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COENDOMORPHISM LEFT BIALGEBROIDS

A. ARDIZZONI, L. EL KAOUTIT, AND C. MENINI

Abstract. The main purpose of this note is to give a rigorous proof of the construction of
coendomorphism left bialgebroids as well as an explicit description of their structure maps.
We also compute some concrete examples of these objects by means of their generators
and relations.

Introduction

In recent decades the notion of Hopf algebroid, both in the commutative and noncom-
mutative case, appeared as an important tool in different branches of pure mathematics:
algebraic topology, abstract algebraic geometry (Tannaka-Krein duality), Poisson geome-
try, Lie groupoids and Lie algebroids, see for instance [9, 5, 4, 7, 6].

While commutative Hopf algebroids can be directly defined as presheaves of groupoids
in affine schemes, the definition of noncommutative Hopf algebroid behaves in much more
complicated way. In categorical terms [10, 11], a left Hopf algebroid can be thought as a
ring extension of the enveloping ring of the base algebra, whose category of left modules
is a right closed monoidal category and the canonical forgetful functor to the category of
bimodules (over the base algebra) is strict monoidal and preserves right inner hom-functors.
It is worth mentioning that in practice the most difficult task in checking these properties
is to verify this last condition. Dropping it from the definition one obtains the notion of
left bialgebroid.

There certainly exists a strong motivation in these areas for studying the structure of
Hopf algebroids, but there is one basic problem especially concerning the noncommutative
ones which turns out to be of much more fundamental nature. Namely, the lack of exam-
ples of left Hopf algebroids or at least left bialgebroids that can be defined by means of
generators and relations. Moreover, from the noncommutative algebraic geometry point of
view, the construction of this kind of left bialgebroids certainly is the most desirable.

The main aim of this note is to establish in a rigorous way the construction of the
coendomorphism left bialgebroids and give concrete examples by means of their generators
and relations, hoping by this to fulfil the lack of examples in the theory of bialgebroids.
Specifically, we start with an extension of k-algebras R → A (k is any commutative ground
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COENDOMORPHISM LEFT BIALGEBROIDS 3

ring with 1) and assume that RA is a finitely generated and projective left module. We
then consider the monoidal functor − ×R A from the category of (R ⊗k Ro)-bimodules
to the category of R-bimodules, where − ×R − is Sweedler-Takeuchi’s product [12, 14]
and Ro denotes the opposite algebra of R. Since − ×R A has a left adjoint and can be
lifted to a functor from the category of (R⊗k R

o)-rings to the category of R-rings, using a
classical monoidal result, we know that there is a left adjoint functor of this lifting which
we denoted by Lm. In the first section we give an explicit description of the functor
Lm and prove that the image Lm(A) of A, admits a structure of left bialgebroid such
that A becomes a left comodule R-ring. It is worth noting that the possibility of this
construction was first observed by D. Tambara in [15, Remark 1.7] where no proof was
provided. Several concrete examples of coendomorphism left bialgebroids including some
new coendomorphism bialgebras, are also given in the second section.

Basic notions and notations. We work over a ground commutative ring with 1 denoted
by k. All rings under consideration are k-algebras, and morphisms of rings are morphisms
of k-algebras. Modules are assumed to be unital modules and bimodules are assumed to
be central k-bimodules. For every ring R, we will denote by RMod, ModR and RModR the
categories of left, right and two-sided modules over R respectively. The tensor product
over R, is denoted as usual by −⊗R −. The identity morphism of a right, left module or
bimodule M is denoted by the object itself M .

For two bimodules RPS and RQS over rings R and S, we will consider the k-modules of
R-linear maps HomR−(P,Q) as an S-bimodule with actions:

sf : p 7→ f(ps), and fs′ : p 7→ f(p)s′, for every f ∈ HomR−(P,Q), s, s′ ∈ S, and p ∈ P.

Similarly, Hom−S(P,Q) is considered as an R-bimodule with actions:

rg : p 7→ rg(p), and gr′ : p 7→ g(r′p), for every g ∈ Hom−S(P,Q), r, r′ ∈ R, and p ∈ P.

Under these considerations, the left dual ∗X = HomR−(X,R) of a given R-bimodule X,
is an R-bimodule, as well as its right dual X∗ = Hom−R(X, R). The sub k-module of
R-invariant elements of X is denotes by:

(1) XR :=
{
x ∈ X| rx = xr, ∀r ∈ R

}
∼= HomR−R(R, X).

This in fact defines a functor from R-bimodules to the category of modules over the center
algebra.

For a fixed ring R, we denote by R-Rings the category of R-rings. This is the comma
category over R in the category of all k-algebras. That is, objects are morphisms of rings
R → A and morphisms are commutative triangles of k-algebra maps. Obviously, this
category is identified with the category of monoids of the monoidal category of bimodules

RModR. Dually, one can define R-corings [13]. Explicitly, an R-coring is a comonoid in

RModR, which is by definition a three-tuple (C,∆, ε) consisting of an R-bimodule C and
two R-bilinear maps ∆ : C → C⊗R C (comultiplication), ε : C → R (counit) satisfying the
usual coassociativity and counitary constraints.
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For more information on corings and theirs comodules, the reader is referred to [2]. For
the notions of bialgebroids and their basic properties, the reader is referred to [3].

1. The construction of coendomorphism bialgebroids.

The construction of the coendomorphism bialgebroids is performed in this section. We
proceed as follows. Let A be an R-ring and assume that RA is finitely generated and
projective. We first show that the monoidal functor −×RA : ReModRe → RModR has a left
adjoint functor, where Re = R ⊗k R

o is the enveloping ring and − ×R − is the Sweedler-
Takeuchi product [12, 14]. This allows us to apply a classical result in monoidal categories
theory (stated here as Theorem 1.3.4), in order to construct a functor Lm : R-Rings →
Re-Rings which is left adjoint to − ×R A : Re-Rings → R-Rings. We then prove that the
image of A under this functor, i.e. Lm(A) admits a structure of left R-bialgebroid such
that A becomes a left Lm(A)-comodule.

