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Anomalous diffusion in confined turbulent convection
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Turbulent convection in quasi-one-dimensional geometry is studied by means of high-resolution direct
numerical simulations within the framework of Rayleigh-Taylor turbulence. Geometrical confinement has
dramatic effects on the dynamics of the turbulent flow, inducing a transition from superdiffusive to subdiffusive
evolution of the mixing layer and arresting the growth of kinetic energy. A nonlinear diffusion model is shown
to reproduce accurately the above phenomenology. The model is used to predict, without free parameters, the
spatiotemporal evolution of the heat flux profile and the dependence of the Nusselt number on the Rayleigh
number.
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I. INTRODUCTION

Diffusion in systems of reduced dimensionality displays
a number of peculiarities in comparison with the unconfined
three-dimensional (3D) space. This feature has been studied
in simple systems in which geometrical confinement leads
to subdiffusive behavior of trajectories [1,2]. In the present
paper we study, by means of high-resolution numerical sim-
ulations, the effects of confinement in quasi-1D geometry on
turbulent convection within the framework of Rayleigh-Taylor
(RT) turbulence. RT turbulence is a prototypical example of
turbulent convection which arises from the instability at the
interface of two layers of fluids at different densities in a
gravitational field [3]. It is relevant for several problems in
natural and applied sciences, like cloud formation [4], the
physics of supernovae [5], and inertial confinement fusion [6].

In three dimensions, RT instability evolves in a turbulent
mixing layer whose width grows proportionally to gt2 in
the direction of gravity g [5,7]. Inside the mixing layer,
the conversion of potential energy to kinetic energy sustains
a turbulent cascade characterized by Kolmogorov-Obukhov
phenomenology for velocity and temperature fluctuations
[5,8–12]. The integral scale of the turbulent flow follows the
accelerated growth of the width of the mixing layer. Because
of the absence of thermal and kinetic boundary layers, the time
dependence of Rayleigh, Reynolds, and Nusselt numbers in RT
turbulence realizes the Kraichnan scaling regime associated
with the ultimate state of thermal convection [13,14].

In the following we show that the confinement of the flow
in the two directions normal to the acceleration of gravity has
dramatic effects on the dynamics of the flow as it modifies
the late stage evolution of the mixing layer from t2 to a
subdiffusive law and changes qualitatively the evolution of
other large scale quantities, such as kinetic energy. In order to
understand the observed phenomenology, we propose a simple
nonlinear diffusion model, based on Prandtl’s mixing length
theory, which reproduces the behavior of the mixing layer and
accurately predicts the shape of mean temperature and heat
flux profiles. The diffusion model also predicts, without free
parameters, the dependence of Nusselt and Reynolds numbers
on the Rayleigh number of the flow, showing the effect of
confinements on the ultimate state of thermal convection, in
agreement with numerical results.

II. RAYLEIGH-TAYLOR TURBULENCE
IN QUASI-1D GEOMETRY

The equation of motion for the incompressible velocity
field v (∇ · v = 0) and temperature field T in the Boussinesq
approximation is

∂tv + v · ∇v = −∇p + ν∇2v − βgT , (1)

∂t T + v · ∇T = κ∇2T , (2)

where β is the thermal expansion coefficient, ν is the kinematic
viscosity, κ is the thermal diffusivity, and g = (0,0,−g) is the
gravitational acceleration.

We will consider a quasi-one-dimensional setup in which
the flow is confined in a box of dimensions Lz # Lx = Ly .
The initial condition (at t = 0) is a layer of cooler (heavier)
fluid on the top of a hotter (lighter) layer at rest, i.e.,
v(x,0) = 0 and T (x,0) = −(θ0/2)sgn(z), where θ0 is the initial
temperature jump (T = 0 is the reference mean temperature).
This initial configuration is unstable, and after the initial linear
phase, the system develops a turbulent mixing layer which
grows in time starting from the plane z = 0 (see an example
in Fig. 1).

