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Abstract

We present a mathematical model to make an analysis of the patterns of evolution of arms race and host specificity of Maculinea butterflies and their hosts Myrmica ants. Qualitative results obtained from the simulations of the model are discussed in view of published data of host specificity of Maculinea butterflies. Simulations indicate that multiple host behavior can be observed under natural conditions, although a division into two parasites subpopulations, each adapted to one distinct host, is expected.
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Introduction

Maculinea butterflies, their specific food plants, Myrmica host ants and parasitoids with which they interact are excellent indicators of biodiversity levels across the wide variety of grassland types that they collectively inhabit, because they possess two important attributes (Elmes et al. 1992): 1 - Each Maculinea species is globally endangered and named in the European Red List (Van Swaay and Warren 1999), three are also listed in Annexes 2, 4 of the Habitats Directive (Van Helsdingen et al. 1996). 2 - As a whole, Maculinea species have a Palearctic distribution with Europe as the core. Therefore, European communities have a compelling legal as well as ethical responsibility for their conservation. As Maculinea butterflies are parasites of the Myrmica ant species, one of the most important factor for their maintenance is their survival in ant nests (Clarke et al. 1998, Mouquet et al. 2005, Elmes et al. 1998). It was shown that Maculinea larvae can be carried to the colony by workers of any Myrmica species (Elmes et al. 1991 a, Elmes et al. 2004, Akino et al. 1999, Thomas et al. 2004) but later development and survival is more species-specific [Elmes et al. 2004, Schönrogge et al. 2004). Therefore, investigation of host specificity in Maculinea-Myrmica system is important to understand the population dynamics of Maculinea butterflies and may contribute with crucial conservation implications. Early studies on Maculinea host ant specificity indicated that each of five European Maculinea species had one and different Myrmica host species, at which butterfly larva survival is much higher than in other host ant species (Thomas et al. 1989). More recent researches show that situation is more complicated and host ant specificity of Maculinea butterflies should be considered in a local scale (Elmes et al. 1994, Stankiewicz and Sielezniew 2002, Tartally and Csõsz 2004, Witek et al. 2008). A first well demonstrated example was found for M. alcon for which a host switch occur across Europe (Elmes et al. 1994). In other studies the existence of multiple host populations in different Maculinea species, i.e. a population of Maculinea able to exploit more than one host at the same site, was demonstrated (Tartally et al. 2008, Witek et al. 2010, Sielezniew et al. 2010). Some recent observations are actually clear-cut, but others need careful interpretation before founding conservation strategies on them. In this paper, our main objective is to develop a mathematical model to discuss the evolution of the different host specificity patterns displayed by the Maculinea butterfly species in distinct field studies (Witek et al. 2008, Tartally et al. 2008, Thomas et al. 1989, Steiner et al. 2003). In that sense, it is important to alert that the focus of the model is on the emergence of host specificity patterns and not on the complex details of population dynamics. It is also worth noting that the whole complexity of the population dynamics of the species can influence the evolution of the host specificity behavior. However, for the sake of clarity and as a first approximation, we have chosen to simplify the model in the aspects of population dynamics and focus on the evolution of the host specificity patterns of Maculinea species. The facts that natural selection occurs in the time scale of generations (one year per generation for Maculinea) and empirical data on host ant specificity can be collected only once per year, makes mathematical models an important tool for understanding the phenomena of evolution.  

2 - Biological Background 

2.2 - Life cycle 

The most specialized social parasites among Lycaenidae belong to Maculinea genus, where all species have an obligatory relationship with ants. There are six species, currently described, although probably there are some more species in Asia which have been not described yet. (Elmes and Thomas 1992, Fiedler 1998, Als et al. 2004). Large Blue butterflies possess unique and highly specialized life cycle (Thomas and Settele 2004). During the summer females lay eggs on a specific food plant and after about three weeks, young larvae hatch from eggs and feed on seeds or flowers. One month later, at the start of fourth larval instar, larvae drop to the ground and wait for foraging ants of Myrmica genus, which take caterpillars into their nests. Maculinea larvae live inside Myrmica nests for 10 to 22 months (Thomas and Elmes 1998, Schönrogge et al. 2000, Witek et al. 2006) where they obtain more than 98% of their ultimate biomass (Thomas and Wardlaw 1992, Elmes et al. 2001). There are two different strategies, which have evolved within Maculinea genus for exploiting Myrmica host nests (Thomas and Elmes 1998). Caterpillars of M. teleius and M. arion prey on ant brood and are called predatory species (Thomas et al. 1991, Thomas and Wardlaw 1992), whereas larvae of M. alcon and M. rebeli (cuckoo species) mimic ant larvae and are fed directly by workers (Elmes et al. 1991 a, Elmes et al. 1991 b). There is no clear evidence about the feeding behavior of M. nausithous larvae inside Myrmica nests but it seems that this species has an intermediate strategy (Thomas and Settele 2004). Depending on the species, larvae pupate in May or June and stay in this stage about three weeks and after this time young butterflies emerge (Munguira and Martín 1997). 

2.3 - Chemical profiles and host specificity 

In case of Maculinea butterflies, similarly to other social parasites, a common method employed in penetration and the survival in ant colonies is chemical mimicry (Dettner and Liepert 1994, Akino et al. 1999). The most important substances which play a role in this process are hydrocarbons (Habersetzer 1993, Lenior et al. 2001). Nash et al. (2008) found evidence that the greater the match between the surface chemistry of Maculinea alcon and two of its host Myrmica species, the more easily ant colonies were exploited. The adoption time (i.e. how long a Myrmica worker retrieves a Maculinea larva once it is found) is a good measure of infectivity of the parasite that combines the speed of retrieval of caterpillars and initial integration into the ant colony. Considering populations singly, the resident primary host (sensu Thomas et al. 2005) usually retrieves more rapidly the local Maculinea caterpillars than other Myrmica species do (Als et al. 2001). In Nash's studies the chemical similarity was a significant predictor of infectivity, explaining most of the variation in adoption time for the two Myrmica species tested (M. rubra and M. ruginodis) (Nash et al. 2008). It is expected that cuckoo species (M. alcon and M. rebeli), as the result of close mimicry to one host (Akino et al. 1999, Thomas and Elmes 1998), should be highly specialized with respect to their Myrmica hosts at least at local scale (Schönrogge et al. 2004). In the case of predatory species (M. teleius and M. arion) they are expected to be less specialized to host ants (Thomas et al. 2005). 

