
Nonlinear Analysis: Real World Applications 13 (2012) 1507–1524

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

A model for the evolution of parasite–host interactions based on the
Maculinea–Myrmica system: Numerical simulations and multiple host
behavior
Raul Abreu de Assis a,∗, Simona Bonelli b, Magdalena Witek b, Francesca Barbero b,
Luca Pietro Casacci b, Emilio Balletto b, Ezio Venturino c, Wilson Castro Ferreira Jr. d
a Departamento de Matemática, Universidade do Estado de Mato Grosso, 3531-6705, Brazil
b Dipartimento di Biologia Animale e dell’Uomo, Università degli Studi di Torino, Italy
c Dipartimento di Matematica ‘‘Giuseppe Peano’’, Università degli Studi di Torino, Italy
d Departamento de Matemática Aplicada, Universidade Estadual de Campinas, Brazil

a r t i c l e i n f o

Article history:
Received 28 October 2010
Accepted 26 October 2011

Keywords:
Arms race
Myrmecophily
Host specificity
Coevolution
Ants

a b s t r a c t

We present a mathematical model of parasite–host interactions inspired by the
Maculinea–Myrmica system. Numerical simulations of the model were conducted in order
to access the possibility of stable multiple host behavior in the model. Results indicate that
multiple host behavior can be observed under natural conditions, although a division of
the original parasite population into separate subpopulations, each adapted to one distinct
host, is expected. Transitions from single to multiple host behavior are expected to occur
if the relative host species abundances change or host’s tolerance increases. Further model
development and analysis are required to extend these results.

© 2012 Published by Elsevier Ltd

1. Introduction

Host–parasite interactions provide an excellent example of coevolution in nature, serving both as tests for evolutionary
predictions and as sources of new insights on evolutionary dynamics. Given the time scales in which natural selection can
occur, mathematical models are useful tools to investigate the dynamics of such systems.

To model host–parasite interactions a variety of approaches have been used with distinct objectives. The focus of such
models are diverse: aspects of populations dynamics [1–3], evolutionary dynamics of parameters such as virulence [4],
effects of geographic distribution on adaptation [5], dynamics of quantitative traits [6] and others. A full review of the recent
developments in the field of evolutionary dynamics is beyond the scope of this paper and we refer to [7] as an excellent
source of key references and concepts.

In this paper we present a model for parasite host interaction based on an aspect space approach, inspired by the seminal
works of Lin and Segel [8]. The creation of the model was based in the Maculinea butterflies-Myrmica ants parasite–host
system, but our model is quite general and may be applied to discuss other host–parasite interactions. In this paper we will
refer to the specific system which has originated the model, leaving a general discussion of host–parasite interactions for
future work.
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Also, we should remark that we have two very specifics objectives in this paper: to propose a model to the dynamics of
host–parasite interactions in which is possible to discuss the emergence of multiple or single host behaviors and to explore
the parameter space of themodel to access the possibility of the existence of stablemultiple host behavior in the simulations
of the biological system that inspired the construction of the model.

2. Biological background

In this section we provide some information on the biological system that originated the model.

2.1. Life cycle

The most specialized social parasites among Lycaenidae belong toMaculinea genus, where all species have an obligatory
relationship with ants. There are six species, currently described, although probably there are some more species in Asia
which have not yet been described [9–11]. Large Blue butterflies possess unique and highly specialized life cycles [12].
During the summer females lay eggs on a specific food plant and after about three weeks, young larvae hatch from
eggs and feed on seeds or flowers. One month later, at the start of the fourth larval instar, larvae drop to the ground
and wait for foraging ants of the Myrmica genus, which take caterpillars into their nests. Maculinea larvae live inside
Myrmica nests for 10–22 months [13–15] where they obtain more than 98% of their ultimate biomass [16,17]. Depending
on the species, larvae pupate in May or June and remain in this stage about three weeks. After this time young butterflies
emerge [18].

2.2. Host specificity in the Maculinea–Myrmica system

Early studies on Maculinea host ant specificity indicated that each of the five European Maculinea species had one and
separate Myrmica host species, whose nests butterfly larvae survival was much higher than in other host ant species [19].
More recent researches show that the situation is more complicated and host ant specificity ofMaculinea butterflies should
be considered at a local scale [20–23]. A first well demonstrated example was found for M. alcon for which a host switch
occurs across Europe [20]. In other studies, [24–26], the existence ofmultiple host populations in differentMaculinea species,
i.e., a single population ofMaculinea able to exploit more than one host at the same site, was demonstrated.