We have simulated Eqs. (1) and (2) in a domain of size
Lx = Ly = π/4, Lz = 8π at resolutions up to Nx = Ny =
256, Nz = 8192 with a fully dealiased parallel pseudospectral
code with periodic boundary conditions. Parameters are θ0 =
1.0, βg = 0.5, and ν = κ = 10−4. In all the results, the time
is expressed in terms of the characteristic transverse time τ =
(Lx/βgθ0)1/2. We remark that the confinement in the present
simulations is not obtained by imposing physical boundaries
on lateral sides but only by imposing periodicity on a scale
Lx = Ly $ Lz. Nonetheless, we found that the evolution of
the mixing layer is similar to that observed in experiments with
physical boundaries on the lateral sides. This indicates that the
suppression of modes at scales larger than Lx is sufficient to
induce the quasi-1D behavior and that large scale properties
of the flow are apparently independent of the lateral boundary
conditions.

The initial unstable condition for the temperature field
T (x,0) = −(θ0/2)sgn(z) is numerically smoothed with a tanh
function over a few grid points. Moreover, in order to trigger
the instability, the interface is “diffused” around z = 0 by
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FIG. 1. (Color online) Vertical sections of the temperature field
T in the central part of the computational domain equispaced in time
with (t = 8τ (from left to right). White represents hot temperatures
θ0/2, and black represents cold temperatures −θ0/2.

adding a small amplitude of white noise to the temperature
field in the smoothing region.

In the fully three-dimensional case, after the first instability
the growth of the mixing layer width h is known to follow
a quadratic law h(t) % βgθ0t

2 [5,10,12] as a consequence of
constant acceleration. In the present setup, we indeed observe
an initial stage of accelerated growth, but because of the
lateral confinement, the time evolution of the mixing layer
at times much larger than the typical transverse time scale
τ = (Lx/βgθ0)1/2 becomes slower than linear as shown in
Fig. 1 and more quantitatively in Fig. 2.

Another, and related, important effect of the confinement
concerns the energy balance. In the mixing layer turbulent
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FIG. 2. Time evolution of the mixing layer width h(t) obtained
from the fit of z1(t) according to Eq. (7). Lower inset: h(t)
compensated with the behavior predicted by the nonlinear diffusion
model 2(βgθ0)1/5L4/5

x t2/5 (continuous line), giving the value of the
coefficient γ = 1.40 ± 0.02 together with the compensation with
diffusive behavior t1/2 (dotted line). Upper inset: Velocity correlation
scale L, normalized with Lx as a function of time.
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FIG. 3. Total kinetic energy E compensated with the rms velocity
urms = βgθ0Lx as a function of time. Inset: Ratio of dE/dt to viscous
energy dissipation εν .

kinetic energy E = (1/2)〈v2〉 is produced at the expense of
potential energy P = −βg〈zT 〉 as the energy balance indicates

−dP

dt
= βg〈wT 〉 = dE

dt
+ εν, (3)

where εν = ν〈(∂αvβ)2〉 is the viscous energy dissipation, 〈〉
represents the integral over the physical domain, and we have
neglected the effects of molecular diffusivity on potential
energy. Indeed, the contribution of the molecular diffusivity
κβgθ0L

2
x to the dissipation rate of the potential energy is

negligible with respect to the contribution of the advective
term βg〈wT 〉. Their ratio is given by the Nusselt number Nu =
〈wT 〉/(κθ0L

2
x), which is much larger than unity in the turbulent

stage of the evolution. In three-dimensional RT convection it
is known that all the terms in Eq. (3) scale in the same way, and
one has dE/dt % εν % (1/2)βg〈wT 〉 [15]. Physically, this
means that the integral scale follows h(t), and consistently
large scale velocity fluctuations (which generate the turbulent
cascade with flux εν) grow linearly in time urms % βgθ0t . In the
present configuration, when the mixing layer growth enters in
the slow, one-dimensional regime at t ! 30τ , turbulent kinetic
energy saturates as shown in Fig. 3, and viscous dissipation
becomes dominant in the balance of Eq. (3).