3 - Modeling the dynamics of evolution 

3.1 - Biological Hypotheses 

In the process of model-making it is important to clarify the biological hypotheses assumed so that we exactly know what is included and what is not in the dynamics presented by the model. The main biological hypotheses considered in our model are as follows: 

1 - In the absence of parasites, ant populations grow logistically: this reasonable hypothesis is usually included in models for ant population dynamics (Elmes et al. 1998,  Hochberg et al. 1994), supported by data on growth of Myrmica rubra (Elmes 1973). Also, it is assumed that the carrying capacity for each ant species is constant during the simulations. 

2 - If the environmental conditions are constant, butterfly populations grow logistically: this qualitative behavior is also exhibited by the models developed by Hochberg et al. in both stochastic (1994) and deterministic versions (Hochberg et al. 1992). This hypothesis is simply the natural assumption that competition for flower buds and ant nests limit the growth of the parasite population to a carrying capacity. 

3 - The survival of Maculinea larvae in the ant nests is mainly dependent on two factors, the hosts tolerance and the degree of similarity between the chemical profiles of the parasite larvae and the ant brood: the host tolerance is a factor that is influenced by the quality of the environment presented to the ant colonies. When faced with a very favorable environment, species that normally would not be considered as hosts can raise Maculinea larvae with success, as it is indicated by laboratory experiments (Elmes et al. 2004). The inclusion of the second factor means that we attribute a higher chance of survival to individuals with a greater degree of chemical similarity with the host ants. 

4 - The sites of study of Maculinea have two well-defined regions, an “infection area” and a “non-infection area”: the “infection area” includes the region inside the maximum distance at which nest can be infected by butterfly larvae dropped from food plants and the “non-infection area” is the area beyond this maximum distance, where ant nests cannot be infected by Maculinea larvae. The size of those areas may vary according to the site of study and the ant species (Elmes et al.1998) but, for the model, the important factor will be the percentage of ant nests inside the infection area, not the actual numerical value of the area. 

5 - Inside the infection area, the frequency distribution of the chemical profiles is similar to the whole site: this means that if we took a sample of the chemical profiles inside or outside the infection area we would get similar distributions (i.e. just by accessing the samples one could not determine if they were from the infection or non-infection area). The fact that nuptial flights of the ant colonies can reach up to some hundred meters (Elmes et al.1998) indicates that this may be a good hypothesis, since we have a genetic flow in a larger scale than the typical infection range (1-10 meters). 

6 - Ant species and food plants are present in a sufficient number to ensure that there is no risk of butterfly extinction caused by the lack of those resources: with this we assume that there is no serious shortage of ant nests or food plants during the simulations. 

Although there will be situations where these hypotheses do not hold, they are useful simplifications to highlight the factor we want to analyze with the model, that is, the emergence of host specificity patterns. With the simplifying hypotheses we can focus on creating a model for the evolution of phenotypical characteristics that regulate the dynamics of the Maculinea- Myrmica system. 

3.2 - The phase space 

As presented in section 2, there is evidence that the similarity between the chemical profiles of Maculinea and ant species regulate the probability of adoption and survival of the parasite in the colonies of ants. In that sense, we can think of the individuals as having a phenotype that regulates the level of exploitation achieved by the parasites. The closer the phenotypes, the stronger the exploitation. 

It is highly probable that those phenotypes are regulated by the genetic code of the species, and one could think of modeling the gene frequencies in the process of evolution, in which genes for phenotypes “closer” to the host´s phenotypes would give a reproductive advantage to the parasitic individuals. Instead, we will use a different approach, modeling the frequencies of the phenotypes in the species populations. 

This is justified by the fact that the genetical mechanisms that control morphogenesis and, in turn, the production of hydrocarbon profiles that regulate the relation between the species are unknown and probably too complex to be described by the frequencies of a small number of genes. On the other hand, if we choose to model the frequencies of the phenotypical characters in the population, we can avoid the complications of relating genes to individual fitness, by looking directly at the phenotype of the individual. This kind of approach has also recently been used to describe the evolution of phenotypes in an influenza virus model (Lin et al. 2010). 

When reasoning for the existence of a coevolutionary arms race between ant species and Maculinea alcon, Nash et al. (2008) analyzed the hydrocarbon profiles of the individuals, representing populations of Maculinea alcon and its hosts as distributions of points in a two dimensional space. In this representation, each different phenotype is associated with a point in the Cartesian plane, and a population is represented as a cloud of points in the plane. Their results show a correlation between distance in this phase space with the adoption time by the host species. Barbero et al. (2009) presented a similar analysis with respect to sound production in the Maculinea rebeli - Myrmica schencki system. Populations of hosts and parasites were represented as clouds of points in two and three dimensional spaces. In this case phenotypic characteristics were the dominant frequency, the pulse lengths and the pulse repetition frequencies of sounds produced by hosts and parasites. 

With those experimental and field observations, we model the populations (ant and butterfly species) as distributed in a phase space of phenotypes (or aspect space in the now classical terminology introduced by S. A. Levin and L. A. Segel in the 80´s), where the distance between parasite and host is a measure of the parasite exploitation success. In Nash's et al. study (2008) the space is simply a subset of R2. In our model the phase space will be an interval Ω = [0, L] in the real line, each point representing a distinct phenotype. The extension for a phase space with more dimensions is straightforward and should yield the same qualitative results, its full analysis being reserved for future work. Having defined the phase space Ω we proceed to model the evolution of the population in this phase space.  

3.3 - Random drift and natural selection 

To model the dynamics of evolution, we have to make mathematical formulations for two of its basic mechanisms: random drift (generation of new phenotypes) in the phase space and natural selection (differential reproduction rates) for the individuals with the best phenotypes. 

Before modelling the particular case of the Maculinea-Myrmica system, we will deduce a general equation for the evolution of the phenotypical distribution of a population on a phase space Ω under the hypothesis that there is a function f : Ω → [0,1], called fitness function, that associates each phenotype in phase space to a value in [0,1]. So, if x Ω, f(x) is a measure of the reproductive capacity of the individual, for instance, f(x) = 1  phenotype x has the maximum reproductive rate for the species. For a more general model we could think of a function f : Ω → R+ in a sense that there would be no pre-established maximum reproductive rate for the species.  