In this paper, our objective is to develop a mathematical model to discuss the evolution of the different host specificity
patterns displayed by the Maculinea butterfly species in distinct field studies [27,24,19,28]. In that sense, it is important to
alert that the focus of themodel is on the emergence of host specificity patterns and not on the complex details of population
dynamics. It is also worth noting that the whole complexity of the population dynamics of the species can influence the
evolution of the host specificity behavior. However, for the sake of clarity and as a first approximation, we have chosen to
simplify the aspects of population dynamics and focus on the dynamics of phenotypic changes in populations of Maculinea
species and its hosts.

2.3. Chemical profiles and host specificity

In the case of Maculinea butterflies, similarly to other social parasites, one of the methods employed in penetration and
survival in ant colonies is chemical mimicry [29,30]. The most important substances which play a role in this process are
hydrocarbons [31,32].

Nash et al. [33] found evidence that the greater the match between the surface chemistry of Maculinea alcon and two of
its host Myrmica species, the more easily ant colonies were exploited. The adoption time (i.e., how long a Myrmica worker
retrieves a Maculinea larva once it is found) is a good measure of infectivity of the parasite that combines the speed of
retrieval of caterpillars and their initial integration into the ant colony. Considering populations singly, the resident primary
host (sensu Thomas et al. [34]) usually retrieves more rapidly the local Maculinea caterpillars than other Myrmica species
do [35]. In Nash studies, chemical similarity was a significant predictor of infectivity, explaining most of the variation in
adoption time for the twoMyrmica species tested (M. rubra and M. ruginodis) [33].

3. Modeling the dynamics of evolution

3.1. Biological hypotheses

In the process of model-making it is important to clarify the biological hypotheses assumed so that we know exactly
what is included andwhat is not in the dynamics presented by themodel. Themain biological hypotheses considered in our
model are as follows:

1—In the absence of parasites, ant populations grow logistically: this reasonable hypothesis is usually included in models
for ant population dynamics [36,37], supported by data on the growth of Myrmica rubra [38]. Also, it is assumed that the
carrying capacity for each ant species is constant during the simulations.
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2—If environmental conditions are constant, butterfly populations grow logistically: this qualitative behavior is also exhibited
by themodels developed by Hochberg et al. in both stochastic [37] and deterministic versions [39]. This hypothesis is simply
the natural assumption that competition for flower buds and ant nests limits the growth of the parasite population to a
carrying capacity.

3—The survival of Maculinea larvae in the ant nests is mainly dependent on two factors, the host’s tolerance and the degree
of similarity between the chemical profiles of the parasite larvae and of the ant’s brood: the host’s tolerance is a factor that is
influenced by the quality of the environment available to the ant colonies. When faced with a very favorable environment,
species that normally would not be considered as hosts can raise Maculinea larvae with success, as indicated by laboratory
experiments [40]. The inclusion of the second factor means that we attribute a higher chance of survival to individuals with
a greater degree of chemical similarity with the host ants.

4—All Maculinea sites have two well-defined regions, an ‘‘infection area’’ and a ‘‘non-infection area’’ (refuge): the ‘‘infection
area’’ includes the region inside the maximum distance at which nests can be infected by butterfly larvae dropped from
food plants and the ‘‘non-infection area’’ (or refuge) is the area beyond this maximum distance, where ant nests cannot be
infected byMaculinea larvae. The size of those areasmay vary according to the site and the ant species [36] but, for themodel,
the important factor will be the percentage of ant nests inside the infection area, not the actual numerical value of the area.

5—Inside the infection area, the frequency distribution of the chemical profiles is similar to that of the whole site: this means
that if we took a sample of the chemical profiles inside or outside the infection area we would get similar distributions (i.e.,
just by accessing the samples one could not determine if they were from the infection or non-infection area). The fact that
nuptial flights of the ant colonies can reach up to some hundred meters [36] indicates that this may be a good hypothesis,
since we have a genetic flow at a larger scale than the typical infection range (1–10 m).

6—Ant species and food plants are present in a sufficient number to ensure that there is no risk of butterfly extinction caused
by the lack of those resources: with this we assume that there is no serious shortage of ant nests or food plants during the
simulations.