1.1. An adjunction between Re-bimodules and R-bimodules. The unadorned sym-
bol ⊗ stands for the tensor product over the commutative ground ring k. Let R be a
ring. For any r ∈ R, we denote by ro the same element regarded as an element in the
opposite ring Ro. Let Re := R ⊗ Ro be the enveloping ring of R. Given an Re-bimodule
M , the underlying k-module M admits several structures of R-bimodule. Among them,
we will select the following two ones. The first structure is that of the opposite bimodule

1⊗RoM1⊗Ro which we denote by M o. That is, the R-biaction on M o is given by

(2) rmo = m (1⊗ ro), mo s = (1⊗ so)m, mo ∈ M o, r, s ∈ R.

Notice, that this construction defines in fact a functor (−)o : ReModRe → RModR. The
second structure is defined by the left Re-module ReM . That is, the R-bimodule M l =

R⊗1oMR whose R-biaction is defined by

(3) rml = (r ⊗ 1o)m, ml s = (1⊗ so)m, ml ∈ M l, r, s ∈ R.

This also defines a functor, namely, the right Re-action forgetful functor (−)l : ReModRe →
RModR. One easily observes that there is a commutative diagram:

(4) ReModRe

(−)l
//

(−)o

��

RModR

(−)R
��

RModR
(−)R

// ModR,

where (−)R is the left R-action forgetful functor.
Another Re-bimodule derived from M , which will be used in the sequel, is M †. The

underlying k-module of M † is M and an element m ∈ M is denoted by m† when it is
viewed in M †. The Re-biaction on M † is given by

(5) (p⊗ qo)m† (r ⊗ so) = (p⊗ ro)m (q ⊗ so), m† ∈ M †, p, r ∈ R, qo, so ∈ Ro.
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Here also we have a functor (−)† : ReModRe → ReModRe which has the following properties

(6) Re(M †)†Re = ReMRe and HomRe−Re

(
M †, U †

)
= HomRe−Re

(
M, U

)
,

for every pair of Re-bimodules U and M . Furthermore, there is a commutative diagram

(7) ReModRe

(−)o
//

(−)†

��

RModR

ReModRe
(−)Re

// ModRe ,

where as before (−)Re denotes the left Re-action forgetful functor. It is clear that the left
module ReM † induces the already existing R-bimodule structure of R⊗1oMR⊗1o .

Now, let N be another R-bimodule, and consider the tensor product M o ⊗R N . The
additive k-submodule of invariant elements

(M o ⊗R N)R =

{∑
i

mo
i ⊗R ni|

∑
i

rmo
i ⊗R ni =

∑
i

mo
i ⊗R nir, for all r ∈ R

}
admits a structure of an R-bimodule given by the actions:

r ⇀

(∑
i

mo
i ⊗R ni

)
=

∑
i

(
(r ⊗ 1o)mi

)o
⊗R ni,(8) (∑

i

mo
i ⊗R ni

)
↼ s =

∑
i

(
mi (s⊗ 1o)

)o
⊗R ni,(9)

for every set of elements
∑

i m
o
i ⊗R ni ∈ M o ⊗R N and r, s ∈ R.

In this way, to each R-bimodule N one associates two functors:(
(−)o ⊗R N

)R
: ReModRe //

RModR ,
(
−⊗∗N

)
† : RModR //

ReModRe ,

where, for each R-bimodule X, we consider X ⊗ ∗N as an Re-bimodule with the following
actions

(p⊗ qo)

(∑
i

xi ⊗ φi

)
(r ⊗ so) =

∑
i

(p xi q)⊗ (s φi r),

for every element
∑

i xi⊗φi ∈ X⊗ ∗N , p, q, r, s ∈ R. These functors are related as follows.

Lemma 1.1.1. Let N be an R-bimodule such that RN is finitely generated and projective
module with left dual basis {(ej, ∗ej)}1≤j≤m ⊂ N × ∗N . There is a natural isomorphism

HomR−R

(
X, (Mo ⊗R N)R

)
// HomRe−Re

(
(X ⊗ ∗N)†, M

)
σ � //

[
(x⊗ φ)† 7−→

(
(Mo ⊗R φ) ◦ σ(x)

)]
[
x 7−→

∑
j α
(
(x⊗ ∗ej)

†
)o

⊗R ej

]
α
�oo
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for every R-bimodule X and Re-bimodule M . Equivalently, the functor (−⊗ ∗N)† is left
adjoint to the functor ((−)o ⊗R N)R.

Proof. By the isomorphism (M o⊗RN)R ∼= Hom−Re(R, M o⊗RN) of k-modules, the right-
hand object inherits a structure of left Re-module coming from the actions ⇀, ↼ defined
in (8) and (9). This left Re-action is explicitly given by the formula:(

(p⊗ qo)α
)
(1) = p ⇀ α(1) ↼ q,

for every p, q ∈ R, and α ∈ Hom−Re(R, M o ⊗R N). Since RN is finitely generated and
projective, we have a k-linear isomorphism

f : Hom−Re

(
R, M o ⊗R N

) ∼=−→ Hom−Re

(
∗N, M †

)
,
(
α 7−→

[
φ 7→ (M o ⊗R φ) ◦ α(1)

])
,

with inverse map f−1(σ)(1) =
∑

j σ(
∗ej)

o ⊗R ej, for every σ ∈ Hom−Re(∗N, M †) (recall

that the underlying right Re-module of the Re-bimodule M † is M o, see diagram (7)).
One can show that f is left Re-linear, where Hom−Re(∗N, M †) is a left Re-module by the
Re-bimodule structure of M †. We then obtain the following chain of natural isomorphisms

HomRe−

(
X, (Mo ⊗R N)R

) ∼= // HomRe−

(
X, Hom−Re

(
R, Mo ⊗R N

))
∼=
��

HomRe−

(
X, Hom−Re

(
∗N, M†

))
∼=
��

HomR−R

(
X, (Mo ⊗R N)R

) ∼= //____________ HomRe−Re

(
(X ⊗ ∗N), M†

)
,

where the second right vertical isomorphism is the usual Tensor-Hom adjunction. Since by
(6) the functor (−)† is self-adjoint, the right-hand term in the second row is isomorphic to

the k-module HomRe−Re

(
(X ⊗ ∗N)†, M

)
so that we get the desired natural isomorphism.