The confinement affects also the typical size of the thermal
plumes. The horizontal size of thermal plumes is clearly
bounded by the confining scale Lx . On the contrary, the
flow has no geometrical constraint in the vertical direction.
This could a priori allow for the development of narrow
plumes longer than Lx . Nevertheless, the temperature fields
obtained in our simulations do not display such strongly
elongated structures (see e.g., Fig. 1). To investigate this
issue, we measured the correlation function C(r) = 〈vz(x +
r)vz(x)〉/〈v2

z 〉 of the vertical velocity vz in the vertical direction
r = (0,0,r). An estimate of the characteristic length of plumes
is provided by the the vertical velocity correlation scale L,
here defined as the width at half-height of the correlation
function C(L) = 1/2C(0). In the first stage of the evolution,
the correlation scale L grows following the evolution of the
width of the mixing layer. When the one-dimensional regime
sets in (at t ! 30τ ), the velocity correlation scale L saturates
to a value ∼Lx (see the inset of Fig. 2). A similar behavior is
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observed for the correlation scale in the vertical direction of
the horizontal components of the velocity (not shown). These
findings indicate that the typical length of thermal plumes does
not exceed the confining scale Lx . The absence of long narrow
plumes is caused by the turbulent mixing which develops at
scales smaller than Lx . It efficiently decorrelates the flow also
in the vertical direction preventing the formation of strongly
elongated structures. It is worthwhile to notice that such a
mechanism may not be effective in the case of convective
flows at high Prandtl number Pr = ν/κ in which turbulence is
suppressed by the strong viscosity, and the presence of a long
narrow plume cannot be excluded.

III. MODELING THE GROWTH OF THE MIXING LAYER

The independence of velocity fluctuations at scales larger
than L allows to introduce an eddy diffusivity model for
the vertical temperature profile which reproduces the one-
dimensional regime of the evolution observed in the simu-
lations.

The evolution equation for the vertical temperature profile
T (z,t) is obtained by averaging Eq. (2) over Lx and Ly :

∂t T + ∂zwT = κ∂2
z T , (4)

where w represents the vertical velocity. The thermal flux term
wT makes Eq. (5) not closed. We close this equation in terms
of an eddy diffusivity K(z,t) so that Eq. (4) is rewritten as

∂t T = ∂zK(z,t)∂zT . (5)

The eddy diffusivity is given dimensionally by K % urmsL, and
the typical velocity fluctuation can be estimated by balancing
inertial and buoyancy terms in Eq. (1) as u2

rms/L % βgθL,
where θL is the temperature difference across the scale L
which forces urms. When h(t) < Lx , θL = θ0, and the diffusion
model has been used to predict the shape of the temperature
profile in the accelerated three-dimensional regime [14]. On
the contrary, when h(t) > Lx , the integral scale saturates at
L % Lx , and one estimates θL % Lx∂zT . Therefore, Eq. (5)
becomes

∂t T = a(βg)1/2L2
x∂z(∂zT )3/2, (6)

where a is a dimensionless coefficient which cannot be
determined by dimensional arguments. A simple power count-
ing in Eq. (6) gives for the growth of the mixing layer
in this quasiunidimensional regime a subdiffusive behavior
[16] h(t) % (βgθ0)1/5L

4/5
x t2/5 in agreement with previous

predictions and measurements [17,18].
Model (6) belongs to a class of nonlinear diffusion

equations for which the self-similar solution starting from
the step initial condition is known and for the present case
reads [19–21]

T (z,t) = −θ0
15
16

[
1
5

(
z

z1

)5

− 2
3

(
z

z1

)3

+ z

z1

]
(7)

for |z| " z1 and T (z) = ±θ0/2 for |z| > z1. The half-width
of the mixing layer grows as z1(t) = γ (βgθ0)1/5L

4/5
x t2/5 with

γ = (a2153/16)1/5.
Figure 4 shows that Eq. (7) provides a good fit of the

temperature profiles obtained from numerical simulations.
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FIG. 4. (Color online) Mean temperature profiles T̄ (z,t) as a func-
tion of the rescaled variable z/z1 at times t/τ = 70,80,90,100,110
together with the theoretical prediction (7) (solid, smooth black line)
which is used to fit the values of z1(t). Left y axis: Heat flux wT

(red, continuous line) compensated with γ 5/2θ0L
2
x(βgθ0)1/2/(16z

3/2
1 )

together with the prediction from the eddy diffusivity model ,(z) =
[1 − (z/z1)2]3 (black, dotted line).