Although there will be situations where these hypotheses do not hold, they are useful simplifications to highlight the
factorwewant to analyzewith themodel, that is, the emergence of host specificity patterns.With the simplifying hypotheses
we can focus on creating a model for the evolution of the phenotypic characteristics that regulate the dynamics of the
Maculinea–Myrmica system.

3.2. The phase space

As presented in Section 2, there is evidence that the similarity between the chemical profiles ofMaculinea larvae and ant
species regulate the probability of adoption and survival of the parasite in the colonies of ants. In that sense, we can think
of the individual butterflies and ants as having a phenotype that regulates the exploitation probability level achieved by the
parasites. The closer the phenotypes, the stronger the exploitation.

It is highly probable that those phenotypes are genetically regulated, and one could think of modeling the gene
frequencies in the process of evolution, in which genes for phenotypes ‘‘closer’’ to the host’s phenotypes would give a
reproductive advantage to the parasitic individuals. Instead, we will use a different approach, modeling the frequencies of
the phenotypeswithin populations.

This is justified by the fact that the genetical mechanisms that control morphogenesis and, in turn, the production of
hydrocarbon profiles which regulate relations between species, are unknown and probably too complex to be described by
the frequencies of a small number of genes. On the other hand, if we choose to model the frequencies of the phenotypical
characters in the population, we can avoid the complications of relating genes to individual fitness, by looking directly at
the phenotype of the individual. This kind of approach has also recently been used to describe the evolution of phenotypes
in an influenza virus model [41].

When reasoning for the existence of a coevolutionary arms race between ant species and Maculinea alcon, Nash
et al. [33] analyzed the hydrocarbon profiles of the individuals, representing populations of Maculinea alcon and its hosts
as distributions of points in a two-dimensional space. In this representation, each different phenotype is associated with a
point in the Cartesian plane, and a population is represented as a cloud of points in the plane. Their results show a correlation
between the distance in this phase space with the adoption time by the host species. Barbero et al. [42] presented a similar
analysis with respect to sound production in the Maculinea rebeli—Myrmica schencki system. Populations of hosts and
parasites were represented as clouds of points in two and three dimensional spaces. In this case phenotypic characteristics
were the dominant frequency, the pulse lengths and the pulse repetition frequencies of sounds produced by hosts and
parasites.

On the basis of those experimental and field observations, wemodel the populations (ants and butterflies) as distributed
in a phase space of phenotypes (or aspect space in the now classical terminology introduced by Levin and Segel [8]), where
the distance between parasite and host is a measure of the parasite exploitation success. In Nash’s et al. study [33] the space
is simply a subset of R2. In our model the phase space will be an interval Ω = [0, L] in the real line, each point representing
a distinct phenotype. The extension to a phase space with more dimensions is straightforward and should yield the same
qualitative results. We reserve for future work its full analysis. Having defined the phase space Ω we proceed to model the
evolution of the population in this phase space.
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3.3. Phenotypic variation and natural selection

To model the dynamics of evolution, we have to make mathematical formulations for two of its basic mechanisms:
phenotypic variation (existence of distinct phenotypes) in the phase space and natural selection (differential reproduction
rates) for the individuals with the best phenotypes.

Before modeling the particular case of the Maculinea–Myrmica system, we will deduce a general equation for the
evolution of the phenotypical distribution of a population on a phase space Ω under the hypothesis that there is a function
f : Ω → [0, 1], called fitness function, that associates each phenotype in phase space to a value in [0, 1]. So, if x ∈ Ω, f (x) is a
measure of the reproductive capacity of the individual, for instance, if f (x) = 1 phenotype x has themaximum reproductive
rate for the species. For a more general model we could think of a function f : Ω → R+ in a sense that there would be no
pre-established maximum reproductive rate for the species.

To obtain equations for the evolutionary dynamics we will work with a discretization of Ω . Suppose that Ω is divided
in n equal subintervals and Ui(t) = Ui, i = 1, . . . , n, is the number of individuals of the population in the interval
[(i − 1) △x, i△x], where △x = L/n. For modeling purposes we are going to use a continuous domain for the time variable
t . So Ui is the number of adult butterflies at time t that have a phenotype in the interval [(i − 1) △x, i△x].