To obtain equations for the dynamics of evolution we will work with a discretization of Ω. Suppose that Ω is divided in n equal subintervals and Ui(t) [image: image3.png]


 Ui, i = 1, …, n, is the number of individuals of the population in the interval [image: image5.png][ — DAx, iAx]



.  

3.3.1 - Random drift 

To generate the mechanisms to simulate random drift in the population, we start defining r as the reproductive rate for the species. The rate of change of the number of individuals in class i at time instant t could be modeled as rUi. To create the effect of random drift in the population phenotypes we will suppose that a fraction [image: image7.png]d € (0,1)



 of the individuals generated by the reproduction of the individuals of class i does not belong to the same class, but to the adjacent classes i – 1 and i + 1. This is a way to formulate the common hypothesis that individuals produce offspring with phenotypes similar to their own and d is now a parameter that measures the rate of change of phenotypes in the population through reproduction.  

For now, we would have the following equations for the population dynamics:

[image: image8.emf]
 3.3.2 - Natural selection 

To generate a mechanism of natural selection, we must assign higher reproductive rates to the individuals with the best phenotypes. Using the hypothesis that there is a fitness function f : Ω → [0,1], that is a measure of the reproductive capacity of the individual with phenotype x, we define [image: image10.png]


 where [image: image12.png]


 is the midpoint of the interval [image: image14.png][ — DAx, iAx]



. Then [image: image16.png]


 is a measure of the reproductive capacity of the individuals in class [image: image18.png]


. This suggests a modification of equation 1 in order to include this differential rate of reproduction.  The reproduction rate of individuals in class [image: image20.png]


 would then be given by [image: image22.png]


 and the equation for the population dynamics becomes:  

[image: image23.emf]
Up to now, the model has two components of natural selection, that is, higher reproduction rates to the “best” phenotypes and random drift. Another important feature of natural selection is that limited natural resources impose serious restrictions to population growth. Equations (1) and (2) represent a situation where growth is unlimited. To add a limiting mechanism to the model we suggest including a Verhulst-type term in the equation in the form: 

[image: image24.emf]
where the parameter K is the environment carrying capacity of the species. Including this in the model we obtain:

[image: image25.emf]
If we now abandon the discretization of the phenotype domain in classes, defining [image: image27.png]u(x,t)



 as the density of individuals with phenotype [image: image29.png]


 at time [image: image31.png]


, equation (4) suggests the following dynamics for [image: image33.png]


:

[image: image34.emf]
The model obtained in (5) is a reaction-diffusion-type equation for the evolution of [image: image36.png]u(x,t)



, with a non-constant diffusion coefficient [image: image38.png]D(x) =d7f(x).



For the rest of the text we drop the notation [image: image40.png]=



using [image: image42.png]


 and [image: image44.png]


 instead for a cleaner presentation.  The dependence of [image: image46.png]


 on [image: image48.png]


is expected, since the rate of reproduction defines the rate of generation of new phenotypes and therefore the propagation speed of the population along the phase space. Also, dependence on the function [image: image50.png]fl)



has the clear meaning that in regions where the individuals reproduce more, diffusion will be faster, since “movement” in phase space, in this case, is related to generation of new phenotypes and, hence, reproduction. Finally [image: image52.png]vd



is a measure of change in the population in the phase space in the time scale of reproduction. In other words, how much a population could change in the phase space through diffusion in a time scale compatible with observable changes in population numbers. The second term in the equation is a Verhulst-type dynamics with two modifications. First, the maximum reproductive rate is dependent on the position [image: image54.png]


in phase space. Second, the usual term in a Verhulst-type dynamics is [image: image56.png]N/K,N



being the total number of individuals competing for the limited resources, in this case, since the population is distributed along the phase space, [image: image58.png]


 is given by [image: image60.png]N = [judx



.  

3.4 - Fitness functions for the Maculinea-Myrmica system  

Equation (5) provides us the dynamics of a population under the forces of natural selection and random drift as long as we know the fitness function  [image: image62.png]f:0-[01]



that regulates the reproduction of the species. In the case of the Maculinea-Myrmica system the fitness of an individual butterfly is dependent on the distribution of the phenotypes of the ant hosts. In this sense, the fitness functions in this case will be represented by functionals since they are dependent not only of the phenotype [image: image64.png]


of the individual, but also of a function that represents the distribution of the phenotypes. This is in agreement with the biological intuition, since the fitness of an individual with phenotype [image: image66.png]


 is dependent on the distribution of host and parasite phenotypes. As an example we can think of an parasite with phenotype [image: image68.png]


, if the whole population of hosts has a phenotype that is “far” from [image: image70.png]


, the fitness of the parasite should be very low, while if the host population is “near” [image: image72.png]


 the fitness should be high.  We will start creating fitness functions to a system with just one parasite species and one host species.  

3.4.1- One host model 

Defining [image: image74.png]=P(x,t)



 as the parasite density with phenotype [image: image76.png]


 at time [image: image78.png]


 and [image: image80.png]H = H(x,t)



as the host density with phenotype [image: image82.png]


, we must define a fitness functional [image: image84.png]g(4,x)



for the dynamics of P and a functional [image: image86.png]f(H,P,x)



 for the dynamics of [image: image88.png]


.  

The best phenotype possible for the parasite is the one which is “closest” to the phenotypes of the host species. In this sense we include a parameter [image: image90.png]


that defines the maximum vicinity in which a phenotype can be considered to be subject to exploitation by a parasite. If a parasite has a phenotype [image: image92.png]x,(x —&,x + &)



 is the vicinity in the phase space that contains all the host individuals that can be exploited by this particular individual. 

The best possible situation for a parasite occurs when all the population of hosts is inside the vicinity[image: image94.png](x—gx+¢)



. The worst possibility is when no host is found within the boundaries of the vicinity. This suggests that we could model the fitness of a parasite by the fraction of the population of hosts that is inside the vicinity [image: image96.png](x —g,x+¢):



  

[image: image97.emf]
Now to model the fitness of the host species we must take into account two important factors:  

1. Recognition among individuals of the host species is an important factor for reproduction since in many species a new queen does not always start a new colony on her own, but enters one that already exists, sometimes being rejected and sometimes being accepted. In this sense it favors the host to have a phenotype similar to the majority of the population of hosts. Of course, feeding larvae is another activity in which recognition among individuals plays an important role.

