, not only affects the exchange 
energy, but also the kinetic and Coulomb terms, since the wave 
function is changed to some extent with respect to the high- 
precision limit. 

111. Range and Relevance of Exchange Contributions 
We shall discuss first the case of the graphite monolayer for 

which the range and importance of exchange contributions have 
been analyzed most carefully. 

Figure 1 shows the value of different types of P matrix elements 
as a function of the distance r between the involved AOs.  Since 
the graphite monolayer comprises two atoms per unit cell, the A O s  
are identified by specifying not only their quantum number, Is, 
2s, x, y ,  z, (x, y ,  z standing for 2p,, 2py, 2p,), but also the atom, 
a or b, to which they belong. As expected, core-core elements 
such as qsalsa decay most rapidly with distance; yet, their value 
is nonnegligible up to a distance of a few angstroms, although core 
bands of graphite lie deep in energy and are quite flat. This 
happens because 1s functions contribute appreciably to crystalline 
orbitals of the valence band, due to the constraint of the latter 
to  be  orthogonal to core bands. For the same reason, the core- 
valence elements Pfsah  are appreciably long ranged. Among all 
valence P elements, those involving pz orbitals are prevailing at  
large distances. This is not surprising if one considers that the 
corresponding valence and conduction bands are the widest ones 
and that they touch each other a t  the extreme of the Brillouin 
zone.'* Of the two types of ez terms, the one referring to 
translationally inequivalent atoms (earb) appears to be by far the 
more important for large 181 values. This behavior is similar and 

(17) Angonoa, G.; Dovesi, R.; Pisani, C.; Roetti, C. Phys. Status Solidi 

(18) Dovesi, R.; Pisani, C.; Roetti, C. Int J .  Quantum Chem. 1980, 17, 
B 1984, 122, 211. 
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Figure 2. Energy convergence properties of the graphite monglayer. AE 
and AK are the difference of total and kinetic energy with respect to the 
limiting value when the calculation is performed by neglecting all terms 
involving ear,, elements beyond a distance r: AE'is the difference of total 
energy with respect to the limiting value calculated in the same way as 
AE, but using the P matrix resulting from a high-precision calculation. 
For other explanations, see text. 

has the same origin as that observed for e b  elements in conducting 
model polymers.* 

It may be of interest to check to what extent the behavior of 
Po elements is related to overlap effects; it is in fact well-known 
that in the case of no variational freedom P reduces to twice the 
inverse overlap matrix (S-')g. In the present case this is true, 
roughly speaking, for the core-core and core-valence elements 
whereas the eaZb elements have a much longer range than the 
corresponding (S-*)g elements. 

The present data, referring to a minimal basis set, are not altered 
in any essential way when a split valence basis is employed. In 
particular, the behavior of earb is very similar to the one shown 
in Figure 1. 

Consider now the effect of long-range exchange contributions 
on total energy and wave function. Figure 2 reports results ob- 
tained for the graphite monolayer with an STO-2G basis set. The 
differences of total (AE) and kinetic (AK) energy with respect 
to the high-precision limit were obtained following the criterion 
b discussed in the previous section; that is, a number of independent 
calculations were performed, where all nonnegligible exchange 
contributions were retained except for those associated with p ( g )  
= Garb factors, which were neglected beyond a certain distance 
between the two centers. It is seen that the convergence of total 
energy toward the limiting value closely follows the pattern of 
the p ( g )  terms reported in Figure 1: a cutoff radius r of 20 au 
is needed, corresponding to Ip(g)J g for total energy to ap- 
proach the limiting value to within lo4 au. On the other hand, 
the convergence of kinetic energy is much faster. This seems to 
indicate that long-range exchange contributions do not affect 
appreciably the wave function, which is in fact confirmed by the 
AE' data also reported in Figure 2, and obtained according to 
criterion a. The fact that AE and PE'are very close to each other 
beyond a few angstroms shows that long-range exchange inter- 
actions act rather as a uniform stabilizing potential. 