From these fits one obtains a precise determination of h(t) =
2z1(t), which is plotted in Fig. 2 as a function of time. The
compensated plots of h(t) in the inset of Fig. 2 show that
in the late stage the mixing layer width grows according to
the subdiffusive model t2/5. In order to evaluate the accuracy
of the numerical simulations, in the inset we show that the
compensation with a standard diffusive process, i.e., h(t) ∼
t1/2, is ruled out.

As the mean temperature profile, shown in Fig. 4, is
approximately linear, a simple estimation for the temperature
gradient is ∂zT % θ0/h.

From this expression one obtains for the typical velocity
fluctuation in the mixing layer u2

rms % βgθ0L
2
x/h and, there-

fore, for the total energy E ∼ u2
rmsh ∼ const. in agreement

with Fig. 3. The same approximation allows to obtain an esti-
mate for the mean eddy diffusivity as K % L

8/5
x (βgθ0)2/5t−1/5,

which is consistent with the subdiffusive behavior.
At first glance, the emergence of a subdiffusive behavior

may seem counterintuitive because advection adds to the
molecular diffusion and greatly enhances the heat transfer. The
mechanism which originates this behavior can be qualitatively
explained by the following reasoning. The mixing layer grows
because of the turbulent motion, but at the same time its
growth reduces the effective buoyancy force which sustains
the turbulent flow. The result of this negative feedback is
that the eddy diffusivity decreases in time, thus leading to
the subdiffusive behavior.

It is worthwhile to notice that this regime is expected to
last as long as the eddy diffusivity overwhelms the molecular
diffusion. A dimensional estimate of the time t∗ at which the
eddy diffusivity becomes of the same order as the molecular
diffusion gives t∗ % (βgθ0)2κ−5L8

x . At later times one recovers
the regime of thermal diffusion.

IV. EFFECTS ON THERMAL CONVECTION

The diffusive model (6) can be used to predict the profile
of other dynamical quantities in the turbulent mixing layer. In
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particular, as the eddy diffusivity K(z,t) in Eq. (5) replaces the
thermal flux wT in Eq. (4), from Eq. (7) one has the prediction
for the thermal flux profile

wT (z,t) = γ 5/2L2
xθ0(βgθ0)1/2

16z
3/2
1

[
1 −

(
z

z1

)2]3

(8)

without free parameters as γ is determined by the evolution
of h(t). In Fig. 4 we show the compensated thermal flux pro-
file ,(z) = 16z

3/2
1 wT /[γ 5/2L2

xθ0(βgθ0)1/2] obtained by our
numerical simulations after averaging over three independent
realizations of the flow. The statistics here are more noisy than
for T (z) because wT (z) has no definite sign. Nonetheless,
the prediction given by Eq. (8) without adjustable parameters
(γ = 1.40, obtained from the fit in Fig. 2) fits very well the
numerical data.

The relation between the thermal flux and the geometrical
properties of the temperature profile can be reformulated
in terms of dimensionless quantities. The integral over the
mixing layer of wT (z) gives the Nusselt number defined as
Nu = 〈wT 〉/(κθ0L

2
x) which represents the ratio of convective

to conductive heat transfer. The Nusselt number is a function of
the Rayleigh number, the ratio of buoyancy forces to diffusivity
here defined as Ra = βgθ0h

3/(νκ). By integrating Eq. (8)
between −z1 and z1, one obtains the prediction (again without
adjustable parameters)

Nu = 23/2γ 5/2

35

(
Lx

h

)2

Pr1/2Ra1/2, (9)

where Pr = ν/κ . Equation (9) represents the so-called “ul-
timate state of thermal convection” predicted by Kraichnan
a long time ago [13] for turbulent convection at very high
Rayleigh numbers when the contribution of thermal and
kinetic boundary layers becomes negligible. This ultimate
state regime has been observed in numerical simulations
of 3D Rayleigh-Taylor turbulence [14] and in simulations
and experiments of bulk turbulent convection [22,23]. With
respect to the pure 3D case, in the present configuration the
ultimate state regime has the additional coefficient (Lx/h)2 <
1, representing the depletion of the transfer of heat due to the
geometrical confinement.