�
1.2. The bi-functor (− ×R −) on Re-bimodules. For the convenience of the reader
who is not familiar with the notion of ×R-bialgebras [14], [10], we give in this subsection
a detailed definition of these objects. The most difficult part is the specification of the
bi-functor − ×R − and their domain and co-domain categories. Here we substitute Mac
Lane’s functors

∫
x
,
∫ y

(end, coend) by the tensor product − ⊗R − and the ”invariants”
(−)R functors of Eq (1), which we believe is much closer to the usual notation in bimodules
theory.

As we have seen in Subsection 1.1, there is a bi-functor

−×R − :=
(
(−)o ⊗R −

)R
: ReModRe × RModR −→ RModR.

This is Sweedler-Takeuchi’s product of bimodules [12], [14], which can be also defined using
the notion of ends (limits) and coends (colimits), see [8, pages 222 and 226].
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Given an Re-bimodule M and an R-bimodule N , an element
∑

im
o
i ⊗R ni which belongs

to M×R N will be denoted by
∑

i mi×R ni. Thus, for every r ∈ R and m×R n ∈ M×R N ,
we have

(10)
(
m (1⊗ ro)

)
×R n = m×R nr, and

(
(1⊗ ro)m

)
×R n = m×R rn.

With this notation the left Re-action on M ×R N defined in (8) and (9) can be written as
follows:

(11) (r ⊗ so)

(∑
i

mi ×R ni

)
=
∑
i

(r ⊗ 1o)mi (s⊗ 1o)×R ni,

for every elements
∑

imi ×R ni ∈ M ×R N and r, s ∈ R.
Next, we want to restrict the bi-functor (−×R−) to the product category of Re-bimodules

ReModRe × ReModRe . As one can realize there are many ways to do it. That is, if N is an
Re-bimodule, then there are several structures of R-bimodules on N over which one can
construct M ×R N . Here we define M ×R N by using the R-bimodule R⊗1oNR⊗1o .

In this way, M ×R N admits a structure of Re-bimodule: Using the above left Re-action
(11), we obtain an Re-biaction

(12) (r ⊗ so)

(∑
i

mi ×R ni

)
(p⊗ qo) =

∑
i

(
(r ⊗ 1o)mi (s⊗ 1o)

)
×R

(
(1⊗ po)ni (1⊗ qo)

)
,

for every elements
∑

i mi ×R ni ∈ M ×R N and r, s, p, q ∈ R. Hence the Re-biaction on
(M ×R N)† is given by the formula:

(13) (r ⊗ so)

(∑
i

mi ×R ni

)
†(p⊗ qo) =

(∑
i

(
(r ⊗ 1o)mi (p⊗ 1o)

)
×R

(
(1⊗ so)ni (1⊗ qo)

))
†.

¿From now on, the restriction of the bi-functor (−×R −) to ReModRe × ReModRe will be
understood as the following compositions of functors:

ReModRe × ReModRe

(
(−)o ⊗

R
R⊗1o (−)R⊗1o

)R

��

−×R−

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

ReModRe

(−)†
//
ReModRe ,

and this will be our definition for ×R-product of R
e-bimodules. Therefore, for two bimod-

ules ReMRe and ReNRe , we set

M ×R N :=

[(
M ⊗R N

)R]†
,
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where RMR =
(
1⊗RoM1⊗Ro

)o
and RNR = R⊗1oNR⊗1o . Thus, (10) reads as

(14)
(
m (1⊗ ro)

)
×R n = m×R n (r⊗1o), and

(
(1⊗ ro)m

)
×R n = m×R (r⊗1o)n,

and (13) as

(15) (p⊗ qo)m×R n (r ⊗ so) =
(
(p⊗ 1o)m (r ⊗ 1o)

)
×R

(
(1⊗ qo)n (1⊗ so))

)
,

for every r, s, p, q ∈ R and m×R n ∈ M ×R N .
On the other hand, since we have M o

R = M l
R for every Re-bimodule M , there is a

canonical natural transformation (which is injective)

(16) ΘM,N : M ×R N // M l ⊗R N l.

Now, given another Re-bimodule W , there are three Re-bimodules under consideration.
Namely, M ×R (N ×R U), (M ×R N)×R U , and M ×R N ×R W . The later is constructed
as follows: First we consider the underlying left Re-module of N , that is, N l = ReN which
we consider obviously as an R-bimodule, see diagram (4). Secondly, we construct the k-
module M o ⊗R N l ⊗R W using the left R-module R⊗1oW . This is an Re-bimodule with
actions

(17) (r⊗ to)

(∑
i

mo
i ⊗R nl

i ⊗R wi

)
(p⊗ qo) =

∑
i

rmo
i ⊗R (ni(p⊗ qo))l⊗Rwi(t⊗ 1o),

for every elements
∑

im
o
i ⊗R nl

i ⊗R wi ∈ M o ⊗R N l ⊗R W and p, q, r, t ∈ R.
Lastly, M ×R N ×R W is defined to be the Re-invariant submodule with respect to the

Re-biaction (17), that is,

M ×R N ×R W =
(
Mo ⊗R N l ⊗R W

)Re

={∑
i

mo
i ⊗R nl

i ⊗R wi|
∑
i

rmo
i ⊗R nl

i ⊗R w(s⊗ 1o) =
∑
i

mo
i ⊗R (ni(r ⊗ so))l ⊗R w, for all r, s ∈ R

}
.

