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The initial value problem for the Benjamin-Oto equation with general-
ized dispersion{

∂tu+Dα∂xu+ ∂x(u2/2) = 0 on Rx ×Rt

u(0) = φ
(1)

is considered, where α ∈ (1, 2) and Dα denotes the operator defined by the
Fourier multiplier ξ 7→ |ξ|α. The problem is considered in the function space
Hσ
r = Hσ, σ ∈ [0,∞), given by the real functions φ with the usual Sobolev

norm ‖φ‖Hσ
r

= ‖φ‖Hσ := ‖(1 + |ξ|2)σ/2φ̂(ξ)‖L2
ξ
; H∞r :=

⋂
σ∈Z+

Hσ
r , with

the induced metric. Suitable solutions of (1) satisfy the L2 conservation
law, that is: if T1 < T2 ∈ R and u ∈ C((T1, T2) : H∞r ) is a solution of
the equation in (1) on R × (T1, T2) then ‖u(t1)‖H0

r
= ‖u(t2)‖H0

r
, for any

t1, t2 ∈ (T1, T2).
The main result concerns the global well-posedness in H0

r of the initial-value
problem (1), namely it is the following
Main Theorem

(a) Assume φ ∈ H∞r , then there exists a unique global solution u =
S∞(φ) ∈ C(R : H∞r ) of the initial-value problem (1).

(b) Assume T ∈ R+, then the mapping

S∞T = 1(−T,T )(t) · S∞ : H∞r 7→ C ((−T, T ) : H∞r )

extends uniquely to a continuous mapping

S0
T : H0

r 7→ C
(
(−T, T ) : H0

r

)
and ‖S0

T (φ)(t)‖H0
r

= ‖φ‖H0
r
, for any t ∈ (−T, T ).

One dimensional models as (1) have been extensively studied. The case
α = 2 corresponds to the KdV equation, while the case α = 1 corresponds
to the Benjamin-Oto equation.
The nonlinearity of (1) is too strong to allow direct perturbative methods
(without a low frequency constraint) since the flow map is not locally uni-
formly continuous in Hs

r (R), s > 0. Then the proof is techically hard and
consists at first in the reduction of the Main Theorem to proving several
a priori bounds on smooth solutions and differences of smooth solutions of
(1), on bounded time intervals. Such a reduction relies on energy-type esti-
mates. Then the authors construct a renormalization which is the key step
to further reducing the problem to perturbative analysis. Namely, after sub-
stracting the low frequency component of the solution, which is essentially
left unchanged by the evolution structure of the nonlinearity, they further
decompose the solution into frequency blocks and multiply each one of them
by a suitable bounded factor. This renormalization leads to an infinite sys-
tem of coupled equations satisfied by the frequency blocks. In the actual
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situation each frequency block must be renormalized by a different factor,
which leads to substantial technical difficulties in the perturbative analysis.
At the end the main normed spaces are defined and it is shown that the
Main Theorem can be reduced to proving a number of nonlinear estimates.
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