The results for other systems are now briefly described. In all 
cases, the convergence of total energy toward the limiting value 
is documented by reporting the value of AE calculated according 
to criterion b, as a function of the cutoff radius r; on the same 
plot, the absolute value of the leading element of the P matrix, 
p(g) ,  is also reported. Also note that the inclusion of long-range 
P terms does not influence the Coulomb contribution to total 
energy since the Coulomb integrals associated with PS terms decay 
exponentially with lgl. 

Hexagonal boron nitride has the same structure as graphite, 
except for the fact that the twoatoms in the unit cell are different. 
As a consequence, it is a moderately ionic insulator with a fairly 
large band gap (0.49 au in the present approximation). Figure, 
3 shows that exchange interactions here are of much shorter range 
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Figure 3. Convergence properties of hexagonal boron nitride: absolute 
value of the leading P matrix element, as a function of the distance 
r between the involved centers, and corresponding convergence AE of 
total energy toward the limiting value. The scale for energy is on the left, 
for P on the right of the plot. For other explanations, see text. 
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trans-polyacetylene. Symbols as in Figure 3: the leading P element here 
is e& 

? 

d 
c 

2 " 
W a 

s t  0 

4t  * O O  

0 
0 
0 

0 
0 

n 

1 1  * * , *  * - : 0 o o r o 4 1  

0 OO 40 80 
r (a. u.) 

Figure 5. Convergence properties of the symmetric (metallic) structure 
of all-trans-polyacetylene. Symbols as in Figure 4. 

than in graphite; the relationship between the results for the two 
systems is similar to that described in the literature for conducting 
and nonconducting polymers. 

The results for alternant and symmetric polyacetylenes are 
reported in Figures 4 and 5 and are in close agreement with those 
discussed in the literature for this type of systems.24 In particular, 
for the altemant nonconducting case, the decay constant a of p(g )  
= Garb [o = p(g)/p(g-l)] is found to have a value of O S 7  in good 
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TABLE II: Convergence of Total ( E )  and Kinetic (K) Energy of 
Silicon with Respect to the Rex Parameter' 

K 
4.5 0.3 
8.5 1.8 

11.2 3.1 
13.3 5.9 
15.1 8.0 
16.8 9.8 
18.3 12.2 

539.114223 
539.062 776 
539.061 613 
539.061 262 
539.061 571 
539.061 566 
539.061 555 

E A E ~  
-555.437 783 1.0 (-1) 
-555.335 136 8.9 (-4) 
-555.335 822 2.0 (-4) 
-555.335 731 3.0 (-4) 
-555.335 937 8.9 (-5) 
-555.335 972 5.4 (-5) 
-555.336026 

"PX is the number of bielectronic exchange integrals in millions; AE 
is the energy difference with respect to the last line energy. Energies 
and distances in au. b~ (-y) stands for x X lo-''. 

agreement with the value cy = 0.60 obtained according to the 
semiempirical formula cy = W/(  W + C) suggested by Monkhorst 
and Kert6sz2 and used by Surjan et al.3 (Wis the bandwidth and 
C the gap between valence and conduction bands). With respect 
to graphite, the conducting polymer has P elements of much longer 
range (note that the scale of distances is here expanded by a factor 
of about 2), yet total energy converges at  about the same speed; 
this is simply due to the different dimensionality of the two 
systems, which reduces by a factor 1/r  the importance of con- 
tributions at a distance r in polyacetylene with respect to graphite. 

Lithium (see Figure 6 )  has been chosen as a simple test system 
for three-dimensional conductors. At short distances the parallel 
drop of IPI and AE as a function of RCx is more abrupt than in 
previous cases; a t  about 15 au the two curves become smoother. 

Because of computational limits we were not able to go beyond 
20 au (500 unit cells included in the calculation); in the 15-20-au 
range the ideal rW3 behavior (see Introduction) is not evident, 
possibly because it is disguised by the oscillatory component. It 
must be noticed that the contribution to total energy from this 
zone is quite small, of the order of 10-5-104 au/cell. Results 
obtained for metallic aluminum are similar, although the long- 
range behavior of IPI and AE is much smoother than in lithium; 
in this case contributions to total energy from terms involving 
distances larger than 15 au are always smaller than lo4 au/cell. 