2. Not all colonies of hosts lie within the infection range thus not all are subjected to the possibility of exploitation by parasites. This is, clearly, a very important biological information since it is related to the selective pressure that the parasite population can exert over the host population. Since this fraction of the colonies within the infection range will vary, we include a parameter [image: image99.png]


that is related to the fraction of the population that is exposed to the parasite. 

As in the fitness function for the parasite, factor 1 could be modeled as the fraction of hosts in the vicinity [image: image101.png](x —g,x+¢)



. If all the population of hosts are inside the vicinity, the whole of the population recognizes the individual as “similar”, thus maximizing its fitness. On the other hand, being similar to the parasite does no good to the host, so a measure of fitness with relation to the parasites could be 1 minus the fraction of parasites in the vicinity [image: image103.png](x —g,x+¢)



. But we must include also the selection pressure on the fitness function, even if the host population is similar to the whole of the parasite species, if the selective pressure is very low (in other words, the chance that the colony is exposed to the parasite is very low), that should not have a great influence in the fitness of the individual. With those aspects in mind, we suggest the following as fitness function for the host species:  

[image: image104.emf]  

The model for one host species and one parasite is given by the following system of partial differential equations:

  [image: image105.emf] 

 Where [image: image107.png]


is the rate of mutation of the host species, [image: image109.png]


its reproduction rate and [image: image111.png]


the carrying capacity. By analogy [image: image113.png]dp, 7p and K



are the parameters relative to the parasite species.  

3.4.2 - Multiple hosts

 The most significant modification with respect to the model of one host species is that the host species are present inside the infection area with different frequencies. There are two factors that contribute to the frequency observed inside the infection area: the carrying capacity of the environment with respect to each host species and the percentage of nests of the host nests that are inside the infection area. For example: even if the carrying capacity of the site with respect to one host species [image: image115.png]


 is small when compared to host species [image: image117.png]


, if most of the [image: image119.png]


nests are inside the infection area (meaning that the parasite exerts a high selection pressure on species [image: image121.png]


) then species [image: image123.png]


 could be more abundant to the parasite than species [image: image125.png]


. A measure of the abundance of the host species [image: image127.png]


 to the parasite is given by [image: image129.png]YaKs



, the percentage of nests inside the infection area times the carrying capacity of the site with respect to species [image: image131.png]


. 

The dynamics for each host species is directly generalized from the system of equations (8), the main modification concerning the parasite's fitness function. If [image: image133.png]


is the distribution of each host species, then the fraction of host individuals within the vicinity of phenotype [image: image135.png]


 is given by:  

[image: image136.emf]  

Again, maximum fitness (with numerical value of 1) for the parasite is obtained when all host populations are within the vicinity [image: image138.png](x—gx+¢)



and zero fitness is obtained when no host is found in it. Finally we obtain the system of equations for [image: image140.png]


hosts: 

 [image: image141.emf]  

with the obvious meanings for the parameters.   

3.4.3 - Adimensional parameters 

For the time variable we adopt [image: image143.png]


, the time scale of the parasite reproduction dynamics, [image: image145.png]X" =x/,[d, Hi/K,,



 [image: image147.png]


 is the adimensional variable for the phase space, [image: image149.png]h; (x,t)



 = [image: image151.png]Jdp Hi/K,



 [image: image153.png]


 the densities of host species and [image: image155.png]pi (x, t)



 = [image: image157.png]Jip P/Ky



 the parasite density. Dropping the stars, the adimensional system of equation is: 

 [image: image158.emf]  

where [image: image160.png]0, = d;/dp, 4 =



 [image: image162.png]/Ty



 and [image: image164.png]Q= [0,L/Vd,]



. [image: image166.png]


 is a measure of the ratio of the speed of change in phase space between the host species _and the parasite, [image: image168.png]6; > 1



 means that the host population [image: image170.png]


changes faster than the parasite. [image: image172.png]


a measure of how fast the host species [image: image174.png]


reproduces, [image: image176.png]Ay >1



means that the host species reproduces faster than the parasite.  The fitness functions can be written in terms of the adimensional variables, yielding: 

 [image: image177.emf]  

where [image: image179.png]§ = ¢/\/d,



 and [image: image181.png]o, = Ki /Ky



. From now on we suppose that the host species are ordered from the most abundant one [image: image183.png]


to the less abundant [image: image185.png]


 so each [image: image187.png]


 is in the interval [image: image189.png][0,1].



To have a clear biological interpretation of parameter [image: image191.png]


, we will begin by exposing the meaning of parameters [image: image193.png]


 and [image: image195.png]


. Parameter [image: image197.png]


 is the maximum distance in phase space in which a host individual can be exploited by a parasite, so if the distance between the parasite and the host is greater than [image: image199.png]


, that individual cannot be exploited by the parasite. In this sense, [image: image201.png]


 is a measure of significant change in phase space. In reaction-diffusion phenomena, the speed of propagation of the population can be approximated by [image: image203.png]2VUD



where [image: image205.png]


 is the reaction rate and [image: image207.png]


the diffusion coefficient. In the present model, the diffusion coefficient is given by [image: image209.png]TpTa



while the “rate of reaction” is the population reproduction rate [image: image211.png]


which leads to the speed : [image: image213.png]


. If we now multiply this speed by the time scale of the reproduction [image: image215.png]1/



 we obtain the distance traveled by the population in the reproduction time scale: [image: image217.png]


. Now [image: image219.png]§ = ¢/\/d,



 is the ratio between a distance of significant change in the phenotype space and the distance traveled by the population in the time scale of reproduction, with this [image: image221.png]§>»1



 means that the parasite population can change a lot in the time scale of reproduction (of course if [image: image223.png];=1



so do the host populations), while [image: image225.png]§>»1



 means that phenotypic changes in the population occur slowly.  

3.4.3 - Boundary conditions 

The phase space [image: image227.png]0 =[0,L]



is the space of phenotypic characters and, as such, it is an abstraction useful to model and understand some aspects of the evolution of the Maculinea- Myrmica system. Different types of boundary conditions could be assigned, for instance, the homogeneous Dirichilet boundary condition [image: image229.png]u(0,t) = u(L,t) =0



would represent a situation where you have lethal phenotypes in the boundaries and any individual born with a phenotype outside [image: image231.png]0 =[0,L]



 would die before reproducing. Zero flux conditions in the boundaries would mean that no further phenotypic variation is allowed beyond the boundaries of the domain. Although those are interesting conditions and raise some other interesting biological questions, we will focus our simulations on situations where the boundaries do not affect the qualitative results, in other words, ideally we would be simulating a phase space [image: image233.png]= (—00,+0).