3.3.1. Phenotypic variation
To generate themechanisms to simulate phenotypic variation in the population,we start by defining r as the reproductive

rate for the species. The rate of change of the number of individuals in class i at time instant t could be modeled as rUi. To
create the effect of phenotypic variation (due to diverse factors such as random drift, mutation and recombination) in the
population we will suppose that a fraction v ∈ (0, 1) of the individuals generated by the reproduction of the individuals of
class i does not belong to the same class, but to the adjacent classes i − 1 and i + 1. This is a way to formulate the common
hypothesis that individuals produce offspring with phenotypes similar to their own and v is now a parameter that measures
the rate of change of phenotypes in the population through reproduction.

For now, we would have the following equations for the population dynamics:
dUi

dt
=

vrU i−1

2
+ (1 − v) rU i +

vrU i+1

2
. (1)

3.3.2. Natural selection
To generate a mechanism of natural selection, we must assign higher reproductive rates to the individuals with the best

phenotypes. Using the hypothesis that there is a fitness function f : Ω → [0, 1] measuring the reproductive capacity of
the individual with phenotype x, we define fi = f (xi) where xi is the midpoint of the interval [(i − 1) △x, i△x]. Then fi is a
measure of the reproductive capacity of the individuals in class i. This suggests a modification of Eq. (1) in order to include
this differential rate of reproduction.

The reproduction rate of individuals in class i would then be given by rfi and the equation for the population dynamics
becomes:

dUi

dt
=

vrfi−1U i−1

2
+ (1 − v) rfiU i +

vrfi+1U i+1

2
. (2)

Up to now, the model has two components of natural selection, that is, higher reproduction rates to the ‘‘best’’ phenotypes
and phenotypic variation. Another important feature of natural selection is that limited natural resources impose serious
restrictions to population growth. Eqs. (1) and (2) represent a situation where growth is unlimited. To add a limiting
mechanism to the model we suggest including a Verhulst-type term in the equation in the form:

T = −

rUi

n
j=1

Uj

K
(3)

where the parameter K is the environment carrying capacity of the species. Including this in the model we obtain:

dUi

dt
=

vr
2


fi−1U i−1 − 2fiU i + f i+1 U i+1


+ rUi

fi −

n
j=1

Uj

K

 . (4)

If we now abandon the discretization of the phenotype domain in classes, defining u(x, t) as the density of individuals with
phenotype x at time t , Eq. (4) suggests the following dynamics for u:

∂u
∂t

= v r
∂2 [ f (x)u]

∂x2
+ ru


f (x) −


Ω

u dx


K


. (5)

The model obtained in (5) is a reaction–diffusion-type equation for the evolution of u(x, t), with a non-constant diffusion
coefficient D(x) = v rf (x). From now on we drop the notation v r using v and r instead for a cleaner presentation.
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The dependence of D(x) on r is expected, since the rate of reproduction defines the rate of generation of new phenotypes
and therefore the propagation speed of the population along the phase space. Also, dependence on the function f (x) has the
clear meaning that in regions where the individuals reproduce more, diffusion will be faster, since ‘‘movement’’ in phase
space, in this case, is related to generation of new phenotypes and, hence, reproduction. Finally

√
v is ameasure of change in

the population in the phase space in the time scale of reproduction. In otherwords, itmeasures howmuch a population could
change in the phase space through diffusion in a time scale compatible with observable changes in population numbers. The
second term in the equation is a Verhulst-type dynamics with two modifications. First, the maximum reproductive rate is
dependent on the position x in phase space. Second, the usual term in a Verhulst-type dynamics is N/K , N being the total
number of individuals competing for the limited resources, in this case, since the population is distributed along the phase
space, N is given by N =


Ω
u dx.

3.4. Fitness functions for the Maculinea–Myrmica system

Eq. (5) provides the dynamics of a population under the effects of natural selection and those that generate phenotypic
variation (mutation, for instance) as long as the fitness function f : Ω → [0, 1] that regulates the reproduction of the species
is known. In the case of theMaculinea–Myrmica system the fitness of an individual butterfly is dependent on the distribution
of the phenotypes of the ant hosts. In this sense, the fitness functions in this case will be represented by functionals since
they are dependent not only on the phenotype x of the individual, but also on a function that represents the distribution
of the phenotypes. This is in agreement with the biological intuition, since the fitness of an individual with phenotype x is
dependent on the distribution of host and parasite phenotypes. As an example we can think of a parasite with phenotype x,
if the whole population of hosts has a phenotype that is ‘‘far’’ from x, the fitness of the parasite should be very low, while if
the host population is ‘‘near’’ x the fitness should be high.