As a second example of three-dimensional systems, silicon was 
considered (see Table 11). Results are relatively similar to those 
for BN; however, to get a convergence of the order of lo4 au/cell 
larger distances must be included, similar to the ones found for 
lithium and aluminum. Finally, in the case of a fully ionic system 
like MgO, total energy was found to be stable to within 10" au 
at  Rex = 1 3  au. 

IV. Discussion 
The results just presented indicate that the treatment of ex- 

change contributions in crystals does not entail particularly subtle 
problems, in the sense that convergence of total energy with 
increasing cutoff radius is quite regular. For insulators the 
convergence of the exchange series is rapid, and the simple 
truncation scheme discussed in section I1 (overlap truncation for 
the m sum; distance only cutoff for the g and 1 sums) is economical, 
sufficiently efficient, and easy to implement. The data presented 
in the previous section indicate that for alternant polyacetylene, 
silicon, and BN cutoff radii of 20, 15 ,  and 10 au, respectively, 
are sufficient to reduce the error in total energy to less than 1 
X lo4 au per cell. The cost to accuracy ratio, evaluated in terms 
of bielectronic exchange integrals and of total energy, is for those 
systems roughly the same as we have for the Coulomb series 
treated with the multipolar expansion technique described in ref 
13 .  

In the case of metals or of zero gap semiconductors things are 
different; when a distance only criterion with RCx = 10-15 au is 
adopted, total energy errors are of the order of ( 1 - 5 )  X au 
per cell; if higher precision is required, exchange interactions must 
be taken into account up to fairly large distances. Computational 
problems may then arise, essentially due to the fact that the 
number of exchange two-electron integrals increases rapidly with 
the cutoff radius. Consider for instance the simple case of the 
graphite monolayer treated with the minimal basis set previously 
described. If the cutoff radius for all exchange terms is located 
at  10, 20, and 30 au, the corresponding number of two-electron 
exchange integrals are 0.74,2.69, and 6.08 millions, respectively, 
even if full advantage is taken of point sy"etry.l9 If an extended 

TABLE I11 Performance of the Bipolar Expansion Technique for the Evaluation of Two-Electron Integrals ( p  vlku)" 
case a case b 

r ,  au L U 6"a 1.71 U &I" I4 

2 8.3 (-4) 3.9 (-3) 1.5 (-2) 9.9 (-5) 3.7 (-4) 4.3 (-3) 
4 3.8 (-5) 3.8 (-4) 7.4 (-6) 4.8 (-5) 

10 0 2.1 (-3) 8.6 (-3) 3.3 (-4) 1.2 (-3) 
2 5.1 ( -5 )  2.6 (-4) 6.8 (-3) 6.2 (-6) 2.3 (-5) 2.2 (-3) 
4 7.1 (-12) 5.4 (-11) 4.2 (-8) 3.4 (-7) 

20 0 5.2 (-4) 2.1 (-3) 8.2 (-5) 2.9 (-4) 
2 3.2 (-6) 1.6 (-5) 3.2 (-3) 3.9 (-7) 1.4 (-6) 1.0 (-3) 
4 3.6 (-12) 2.7 (-11) 6.4 (-10) 5.1 (-9) 

30 0 2.3 (-4) 5.2 (-4) 3.6 (-5) 1.3 (-4) 

5 0 8.7 (-3) 3.7 (-1) 1.4 (-3) 5.6 (-3) 

2 6.3 (-7) 1.0 (-6) 2.1 (-3) 7.6 (-8) 2.8 (-7) 7.0 (-4) 
4 2.4 (-12) 1.4 (-11) 5.6 (-11) 4.4 (-10) 