  

4 – Simulations 

4.1 - Numerical methods and presentation format of simulation results 

To solve the system we employed the Crank-Nicholson finite difference scheme (Strikwerda 2004), with approximation for the functionals [image: image235.png]


and [image: image237.png]


 as [image: image239.png]frl > fn



 and [image: image241.png]gntt = fn



. Two more routines were implemented: a simple forward-scheme and a Runge-Kutta type scheme to check the results. All methods provided very similar results. 

The solutions for the system of differential equations are [image: image243.png]n+1



functions of two variables: [image: image245.png]hi(x,0),1




and [image: image247.png]p(x,t)



. To optimally present the results it would be necessary a movie resource. Thus to create clear and concise images of the results we will restrict the figures to bidimensional graphics. In order to do that, we observe that [image: image249.png]hi(x,0),



in most simulations are close to bell-shaped distributions in the variable [image: image251.png]


, moving in phase space as [image: image253.png]


 changes. Similarly [image: image255.png]p(x,t)



 has also a bell-shaped distribution in [image: image257.png]


 in most simulations and sometimes splitting into two or more bell-shaped curves with distinct averages. 

Given the above considerations, we will display only the trajectory of the average phenotypes in each of the curves [image: image259.png]hi(x,0),p(x, t)



as long as those distributions do not split in two. In the rare cases when such spitting occurs we will plot the split of the average phenotype into two other average phenotypes. To obtain the average phenotype of [image: image261.png]h; (x,t)



 and [image: image263.png]p(x,t)



, we use the formula: 

      [image: image264.emf]  

Results of the simulations will be presented as graphs of  [image: image266.png]h, ()



and [image: image268.png]p(t)



. Unless stated otherwise it will be implicit that  [image: image270.png]h; (x,t)



 and [image: image272.png]p(x,t)



 are in fact bell-shaped distributions around the averages [image: image274.png]h, ()



and [image: image276.png]p(t)



. From now on we also drop the bars on [image: image278.png]h, ()



and [image: image280.png]p(t)



for a cleaner look.  

4.2 - Simulation results 

At this point we should make a remark about the nature of the model. While the model is not designed to fit specific quantitative data and therefore cannot be validated or invalidated by such procedure, it has clear hypotheses and presents clear results in terms of qualitative behaviors. The virtue of the model is to provide the researcher with a tool for investigating the possible qualitative outcomes of the working hypotheses. When analyzing the field studies and trying to draw general conclusions about the evolution of multiple host behavior or single host behavior the expert biologist uses his experience, the data collected and his intuition to create an explanation for the patterns observed. In this sense, we might say that the biologist is, in fact, simulating the real system in his imagination trying to figure out the possible outcomes and comparing these outcomes with the collected data. When we become aware of this fact we also understand more deeply the significance of the use of models to understand nature, even if the model cannot be directly compared to specific quantitative data.   

4.2.1 - Results for a single host species 

The adimensional system for a single host species is given by:

  [image: image281.emf]  

With fitness functions given by:

  [image: image282.emf] 

 The parameters that regulate the interaction between host and parasite in the model are [image: image284.png]


 - selection pressure, [image: image286.png]


- host's phenotype rate of change in phase space (relative to the parasite's rate of change), [image: image288.png]


 - ratio between host's and parasite's reproduction rate and [image: image290.png]


- measure of how much a population (host or parasite) can change in the time scale of reproduction.  For the scenarios with a single host species there are two qualitative behaviors that can be displayed: a continuous arms race between parasite and host or a stationary distribution of phenotypes, meaning that the coevolution of phenotypes comes to a halt. The arms race behavior is observed in two different dynamics: continuous and cyclic/chaotic. In the continuous arms race, both species evolve in a fixed direction, while in the cyclic/chaotic regimen the direction can change and the population can go through cycles with regular periods before evolving to a different cycle. Figure presents the qualitative behaviors observed in the simulations of the model.   

Singlehostb.eps   

Figure 1 - Average phenotypes [image: image292.png]h(t)



 (host) and [image: image294.png]p(t)



 (parasite). a) Stationary distribution of phenotypes. [image: image296.png]@

.24,A=0.33,y = 0.89,4 = 0.27)



b) Cyclic/chaotic arms race between host and parasite. [image: image298.png]@

.27,A=0.10,y = 0.97,6 = 8.74)



 c) Arms race with both species changing their average phenotypes in the same direction. [image: image300.png]@

.36,A = 10.00,y = 0.40,5 = 5.40)



.  

Parameter [image: image302.png]


: As expected, low selection pressures ([image: image304.png]y <0.2)



tend to lead to a stationary behavior. Of course this is coherent with the theoretical expectations about coevolution of host and parasite, since under very weak selection pressures all phenotypes have a similar reproduction rate thus, preventing evolution to change the distribution of phenotypes in the population. We must remark that in the model individuals very different from the average phenotype are penalized, if this factor is removed, even very low selection pressures will lead to changes in the phenotypic distribution of the host population. A high selection pressure alone does not lead to a consistent arms race regimen in the model, as one could expect. In part this is because hosts, in this case, are penalized if they differ too much from their own population, while parasites do not face this difficulty (here we must stress that we are focusing the model on the larvae phenotypes for being adopted by the hosts, of course it is important for the adult butterfly to be similar to its own species population). As a result, we could say hosts might be in a situation where it is difficult to evolve countermeasures against the parasite (in this case, to evolve phenotypes very different from the parasite) because this also imposes a penalty on the host's own reproduction rate. Note that this reasoning is also valid for the evolution of a behavior that makes individuals less tolerant to slightly different phenotypes, since they would also tend to be less tolerant also with individuals of their own species. Of course these considerations are valid if hosts are really penalized when they have a very distinct phenotype from the average (with the usual assumption that the population distribution is a bell-shaped curve).  