The k-module M ×R N ×R W admits a structure of an Re-bimodule given by

(r ⊗ so)

(∑
i

mi ×R ni ×R wi

)
(p⊗ qo) =

∑
i

(
(r ⊗ 1o)mi(p⊗ 1o)

)
×R ni ×R

(
(1⊗ so)wi(1⊗ qo)

)
,

for every elements
∑

imi ×R ni ×R wi ∈ M ×R N ×R W and r, s, p, q ∈ R.
The bi-functor −×R − is not associative. However, the are natural Re-bilinear maps

αl : (M×R N)×R W −→ M×RN×RW,

∑
i

∑
j

mij ×R nij

×R wi 7−→
∑
i,j

mij ×R nij ×R wi

 ,

αr : M×R (N×R W ) −→ M×RN×RW,

∑
i

mi ×R

∑
j

nij ×R wij

 7−→
∑
i,j

mi ×R nij ×R wij

 .

The following lemma will be used in the sequel.
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Lemma 1.2.2. Let N be an R-bimodule such that RN is finitely generated and projective
with left dual basis {(ej, ∗ej)}1≤j≤m ⊂ N × ∗N . Consider the bimodule ReNRe = (N ⊗ ∗N)†.
Then there is a well-defined map

N −→
(
N ×R N

)
×R N,

(
n 7−→

∑
i,j

(
(n⊗ ∗ej)

† ×R (ej ⊗ ∗ei)
†
)
×R ei

)
.

Proof. Straightforward. �

Another useful natural transformation of Re-bimodules is given as follows, see [10, p.
206]: For every Re-bimodules M,M ′, N,N ′, we have an Re-bilinear map:

(18) (M ×R M ′) ⊗Re (N ×R N ′)
τ // (M ⊗Re N) ×R (M ′ ⊗Re N ′)(∑

i mi ×R m′
i

)
⊗Re

(∑
j nj ×R n′

j

)
� //

∑
i,j(mi ⊗Re nj)×R (m′

i ⊗Re n′
j).

In this way, given two Re-rings S and T , then S ×R T is also an Re-ring.
It is clear that the k-linear endomorphisms ring Endk(R) is an Re-ring via the map

ϱ : Re → Endk(R) which sends p⊗ qo to [r 7→ p r q]. Given a pair of bimodules RoMRo and

RNR, there are two bilinear maps, see [14, §2]

θr : M×R Endk(R) // M,∑
imi ×R fi

� //
∑

i fi(1)
o mi

θl : Endk(R)×R N // N∑
j gj ×R nj

� //
∑

j gj(1) nj.

If M and N are two Re-bimodules, then θr and θl are defined using the underlying bimod-
ules 1⊗RoM1⊗Ro and R⊗1oNR⊗1o , and both maps are Re-bilinear. Thus,

θr

(∑
i

mi ×R fi

)
= (1⊗ fi(1)

o)mi, and θl

(∑
j

gj ×R nj

)
= (gj(1)⊗ 1o)nj.

Recall from [14, §4, Definition 4.5] (see also [1] and [10]) the definition of ×R-bialgebra.
A ×R-coalgebra is an Re-bimodule C together with two Re-bilinear maps ∆ : C → C×R C
(comultiplication) and ε : C → Endk(R) (counit) such that the diagrams

C×R C
∆×R C // (C×R C)×R C

αl

**UUU
UUUU

UUUU
UUUU

UU

C

∆

66nnnnnnnnnnnnnnn

∆
((PP

PPP
PPP

PPP
PPP

P C×R C×R C

C×R C
C×R ∆ // C×R (C×R C)

αr

44iiiiiiiiiiiiiiiii
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C×R C

ε×R C

��

C
∆oo ∆ // C×R C

C×R ε

��
Endk(R)×R C

θl // C C×R Endk(R)
θroo

are commutative. A ×R-coalgebra C is said to be a ×R-bialgebra provided that comulti-
plication and counit are morphisms of Re-rings.

The underlying R-coring structure is given by

C // C×R C
ΘC,C // Cl ⊗R Cl, C

ε(−)(1R)
// R,

where Θ−,− is the natural transformation of (16).

1.3. The ×R-bialgebra Lm(A). Let A be an R-ring. Using the bifunctor of Subsection
1.2, we get a functor − ×R A : ReModRe → RModR. Now, for every pair of Re-bimodules
M and N , we have well-defined and R-bilinear maps:

(19) (M ×R A)⊗R (N ×R A)
Φ2

(M,N) // (M ⊗Re N)×R A,

(m×R a)⊗R (n×R a′) � // (m⊗Re n)×R aa′
R

Φ0
// Re ×R A

r � // (r ⊗ 1o)×R 1A,

where Φ2
(−,−) is obviously a natural transformation. Thus we can state:

Lemma 1.3.3. Let A be an R-ring. Then − ×R A : ReModRe → RModR is a monoidal
functor with structure maps Φ2

(−,−) and Φ0 of Eq. (19).

Proof. These are routine verifications. �
¿From now on, we assume that our R-ring A is finitely generated and projective as left

R-module. We fix a left dual basis {(ej, ∗ej)}1≤j≤n ⊂ A× ∗A. By Lemma 1.1.1,

R := −×R A : ReModRe −→ RModR

is a right adjoint to the functor

L := (−⊗ ∗A)† : RModR −→ ReModRe .