Although the dependence on Ra in Eq. (9) is the same as in
3D RT turbulence, as a consequence of the confinement, the
temporal behavior of the dimensionless quantities is different
as here we obtain dimensionally Ra ∼ t6/5 and Nu ∼ t−1/5

while in 3D we have [14] Ra ∼ t6 and Nu ∼ t3. Observe
that here the Nusselt number is a decreasing function of
time (starting from the value reached in the 3D phase) as a
consequence of the fact that the effective temperature jump
at the integral scale L decays in time when h(t) > Lx as
discussed before. Therefore, from this point of view the situa-
tion here is qualitatively different from the three-dimensional
RT configuration in spite of the universality of the scaling of
Eq. (9) with respect to the dimensionality.

Figure 5 shows the evolution of Nu compensated both
with the geometrical factor (Lx/h)2 as a function of Ra
and with Ra1/2 to show the dependence on h(t). In both
cases prediction (9) fits well the numerical data, which still
display large fluctuations even after averaging over different
realizations. The reason for these strong fluctuations (which
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line is the dimensional prediction (h/Lx)2.

are not observed in the first stage of 3D dynamics) is due to the
fact that at late times, the flow is dominated by a few, large scale
(on the order of Lx) thermal plumes. Given these fluctuations,
we cannot exclude possible corrections to Eq. (9) as the best fit
for the Ra exponent in Eq. (9) gives 0.55 ± 0.05. In the inset
of Fig. 5 we observe a plateau for intermediate values of h/Lx ;
this corresponds to the 3D regime for which an ultimate state
scaling Nu ∼ Ra1/2 without geometrical correction is indeed
expected.

Small scale statistics in the turbulent flow are represented
by the energy spectrum at late times shown in Fig. 6. As a
consequence of the geometry of the flow, the spectrum has
no support of transverse wave numbers for k < 8 where,
therefore, the spectrum decays very fast. For larger wave
numbers (i.e., scales smaller than Lx,Ly) the energy spectrum
displays a short range compatible with Kolmogorov scaling
k−5/3, followed by a steeper dissipative range. Kinetic energy
flux, shown in the inset of Fig. 6, confirms the presence
of a direct cascade of kinetic energy. Again, these results
support the picture that no turbulent cascade is present at scales
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FIG. 6. Kinetic energy spectrum at the final time of the simu-
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Kinetic energy flux in the wave-number space.
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larger than Lx at which an eddy diffusivity model is therefore
appropriate.

Because the local effective temperature difference θL which
sustains the turbulent flow decreases as the the mixing layer
grows, the Reynolds number, defined as Re = urmsLx/ν, de-
creases as Re ∼ t−1/5. The decay of turbulence is accompanied
by the growth of the Kolmogorov scale η = (ν3/ε)1/4 ∼ t3/20.
At late times when the Kolmogorov scale has grown up
to the confining scale Lx , the turbulent motion eventually
terminates, and the turbulent-subdiffusive regime gives way
to a viscous-diffusive regime.

V. CONCLUSIONS

In conclusion, on the basis of high-resolution direct
numerical simulations of the Boussinesq equation, we have
shown that confinement can induce dramatic changes in the
evolution of the turbulent mixing layer in Rayleigh-Taylor
convection. In particular we have found that when the width

of the mixing layer becomes larger than the scale of lateral
confinement, the growth of the mixing layer changes from
accelerated to subdiffusive. Interestingly, this phenomenon
has been observed also in experiments where boundary
conditions on the side walls which confine the flow are
completely different from the idealized periodic boundary
conditions of our simulations. This seems to suggest that
the effects of confinement in turbulent convection may be
actually independent of the details of the confining mechanism
itself. Further studies may shed new insight on this almost
paradoxical conjecture.
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