Parameter [image: image306.png]


: With moderate to strong selection pressure ([image: image308.png]0.4 <6 <08),



high values of [image: image310.png]6(> 10)



 lead to an arms race regimen. This means that the host's rate of change in the phase space would have to be faster than the parasite's for the host to create a permanent arms race with the parasite. Again, this is related to the hypothesis that the host might be in conflict with its own population when changing phenotypes. Values of [image: image312.png]


 near the unity and below lead to a stationary regimen, where parasite exploits the host without any evolution of countermeasures (in terms of phenotypes). Of course this is also in agreement with what is expected from the theoretical point of view, if a parasite can change faster than host, it will be hard for the host population to escape exploitation by evolving its phenotype distribution in phase space.  

Parameter [image: image314.png]


: As in parameter  [image: image316.png]


moderate to strong selection pressure in combination with high values of [image: image318.png]A(>5)



can lead to a permanent arms race regimen. As observed in the modelling section, the diffusion coefficient is dependent on the reproduction rate of the populations. [image: image320.png]A>1



 means that hosts can reproduce faster than the parasites (comparing the best possible phenotypes). So a consequence of [image: image322.png]A>1



is that the host population can evolve faster than the parasite population, creating the permanent regimen of arms race. When [image: image324.png]


parasite population evolves faster than hosts and the system displays a stationary behavior.   

Parameter [image: image326.png]


: Again, moderate to strong selection pressure is necessary for the system to display a permanent arms race behavior. When [image: image328.png]§>»1



 we are simulating a situation where populations change very slowly in the phase space. In opposition to what we could intuitively expect, this condition leads to a permanent arms race behavior. Also, this was the only scenario in which the cyclic/chaotic arms race, presented in figure 1 b), occurred. The opposite situation, [image: image330.png]<1



, when populations change very quickly in phase space, tend to lead to stable stationary distributions.  

Since we have four parameters in the model, exploring the possible outcomes of the simulations becomes a challenging task. It is not feasible to explore in detail the whole space of possible combinations. As a strategy to overcome this difficulty we chose to take a random sample from the parameter space and analyze the frequency of the observed behaviors. Since each of the parameters has a clear biological meaning, we should not assign a greater probability to particular biological situations when taking a random sample from the parameter space. For example, parameter [image: image332.png]


 defines the rate of reproduction of the host in relation to the parasite, when [image: image334.png]A>1



 the host reproduces faster than the parasite and when [image: image336.png]A<1



 the parasite reproduces faster. Those two are very clear and distinct biological situations to which we don't want to assign a greater probability to any of them. So our procedure will be to create a set for the possible values of parameter [image: image338.png]A:I =[1/10, 1] U [1,10]



, and assign a probability of [image: image340.png]0.5



of [image: image342.png]A€l =[1/10, 1]



, and a probability of [image: image344.png]0.5



of [image: image346.png]A €1, =[1,10]



. Once defined which interval [image: image348.png]


 is in, [image: image350.png]


 or [image: image352.png]


, we sample [image: image354.png]


 in a uniform distribution within the interval. We apply the same reasoning for parameters [image: image356.png]


 and [image: image358.png]


, obtaining: [image: image360.png]6 € Ip=[1/10, 1]V [1,10]



 and [image: image362.png]6 € Is=[1/10, 1]V [1,10]



.  

Parameter  [image: image364.png]


 is the selection pressure, the fraction of the population that is inside the infection area, to create the random sample of the parameter space, [image: image366.png]


 is sampled in the interval [image: image368.png]I, =1[01]



 with a uniform distribution. While initial conditions may play a role in some aspects of the dynamics of the system, the qualitative behavior is not usually affected by the initial distributions. Both parasite and host initial distributions are Gaussian curves plus a random variable. 

In table 1 we present the percentage of each qualitative behavior in 100 simulations with parameters sampled as defined above. 

TABLE 1 HERE 

Table 1 - Taking a random sample of the parameter space (as described in this section) in 27% of the simulations we observed an arms race behavior. All other simulations displayed a convergent stationary behavior. 

An important observation should be made about the hypothesis that hosts are penalized for having a phenotype distant from the host population average. This hypothesis has the effect of making the establishment of the arms race regimen harder. In our model, the penalty of having phenotypes far away from the average is included in the equation for [image: image370.png]


, in fact the term

  [image: image371.emf] 

creates a penalty for a rare phenotype in the population. We could create a continuum of the strength of this penalty by simply modifying [image: image373.png]


 

 [image: image374.emf] 

where [image: image376.png]o€ [0,1]



is a parameter measuring how much the fitness of an individual is affected by having a rare phenotype.  

This specific point about the origin of the forces that “hold” together the population distribution is not a simple one. The observed fact is that the chemical profiles of the populations do indeed show a concentration around an average (Nash et al. 2008). The causes of this fact may be several and are related to the influence of genes in morphogenesis, behavior and pattern formation. The hypothesis that phenotypes very different from the population average are penalized, is a form of including those unknown factors that cause the phenotypic distribution of the population to be distributed around an average. Ultimately we should expect that the fact that the population is distributed around an average is related to a process of natural selection but the specific mechanisms are unknown. There is also a second reason for which values that are very distant from the population average may be generated at a lower rate, the reason is related to the multifactorial Mendelian inheritance, but the details of this relationship cannot be presented in detail here. 

The first term in the fitness function [image: image378.png]


represents unknown forces of natural selection that are capable of creating the observable fact that the population is distributed around an average. Our suggestion of one such mechanism in section 3.4.1 is intra-species recognition. The second term in [image: image380.png]


is the factor that we are focusing with the model i.e the effect of parasitism by the Maculinea species. Parameter [image: image382.png]


can be interpreted as strength of the unknown causes that “hold together” the host distribution of phenotypes, when[image: image384.png]


those forces are very strong while with [image: image386.png]


the only force acting on the distribution of phenotypes is the action of the parasite.  

Although more exploration of the model is needed, preliminary simulations with [image: image388.png]0<p<1



 indicate that the system exhibits the same qualitative behaviors as the model with [image: image390.png]


. As it should be expected, the arms race behavior seems to be more common as [image: image392.png]


 approaches 0.  

4.2.2 - Results for two host species 

One of the main objectives for the creation of the mathematical model for the evolution of phenotypic characters in the Maculinea-Myrmica system was that it makes possible to simulate the evolution of multiple/single host behavior over long spans of time. We begin our multiple hosts simulations with the evolution of the phenotypic characters when there are two host species and one parasite species. 