The unit and counit of this adjunction are explicitly given as follows. For any R-bimodule
X and any Re-bimodule U , the unit at the object X is given by

(20) X
ηX // RL (X) = (X ⊗ ∗A)† ×R A,

x � //
∑

j(x⊗ ∗ej)
† ×R ej,

while the counit at U is given by

(21) L R(U) =
(
(U ×R A)⊗ ∗A

)
† ξU // U

((u×R a)⊗ φ)† � // (1⊗ φ(a)o)u.
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The functor L : RModR → ReModRe is a comonoidal functor whose structures maps,
using (20) and (21), are given by(
(X ⊗R Y )⊗ ∗A

)
†

Ψ2
(X, Y ) // (X ⊗ ∗A)† ⊗Re (Y ⊗ ∗A)†,(

(x⊗R y)⊗ φ
)

† � //
∑

i(x⊗ ejφ)
† ⊗Re (y ⊗ ∗ej)

†

(R⊗ ∗A)†
Ψ0

// Re

(r ⊗ φ)† � // r ⊗ φ(1A)
o,

for every pair of R-bimodules X and Y .
The following is a classical result in the theory of monoidal categories (see for instance

[15, Remark 1.5]). We will freely use it in the construction performed in the sequel.

Theorem 1.3.4. Let (B,⊗B,1B) and (C,⊗C,1C) be monoidal categories. Let L ⊣ R be
an adjunction where R : C → B is a monoidal functor with structure morphisms Φ2

(−,−)

and Φ0. Then R induces a functor Rm : Cm → Bm between the associated categories of
monoids.

Assume that C has inductive limits and that the tensor product preserves them. Then
Rm has a left adjoint Lm : Bm → Cm.

By Theorem 1.3.4 and Lemma 1.3.3, the adjunction L ⊣ R of (20)-(21) restricts to the
categories of ring extension. That is, we have an adjunction

(22) Lm : R-Rings // Re-Rings : Rm.oo

For a given R-ring C, i.e. a k-algebra map R → C, the Re-ring Lm(C) is defined, by
the quotient algebra

(23) Lm(C) = TRe

(
L (C)

)
/IL (C)

where TRe

(
L (C)

)
=
⊕
n∈N

L (C)⊗Ren is the tensor algebra of the Re-bimodule L (C) =

(C ⊗ ∗A)† and where IL (C) is the two-sided ideal generated by the set

(24)

{∑
i

(
(c⊗ eiφ)

† ⊗Re (c′ ⊗ ∗ei)
†
)
− (cc′ ⊗ φ)†; 1R ⊗ φ(1A)

o − (1C ⊗ φ)†

}
c, c′∈C,φ∈ ∗A

We denote by πC : TRe(L (C)) → Lm(C) the canonical projection. From now on, given a
homogeneous element (c⊗ φ)† ∈ TRe(C) of degree one, we denote by πC(c⊗ φ) its image
in the Re-ring Lm(C). Thus, throughout this section we will drop the symbol dag in the
upper indices, and consider C ⊗ ∗A as an Re-bimodule with its dag biaction, see (5).

The unit and counit of the adjunction (22), can be written as follows:

(25) C
ηmC // RmLm(C) = Lm(C)×R A,

c � //
∑

j πC(c⊗ ∗ej)×R ej
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(26) LmRm(B) =
(
(B ×R A)⊗ ∗A

)
ξmB // B

πLm(B)

(
(b×R a)⊗ φ

)
� // (1⊗ φ(a)o)b,

for every R-ring C and Re-ring B. Notice that ξmB is defined by the universal property of
the tensor algebra.

Next, we proceed to show that Lm(A) is an ×R-bialgebra. The structure of an Re-ring,
is given by the following composition of algebra maps

Re ι0 // TRe(L (A))
πA // Lm(A),

where ιn denotes the canonical Re-bilinear injection in degree n ≥ 0.

Lemma 1.3.5. Let A be an R-ring which is finitely generated and projective as left R-module
with dual basis {(∗ei, ei)}i. The following maps

δ : A −→
(
Lm(A)×R Lm(A)

)
×R A,

(
a 7−→

∑
j,i

(
πA(a⊗ ∗ej)×R πA(ej ⊗ ∗ei)

)
×R ei

)

ω : A −→ Endk(R)×R A,

(
a 7−→

∑
j

∗ej(a •)×R ej

)
, where

[
∗ej(a•) : r 7→ ∗ej(a r)

]
are morphisms of R-rings.

Proof. We only prove that δ is a morphism of R-rings. Similar arguments are used to show
that ω is also a morphism of R-rings. The map δ is in fact the composition of the following
two maps

δ : A //
(
L (A)×R L (A)

)
×R A

(πA◦ι1×RπA◦ι1)×RA
//
(
Lm(A)×R Lm(A)

)
×R A,

where the first one is defined via Lemma 1.2.2. Thus δ is a well-defined map. Now, let us
show that δ is a morphism of R-rings. The unit is preserved by δ, since we have

δ(1A) =
∑
j,i

(
πA(1A ⊗ ∗ej)×R πA(ej ⊗ ∗ei)

)
×R ei, (πA(1A ⊗ ∗ej) = πA(1R ⊗ ∗ej(1A)

o))

=
∑
j,i

(
πA(1R ⊗ ∗ej(1A)

o)×R πA(ej ⊗ ∗ei)
)
×R ei

=
∑
j,i

((
(1⊗ ∗ej(1A)

o).πA(1Re)
)
×R πA(ej ⊗ ∗ei)

)
×R ei

=
∑
j,i

(
πA(1Re)×R

(
∗ej(1A).πA(ej ⊗ ∗ei)

))
×R ei

=
∑
j,i

(
πA(1Re)×R πA(

∗ej(1A)ej ⊗ ∗ei)
)
×R ei

=
∑
i

(
πA(1Re)×R πA(1A ⊗ ∗ei)

)
×R ei
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=
∑
i

[ (
πA(1Re)×R πA(1Re)

)
(1⊗ ∗ei(1A)

o)
]
×R ei

(10)
=

∑
i

(
πA(1Re)×R πA(1Re)

)
×R ei

∗ei(1A)

=
(
πA(1Re)×R πA(1Re)

)
×R 1A.