p, Y, A, u are STO-2G valence orbitals of carbon,14 centered at  M, N, L, S, respectively. Two cases are considered: Case (a) M coincides with 
N and L with S: r is the distance between M and L. Case (b) The four centers are distinct and coplanar; the segments NM and LS are 2.674 au 
long (the bond distance in graphite: their midpoints are a t  a distance r: they form an angle of 60' with the line through their midpoints and with 
each other. L is the level of truncation of the multipolar expansion: charges only ( L  = 0), up to quadrupoles (L = 2), up to hexadecapoles (L = 4). 
In each case the 256 two-electron integrals involving the four valence AOs on each center are evaluated exactly (J , )  or approximately (J,'). u = [E, 
(J ,  - J,')2/256]'/2 is the root-mean-square deviation between the two determinations. 6,,, is the maximum observed difference IJl - J;l; 14 = 
x3,1Jt,1/256 is the average absolute value of the integrals. The notation x.y ( - z )  stands for x.y X lo-'. 
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STO 3/2-1G basis set is used for carbon (that is, three contracted 
Gaussians are used for 1s core electrons, while the A O s  of the 
valence shell are described by using two independent functions, 
one comprising two contracted Gaussians, the other and more 
diffuse one consisting of a single Gaussian with exponent of 0.2 
au,20) these figures increase to 8.3, 31.8, and 80.4 millions, re- 
spectively. The situation is obviously even worse for three-di- 
mensional periodic systems treated with extended basis sets. 

There are however some features of the exchange series that 
allow us to drastically reduce the computational burden: 

(a) For R > 10 au, the near totality of the two-electron ex- 
change integrals describes the interaction between two charge 
distributions, p(r) = Xl(rl) X3(rl) and p’(rz) = x!(r2) xT+’(rz), 
that are far apart from each other (see eq 1). In such cases, the 
integral can be evaluated by first effecting a truncated multipolar 
expansion of the two distributions about the respective center and 
then considering the interaction between the two sets of multipoles. 
The accuracy of this technique is documented in Table I11 with 
reference to integrals involved in computations for graphite. The 
bipolar expansion can be truncated at  different L values, according 
to the total amount of charge S1 + S 2  (S1 = lpl(r)  dr) involved 
in the interaction and to the distance between the two centers of 
expansion. Adopting this procedure is computationally very 
convenient because the set of multipoles of all relevant product 
distributions x:xr can be evaluated once and for all, and used for 
both p and p’ because of translational invariance. The corre- 
sponding saving factor in computer time is of the order of 5 .  

(b) Long-range exchange terms may affect to some extent total 
energy, but leave the wave function essentially unaltered. As 
shown by Figure 2 for graphite, a t  10 au the kinetic energy error 
is 5-10 times smaller than the total energy one; a t  20 au AE‘ 
practically coincides with hE, confirming that from this distance 
on the exchange contributions do not affect the P matrix. This 
behavior, which is common to all systems investigated here, in- 
dicates an economical way for taking into account long-range 
exchange interactions: the self-consistent calculation is performed 

(19) Dovesi, R. Int .  J .  Quontum Chem. 1986, 29, 1755. 
(20) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J .  Am. Chem. SOC. 1980, 

102, 939. 
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with reference to a small exchange radius, so that there are 
comparatively few exchange integrals to be manipulated in this 
computational stage; the neglected terms are then included in the 
final evaluation of the energy, taking into account only those for 
which the density matrix results to be nonnegligible. In conclusion, 
the exchange problem in HF calculations for crystals is not critical, 
as far as the evaluation of total energy is concerned, if an accuracy 
of lo4 au is deemed acceptable. In this respect, it would appear 
not necessary to introduce “mixed” schemes, as recently proposed 
by different Those authors suggest calculating the 
P density matrix with a local density approximation, and use it 
a posteriori for calculating the correct HF exchange energy. 
However, while long-range exchange interactions do not affect 
the wave function, the same is not true for short-range ones. A 
treatment that takes self-consistently into account the nonlocal 
nature of the exchange interaction is therefore more reliable, and 
is in fact feasible even for periodic systems with relatively complex 
unit cells. 

The above analysis has been carried out with reference to 
systems treated with minimal basis sets; these conclusion should 
be applicable in general, at least as far as total energy is concerned. 
When, however, extended basis sets are considered, more severe 
conditions must be adopted in the treatment of the exchange series, 
so as to involve terms which are not important for total energy, 
but are necessary for a precise evaluation of the exchange potential. 
Otherwise, due to the large variational freedom, instabilities can 
set in during the S C F  process, which may eventually lead to 
numerical catastrophes. 

This topic will be discussed extensively in future work. 
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