Of course the simulations with two host species increases the number of parameters, in this case, instead of having only one parameter [image: image394.png]


 we have [image: image396.png]


,representing the rate of reproduction of host 1 and [image: image398.png]


 the rate of reproduction of host 2. By analogy, we also have parameters [image: image400.png]Y1, V2



 (selection pressures), [image: image402.png]61,6,



 (host rate of change in phase space), [image: image404.png]01,02



 (abundance of hosts in population site). In our simulations, parameter [image: image406.png]


is unaltered by the number of host species (although one could think of a situation where parameter [image: image408.png]


 is different for each host species). 

As in the simulations for one host species we sampled the parameter space following exactly the same rules defined in section 4.2.1 Parameters [image: image410.png]


, as defined in section 3.4.3 are defined as [image: image412.png]Ki /Ky



where [image: image414.png]


 is the carrying capacity of the population site for species [image: image416.png]


 (i.e. a measure of the abundance of species [image: image418.png]


) and host 1 is the most abundant species in the site of study, not necessarily in the infection area. So each [image: image420.png]


is in the interval (0,1], for our simulations [image: image422.png]


 and [image: image424.png]


 has a uniform distribution in (0,1]. 

The same qualitative behaviors observed in the one host simulations and their relation with the parameters are also present in the simulations for two hosts. The difference of the dynamics is that the parasite can now exhibit multiple host behavior, referred as MHB for the rest of this paper.  

MHB was present in the simulations both as a transient and as a stable behavior. Transient MHB happens when the parasite population, while evolving, goes through a stage where it exploits more than one host simultaneously, but, as time passes, it becomes more and more specialized in just one of the host species. Stable MHB is the behavior displayed by the parasite when it does not concentrate in just one species and, independently of how long we simulate the system, exploits both host species. In figure 2 we present simulations of both situations.  

figuremhb2.eps  

Figure 2 - Average phenotypes of hosts parasite. a) Evolution of single host behavior, the parasite population concentrates its average phenotype in only one host species. b) Stable multiple host behavior. Parasite population splits in two subpopulations, each with an average phenotype similar to one host species.  

Transient MHB can happen in almost any situation. Host populations may have, by chance, similar initial phenotypic distributions. Parasite population may have to travel through phase space to exploit the most abundant species, crossing in its path the region where the population of a less abundant species is. This is especially true in the case of a one-dimensional phase space model, since there is only one path connecting two distinct points in the phenotypic space. The duration of a transient MHB is dependent on the parameters of the model which represent selection pressure, rate of change in phenotypic space, species abundance and other factors. Of course transient MHB can be invoked to explain observed natural populations of Maculinea that exploit more than one host species, but, given its transient characteristic and the long spans of time available for the evolution of the species one should not expect it to be common. So, if observations of MHB in nature become frequent, it is reasonable to look for explanations other than transient MHB to explain the observations.  

Given the above considerations, we will consider only stable MHB as “true” multiple host behavior. We ran 100 simulations of the two host model, and in 19 the parasite displayed MHB behavior. In 16 of those 19 simulations, the parasite population splits in two subpopulations, each one adapting to the phenotype of one host species in the other 3 the parasite population created a valley (i.e. two close peaks in the distribution) that imprisoned both host species within it, in these 3 special cases, results of MHB behavior were strongly dependent on the initial conditions.  

Another important point related to host specificity is the question whether the parasite population will always converge to the most abundant host species in the infection area. In our model the abundance of host [image: image426.png]


 in the infection area is given by [image: image428.png]


, the population abundance in the whole site times the percentage of nests inside the infection area. 

In each simulation, we observed to which of the host species the parasite population converged. In the SHB simulations the classification of convergence for each case was obvious, and in 76.5% (62 of 81 SHB cases) of the simulations the parasite converged to the host most abundant in the infection area. In most the cases where the parasite population converged to the less abundant species there was a common factor: the rate of change in phase space of the more abundant species was greater than unity and the less abundant was lower than unity. In biological terms this means at least two important characteristics: the more abundant species evolves faster and also is has a greater population variance. If the host species evolves faster, it makes it harder for the parasite population to adapt and pursue its phenotype in phase space, creating a favorable scenario for the parasite to converge to a less abundant host species (that does not evolve so fast). Contributing in the same direction, the less abundant species has a smaller rate of change in phase species, evolving slower and having a smaller population variance. This smaller variance creates a peak of adaptation for the parasite species, since the majority of the host individuals can be found in a smaller vicinity around the average. This also contributes for the parasite population to converge to the less abundant species because although the species is less abundant it could provide the most common phenotype in the host population as a whole.  

Convergence to less abundant species has been observed in field studies (Barbero 2007) and, of course, there are other feasible explanations besides the one exposed above. One possible explanation is simply transient state of evolution, host species densities area changing with time and the parasite did not have the time to adapt to the most abundant one. Another possible explanation is just distance in phase space. If the most abundant host species is too “far away” in phase space from the parasite population, it is possible that there is no feasible way for evolution to create a “jump” in adaptation for the parasite population to exploit the most abundant species. In other words, the parasite species is separated from a peak of higher fitness by a long valley of low adaptation (the region between the host species where there are no exploitable phenotypes). 

In the cases where MHB was observed classification of convergence to the most abundant species became more subjective, since the parasite population now divides its phenotypic distribution between two host species. Even so there were cases where we could identify convergence of the majority of the parasite population to one host species, in 78.9% (15 of 19 cases) the convergence was to the most abundant host species. In those 4 cases where convergence was not clear the population divided almost equally between the host species. Arms race behavior was more frequent with two host species being present in 39% of the simulations. It occurred in 30% (25 of 81) of the cases of SHB, a percentage similar to the one host simulations, and in 73% (14 of 19) of the cases of MHB. In the MHB cases the parasite could be in arms race with one of the host species while in stationary regimen with the other, in those cases the regimen was counted as arms race. 

TABLE 2 HERE  

Table 2- Summary of results for the two-host simulations.  

In table 2 we present a summary of the two-host simulation results 

Simulations with more than two hosts exhibited the same qualitative behaviors as the simulations with one or two host species.  

5 - Conclusions 

Below we present a summary of the conclusions obtained through the simulations of the model and discussed in detail in the previous section.  