For any a, a′ ∈ A, we have

δ(aa′) =

=
∑
j,i

[
πA(aa

′ ⊗ ∗ej)×R πA(ej ⊗ ∗ei)
]
×R ei

=
∑
j,i,k

[
πA

(
(a⊗ ek

∗ej)⊗Re (a′ ⊗ ∗ek)
)
×R πA(ej ⊗ ∗ei)

]
×R ei

=
∑
j,i,k,l

[
πA

(
(a⊗ ∗el

∗ej(elek))⊗Re (a′ ⊗ ∗ek)
)
×R πA(ej ⊗ ∗ei)

]
×R ei

=
∑
j,i,k,l

[ (
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
∗ej(elek)

)
×R πA(ej ⊗ ∗ei)

]
×R ei

=
∑
j,i,k,l

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R

(
(∗ej(elek)⊗ 1oR)πA(ej ⊗ ∗ei)

)]
×R ei

=
∑
j,i,k,l

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R πA(

∗ej(elek)ej ⊗ ∗ei)
]
×R ei

=
∑
i,k,l

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R πA(elek ⊗ ∗ei)

]
×R ei

=
∑

i,k,l,m

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R πA

(
(el ⊗ em

∗ei)⊗Re (ek ⊗ ∗em)
)]

×R ei

=
∑

i,k,l,m,n

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R πA

(
(el ⊗ ∗en

∗ei(enem))⊗Re (ek ⊗ ∗em)
)]

×R ei

=
∑

i,k,l,m,n

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R

(
(1⊗ ∗ei(enem)o)πA

(
(el ⊗ ∗en)⊗Re (ek ⊗ ∗em)

))]
×R ei

(15)
=

∑
i,k,l,m,n

[
(1⊗ ∗ei(enem)o)

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R πA

(
(el ⊗ ∗en)⊗Re (ek ⊗ ∗em)

)]]
×R ei

=
∑

i,k,l,m,n

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R πA

(
(el ⊗ ∗en)⊗Re (ek ⊗ ∗em)

)]
×R

∗ei(enem)ei

=
∑

k,l,m,n

[
πA

(
(a⊗ ∗el)⊗Re (a′ ⊗ ∗ek)

)
×R πA

(
(el ⊗ ∗en)⊗Re (ek ⊗ ∗em)

)]
×R enem

=
∑

k,l,m,n

[ (
πA(a⊗ ∗el)×R πA(el ⊗ ∗en)

) (
πA(a

′ ⊗ ∗ek)×R πA(ek ⊗ ∗em)
)]

×R enem

=

∑
l,n

(
πA(a⊗ ∗el)×R πA(el ⊗ ∗en)

)
×R en

∑
k,m

(
πA(a

′ ⊗ ∗ek)×R πA(ek ⊗ ∗em)
)
×R em


= δ(a)δ(a′),
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and hence δ(aa′) = δ(a)δ(a′), which shows that δ is multiplicative. A similar computation
shows that δ satisfies

δ(r1A) =
(
πA(r1Re)×R πA(1Re)

)
×R 1A = r1Lm(A)×RLm(A) ×R 1A, for every r ∈ R,

which means that the diagram

R //

''OO
OOO

OOO
OOO

OO A

δwwooo
ooo

ooo
ooo

o

(Lm ×R Lm)×R A

is commutative, and this finishes the proof. �

Part of the following proposition was first observed by D. Tambara in [15, Remark 1.7]
with no proof. Note that, from a categorical point of view, one can expect that this is
rather a trivial result. However, this is far from being a direct or immediate verification,
since the handled categories as we have seen have a very complicated monoidal structure
which is due to the fact that we are dealing with multi-modules over R rather than fixed
bimodules and that the product ×R is not associative.

Proposition 1.3.6. Let A be an R-ring which is finitely generated and projective as a left
R-module with dual basis {(∗ei, ei)}i. Then Lm(A) is a ×R-bialgebra with structure maps

Lm(A)
∆ // Lm(A)×R Lm(A),

πA(a⊗ φ) � //
∑

j πA(a⊗ ∗ej)×R πA(ej ⊗ φ)

Lm(A)
ε // Endk(R)

πA(a⊗ φ) � //
[
r 7→ φ(ar)

]
.

Proof. Both ∆ and ε are defined via the adjunction Lm ⊣ Rm of Eq (25)-(26). In fact, we
have

∆ = ξmLm(A)×RLm(A) ◦ Lm(δ),

where δ is the morphism of R-rings defined in Lemma 1.3.5, and ξm− is the counit of the
adjunction Lm ⊣ Rm. Therefore, it is immediate that ∆ is a morphism of Re-rings. To
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show that ∆ is coassociative it suffices to check that the following diagram is commutative

A

ηm
A

PPP
PPP

PPP
PP

((PP
PPP

PPP
PPP

Rm(Lm(A))
Rm(∆) //

Rm(∆)

��

Rm

(
Lm(A)×R Lm(A)

)
Rm(∆×RLm(A))

��

Rm

(
Lm(A)×R Lm(A)

)
Rm(Lm(A)×R∆)

��

Rm

((
Lm(A)×R Lm(A)

)
×R Lm(A)

)
Rm(αl)

��

Rm

(
Lm(A)×R

(
Lm(A)×R Lm(A)

))
Rm(αr) // Rm

(
Lm(A)×R Lm(A)×R Lm(A)

)
,

and this follows from routine computations.
We also have ε = ξmEndk(R) ◦ Lm(ω), where ω : A → Endk(R) ×R A is the morphism of

R-rings defined in Lemma 1.3.5. Hence ε is clearly a morphism of Re-rings. Furthermore,
it satisfies the following equality

θl ◦ (ε×R Lm(A)) ◦∆ = Lm(A) = θr ◦ (Lm(A)×R ε) ◦∆,

which is the counitarity property. �

Next we provide the relation between the R-ring structure of A and the ×R-bialgebra
structure of Lm(A).

Corollary 1.3.7. Let A be an R-ring such that RA is finitely generated and projective
and Lm(A) the associated ×R -bialgebra defined in Proposition 1.3.6. Then A is a left ×R-
Lm(A)-comodule R-ring, that is, A admits a left ×R-Lm(A)-coaction λA : A → Lm(A)×R

A which is also a morphism of R-rings.

Proof. The unit of the adjunction given in (22) at A

ηmA : A −→ Lm(A)×R A,

(
a 7−→

∑
i

πA(a⊗ ∗ei)×R ei

)
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is by definition a morphism of R-rings. Let us check that it is a left Lm(A)-coaction. It
remains to show that the following diagrams are commutative

A
ηmA //

ηmA

��

Lm(A)×R A

∆×R A

��

Lm(A)×R A

Lm(A)×R ηmA

��

(
Lm(A)×R Lm(A)

)
×R A

αl

��
Lm(A)×R

(
Lm(A)×R A

)
αr

// Lm(A)×R Lm(A)×R A,

A
ηmA // Lm(A)×R A

ε×R A
��

A Endk(R)×R A
θl

oo

For every element a ∈ A, we have

αl ◦ (∆×R A) ◦ ηmA (a) =
∑
i,j

αl

((
πA(a⊗ ∗ei)×R πA(ei ⊗∗ ej)

)
×R ej

)
=

∑
i,j

πA(a⊗ ∗ei)×R πA(ei ⊗∗ ej)×R ej

=
∑
i,j

αr

(
πA(a⊗∗ ej)×R

(
πA(ej ⊗ ∗ei)×R ei

))
= αr ◦

(
Lm(A)×R ηmA

)
◦

(∑
i

πA(a⊗∗ ei)×R ei

)
= αr ◦

(
Lm(A)×R ηmA

)
◦ ηmA (a),

and also we have

θl ◦
(
ε×R A

)
◦ ηmA (a) = θl ◦

(
ε×R A

)(∑
i

πA(a⊗∗ ei)×R ei

)
=

∑
i

θl

(
∗ei(a•)×R ei

)
=

∑
i

∗ei(a)ei = a.
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This proves the commutativity of the above diagrams and establishes the corollary. �
The ×R-bialgebra Lm(A) constructed in Proposition 1.3.6 is refereed to as coendomor-

phism left R-bialgebroid since, by [1, Theorem 3.1], Lm(A) is in fact a (left) bialgebroid
whose structure of Re-ring is the map

πA ◦ ι0 : Re −→ Lm(A),

and its structure of R-coring is given as follows. The underlying R-bimodule is Lm(A)
l =

ReLm(A), the comultiplication and counit are given by

(27) ∆ : Lm(A)
l −→ Lm(A)

l ⊗R Lm(A)
l,(

πA(a⊗ φ) 7−→
∑
i

πA(a⊗ ∗ei)⊗R πA(ei ⊗ φ)

)
,

(28) ε : Lm(A)
l −→ R,

(
πA(a⊗ φ) 7−→ φ(a)

)
.

Remark 1.3.8. As one can realize the coendomorphism right bialgebroids are constructed
by taking a k-algebra extension R → A where AR is finitely generated and projective right
module.

On the other hand, one may wish to have structures of left Hopf algebroids that can
be extracted from coendomorphism left bialgebroids, as was done for some localizations of
coendomorphisms bialgebras which give rise to new Hopf algebras. Perhaps in this general
case one can use also the theory of noncommutative localization at some multiplicative set
of grouplike elements. However, we believe that this is not an easy task which deserves a
separate project.

2. Examples of coendomorphism bialgebroids.

In this section we give some concrete examples of coendomorphism bialgebroids, by
specifying their generators and relations.

Example 2.0.1 (Quaternion coendomorphism bialgebra). Assume that R = k is a field
with characteristic not equal to 2. Let A be the Hamilton quaternion k-algebra associated
to the pair (−1,−1). That is, A = k ⊕ ki ⊕ kj ⊕ kij with relation i2 = −1 = j2 and
ij = −ji. Then one can prove, using Proposition 1.3.6, that Lm(A) is a k-bialgebra, which
is generated as a k-algebra by elements {xk, yk, zk, uk}1≤k≤3 subject to the relations

1 + x2
k = y2k + z2k + u2

k, for all k = 1, 2, 3,

x1x2 + x2x1 = y2y1 + y1y2 + u2u1 + u1u2 + z2z1 + z1z2,

x1y1 = −y1x1 + z1u1 − u1z1,

u1y1 = y1u1 + z1x1 + x1z1,

z1y1 = y1z1 − x1u1 − u1x1,

x3 = x1x2 − y1y2 − z1z2 − u1u2,

y3 = x1y2 + y1x2 − z1u2 + u1z2,
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z3 = x1z2 + y1u2 + z1x2 − u1y2,

u3 = x1u2 − y1z2 + z1y2 + u1x2,

u2x1 = −x2u1 − y2z1 − z2y1,

u2z1 = −x2y1 − y2x1 − z2u1 + y3,

u2y1 = x2z1 + y2u1 + z2x1 + z3,

x2y2 = −y2x2 + z2u2 − u2z2,

x2z2 = −y2u2 − z2x2 + u2y2,

x2u2 = −y2z2 − z2y2 − u2x2.