5.1 - Multiple host behavior 

Our simulations show that multiple host behavior can occur in both transient and stable forms in the evolution of the system. In transient MHB we should expect superposition of phenotypes while in stable MHB we would expect to observe distinct phenotypes for the exploited populations, with the parasite population splitting in two subpopulations each exploiting one host species. These are testable conclusions in long term studies, being necessary to monitor the evolution of phenotypes in sites where this behavior was observed. Our simulations also point out that SHB is expected to be the most common behavior, with the parasite exploiting the most common host species.  

Thomas et al. (2005) point out four possible scenarios to explain MHB in Maculinea populations. We discuss them below in the light of the mathematical model:  

1 - Benign environmental conditions: non-host species can raise Maculinea larvae under favorable conditions. In this model it could be interpreted as a momentary (=temporal) change in parameter [image: image430.png]


, making possibility for the parasite population to exploit host populations that were beyond reach under a smaller value of [image: image432.png]


. This transient MHB effect is also present in our model but one should not use the same explanation for MHB if this is too often recorded in different places and environmental conditions.  

2 - Polymorphic larvae of Maculinea may be adapted to MHB: our simulations results point that, in stable MHB, parasite populations would split in subpopulations each adapting to a different host. In our model we are not investigating the possibility of a speciation event, but it is clear that this divergence of adaptation might lead to the arising of two distinct species. If we interpret the result as one species with two different phenotypes, we will have the polymorphic scenario. On the other hand, if we look at the results with the possibility of a speciation event we get the next possible scenario. 

3 - Mixed-host populations may occupy habitats in areas that are on biogeographical boundaries like between single-host M. alcon and M. rebeli areas: in this case we would be looking at two distinct species (their separation in good species is also questioned by the Tartally et al. (2008) each one having a SHB behavior. This scenario is analogous to the population subdividing in two subpopulations and considering this as a speciation event.  

4 – Truly generalist Maculinea populations may show phenotypic adaptations to more than one host: if in this last scenario we are considering the case where hosts have very distinct phenotypes and, yet, the parasite is adapted to both, this version of the model does not include this possibility since we would have to consider a distinct topology in the phase space (a parasite could have a phenotype [image: image434.png]


 that is both close [image: image436.png]


 and [image: image438.png]


 while [image: image440.png]


 and [image: image442.png]


 themselves are far apart). 

 Note that transient MHB behavior is also another possible scenario to explain observations of MHB behavior.  

5.2 - Exploitation of most abundant hosts 

As expected, our simulations indicate that parasite populations should be adapted to exploit the most common host species inside the infection area. On the other hand, special combinations of parameters (rates of reproduction and evolution) can lead to the exploitation of less abundant species. Transient exploitation of less abundant species is also observed in the simulations with more than two host species, the populations of the two less abundant species can create a “common phenotype” attracting the parasite population as though both were just one population. Finally, convergence to a less abundant species was observed in the simulations if the distance in phase space from the parasite population to the abundant host was too great for the population to reach it. Indirect evidence of these conclusions could be obtained by checking particular cases where the parasite converged to the less abundant species: if the cause of this convergence was due to faster evolution of the most abundant species, we would expect to observe a greater variance of phenotypes in the most abundant species than in the less abundant one. If the cause of the convergence was distance in phase space, distance in phenotypic space can also be measured, and we could expect the distance from host to non-host to be greater in this case than in other regular cases (i.e. when the parasite population converged to the most abundant host). Finally, if the case was the one in which the parasite exploits the two less abundant species instead of exploiting the most abundant one, we would expect to see a superposition of the phenotypes of the less abundant species. 

5.3 – Arms race 

The simulations indicate that arms race between host and parasite is expected to occur under the combination of certain factors, for instance, strong selective pressure and hosts with a higher rate of reproduction than parasites. Multiple host simulations indicate that, under certain conditions, the parasite may be in arms race with one of the hosts while in stable stationary state with respect to the other. This kind of dynamics may be suggested as a mechanism for a speciation event, leading to the arising of two distinct parasite species. 

5.4 - Cautionary remarks 

Since the model presented was not designed to fit any specific data it is natural that it should arise some skepticism and doubt by those who wish to understand the dynamics of the real biological system. About this specific point we would like to call the attention to the following point: when trying to draw a general evolutionary explanation for the patterns observed in the host specificity behavior of the Maculinea-Myrmica system the scientist has access only to few field studies of the process of evolution, usually from different places. Each field study can be thought as a “snapshot” of the distributions of the populations in the phenotypic phase space and offers some information about the process as it is occurring in modern times in some specific places. From those few studies the scientist will try to create a logic explanation of the patterns observed, and they usually take the form of a linguistic sequence such as (D. E. Jackson 2008): 

[...].Clearly selection must favour highly virulent parasites, those which more quickly exploit host resources, but this process might lead to the death of all potential hosts.[...] 

Of course this is just an example, but in any such evolutionary reasoning we would see that the reasoning is much less precise than the mathematical model. In the model, at least all hypotheses are explicit and the parameters explained while in the linguistic sequence much is left undefined and referred to only in a subjective way. Just to be clear, it is far from our objective to diminish the importance and value of the expert advice in the understanding of the evolutionary processes or to criticize this particular article/reasoning. Our point is that the model may be a valuable tool for the theoretical biologist who wishes to try his ideas in a controlled “environment”, where all hypotheses are clear even though the model is not (as the logical reasoning is) adjustable to fit any specific data. We think that a two-dimensional version of the model, given enough field studies, could be developed to fit evolutionary data, although we observe that the amount of data necessary would probably make the project unfeasible. From this point of view, the limitation in data-fitting would come not from the model, but from the difficulty of gathering enough data to fit the model. 

With this in mind, we observe that the percentage numbers of observed behaviors in the model should not be used to validate or invalidate the model, because it is dependent on the probability distribution of the parameters in the natural system. For example, in some simulations, there host species that reproduce for times faster than others. While this may be possible under certain conditions and specific places this may not be probable. In our sampling of the parameters space we took a uniform distribution of [1,10] while the distribution of the parameter in the natural system may not be uniform. The percentage of observed behaviors do indicate that some will require a special combination of factors to occur, for instance, stable MHB and convergence to less abundant species. To state clearly, we expect the qualitative results drawn from the percentage numbers observed in the simulations to be reflected in the real biological system. 

Finally we cite Oster & Wilson (1978 preface pp. 8-9) to illustrate our view of model's main relevance: 

“[...]. The most important role models plays in science is to help us to perceive a problem more clearly and to generate thoughts that might not otherwise have occurred.[...]”  
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