The k-coalgebra structure is given as follows:

∆(xk) = xk ⊗ 1 + yk ⊗ x1 + uk ⊗ x2 + zk ⊗ x3,

ε(xk) = 0, k = 1, 2, 3,

∆(yk) = yk ⊗ y1 + uk ⊗ y2 + zk ⊗ y3, k = 1, 2, 3,

ε(yk) = 0, k = 2, 3, ε(y1) = 1,

∆(zk) = yk ⊗ z1 + uk ⊗ z2 + zk ⊗ z3, k = 1, 2, 3,

ε(zk) = 0, k = 1, 2, ε(z3) = 1,

∆(uk) = yk ⊗ u1 + uk ⊗ u2 + zk ⊗ u3, k = 1, 2, 3,

ε(uk) = 0, k = 1, 3, ε(u2) = 1.

Moreover A is a left Lm(A)-comodule algebra with coaction λ : A → Lm(A)⊗ A defined
by

λ(1A) = 1L (A) ⊗ 1A,

λ(i) = x1 ⊗ 1 + y1 ⊗ i+ u1 ⊗ j+ z1 ⊗ ij,

λ(j) = x2 ⊗ 1 + y2 ⊗ i+ u2 ⊗ j+ z2 ⊗ ij.

Of course, we have λ(ij) = λ(i)λ(j) = x3 ⊗ 1 + y3 ⊗ i+ u3 ⊗ j+ z3 ⊗ ij.

Example 2.0.2. Assume that A = Rn, the obvious R-ring attached to the free R-module
of rank n. One can easily check, using (23) and Proposition 1.3.6, that Lm(A) is a left
R-bialgebroid generated as a ring by the image of Re and a set of Re-invariant elements
{xij}1≤i, j≤n with relations

x2
ii = xii, for all i = 1, 2, · · · , n,

xji xki = 0, for all j ̸= k, and i, j, k = 1, 2, · · · , n,
n∑

i=1

xij = 1, for all j = 1, 2, · · · , n.

Its structure of R-coring is given by the following comultiplication and counit

∆(xij) =
n∑

k=1

xik ⊗R xkj, for all i, j = 1, 2, · · · , n;

ε(xij) = δij, (Kronecker delta) for all i, j = 1, 2, · · · , n.
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Let us denote by {ei}1≤i≤n the canonical basis of RA. Then A is a left Lm(A)-comodule
ring via the coaction λ : A → Lm(A)⊗R A defined by

λ(ei) =
n∑

j=1

xij ⊗R ej, ∀i = 1, · · · , n.

Example 2.0.3. Let A = R⊕Rt be the trivial generalized R-ring i.e. the R-ring which is
free as left R-module with basis 1 = (1, 0) and t = (0, t) such that t2 = 0. Using (23) and
Proposition 1.3.6, we can easily check that Lm(A) is a left R-bialgebroid generated by the
image of Re and two Re-invariant elements {x, y} subject to the relations xy + yx = 0,
x2 = 0. The comultiplication and counit of its underlying R-coring are given by

∆(x) = x⊗R 1 + y ⊗R x, ε(x) = 0,

∆(y) = y ⊗R y, ε(y) = 1.

A is a left Lm(A)-comodule ring with coaction λ : A → Lm(A)⊗R A defined by

λ(1A) = 1Lm(A) ⊗R 1A, λ(t) = x⊗R 1A + y ⊗R t.

Example 2.0.4. Let A be the trivial crossed product of R by the cyclic group Gn of order
n. We know that RA is the left free module with basis Gn. It is easily checked, using (23)
and Proposition 1.3.6, that if n = 2, then Lm(A) is an R-bialgebroid generated as an Re-
ring by two Re-invariant elements x, y subject to the relations xy+yx = 0 and 1 = x2+y2.
The comultiplication and counit of the underlying R-coring structure are given by

∆(x) = x⊗R 1 + y ⊗R x, ∆(y) = y ⊗R y, ε(x) = 0, ε(y) = 1.

For n > 2, we can prove that Lm(A) is an Re-ring generated by the Re-invariant elements
x(k, l) with (k, l) ∈ (Zn \ {0})× Zn subject to the following relations:

x(k, l) =
n−1∑
s=0

x(t, l−s) x(k−t, s), ∀ (k, l) ∈ (Zn \ {0, 1})× Zn, ∀ t ∈ Zn \ {0} with t < k,

x(1, l) =
n−1∑
s=0

x(n−t, l−s) x(n−t′, s), ∀ l ∈ Zn, ∀ t, t′ ∈ Zn \ {0}, with t+ t′ = n− 1,

and

1 =
n−1∑
s=0

x(t, n−s) x(t′, s), ∀ t, t′ ∈ Zn \ {0}, with t+ t′ = 0,

where the ring Zn is endowed with the canonical ordering 0 < 1 < · · · < n − 1. The
comultiplication and counit of its underlying R-coring structure are given by

∆(x(k, l)) =
n−1∑
s=0

x(k, s) ⊗R x(s, l), ε(x(k, l)) = δk,l, ∀ (k, l) ∈ (Zn \ {0})× Zn.

The left comodule ring structure ofA is given by the following coaction. Consider {gk}0≤k≤n−1

the basis of the free module RA, where g denotes the generating element of Gn which we
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identify with its image in A by using the canonical injection. The coaction is then given
by λ : A → Lm(A)⊗R A sending

λ(1A) = 1Lm(A) ⊗R 1A, λ(gk) =
n−1∑
l=0

x(k, l) ⊗R gl, ∀k ∈ (Zn \ {0}).
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[4] A. Bruguières, Théorie tannakienne non commutative, Commun. in Algebra 22 (1994), 5817–5860.
[5] P. Deligne, Catégories tannakiennes. In The Grothendieck Festschrift (P. Cartier et al., eds), Progr.
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