We will start creating fitness functions for a system with just one parasite species and one host species.

3.4.1. Single host model
Defining P ≡ P(x, t) as the parasite density with phenotype x at time t and H ≡ H(x, t) as the host density with

phenotype x, we must define a fitness functional g(H, x) for the dynamics of P and a functional f (H, P, x) for the dynamics
of H .

The best possible phenotype for the parasite is the one which is ‘‘closest’’ to the phenotypes of the host species. In this
sense we include a parameter ε that defines the maximum vicinity in which a phenotype can be considered to be subject to
exploitation by a parasite. If a parasite has a phenotype x, (x − ε, x + ε) is the vicinity in the phase space that contains all
host individuals that can be exploited by this particular parasite.

The best possible situation for a parasite occurs when all the population of hosts is inside the vicinity (x − ε, x + ε).
The worst possibility is when no host is found within the boundaries of the vicinity. This suggests that we could model the
fitness of a parasite by the fraction of the population of hosts that is inside the vicinity (x − ε, x + ε):

g (H, x) =

 x+ε

x−ε
H (x, t) dx

Ω
H (x, t) dx

. (6)

Now to model the fitness of the host species we must take into account two important factors:
1—Recognition among individuals of the host species is an important factor for reproduction since in many species a

new queen does not always start a new colony on her own, but enters one that already exists, sometimes being rejected and
sometimes being accepted. In this sense, it favors the host to have a phenotype similar to the majority of the population of
hosts. Of course, feeding larvae is another activity in which recognition among individuals plays an important role.

2—Not all colonies of hosts lie within the infection range (i.e., some may be far from a butterfly host plant, thus creating
a refuge for the host species) thus not all are subjected to the possibility of exploitation by parasites. This is, clearly, a very
important biological information since it is related to the selective pressure that the parasite population can exert over the
host population. Since this fraction of the colonies within the infection range will vary, we include a parameter γ that is
related to the fraction of the population that is exposed to the parasite (the fraction outside the refuge).

As in the fitness function for the parasite, factor 1 could be modeled as the fraction of hosts in the vicinity (x − ε, x + ε).
If all the population of hosts are inside the vicinity, the whole of the population recognizes the individual as ‘‘similar’’, thus
maximizing its fitness. On the other hand, being similar to the parasite is not advantageous to the host, so a measure of
fitness with relation to the parasites could be 1 minus the fraction of parasites in the vicinity (x − ε, x + ε). But we must
include also the selection pressure on the fitness function, even if the host population is similar to the whole of the parasite
species, if the selective pressure is very low (in other words, the chance that the colony is exposed to the parasite is very
low), that should not have a great influence on the fitness of the individual. With those aspects in mind, we suggest the
following as fitness function for the host species:

f (H, P, x) =

 x+ε

x−ε
H (x, t) dx

Ω
H (x, t) dx


1 − γ

 x+ε

x−ε
P (x, t) dx

Ω
P (x, t) dx


. (7)
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The model for one host species and one parasite is given by the following system of partial differential equations:

∂H
∂t

= vHrH
∂2 [ f (H, P, x)H]

∂x2
+ rHH


f (H, P, x) −


Ω

H dx


KH


∂P
∂t

= vP rP
∂2 [g(H, x)P]

∂x2
+ rPP


g(H, x) −


Ω

P dx


KP

 (8)

where vH is the rate of phenotypic change of the host species, rH its reproduction rate and KH the carrying capacity. By
analogy vP , rP and KP are the parameters relative to the parasite species.

3.4.2. Multiple host model
Themost significant modification with respect to themodel of one host species is that the host species are present inside

the infection area with different frequencies. There are two factors that contribute to the frequency observed inside the
infection area: the carrying capacity of the environment with respect to each host species and the percentage of nests of the
host nests that are inside the infection area. For example: even if the carrying capacity of the site with respect to one host
species A is small when compared to host species B, if most of the A nests are inside the infection area (meaning that the
parasite exerts a high selection pressure on species A) then species A could be more abundant to the parasite than species B.
Ameasure of the abundance of the host species A to the parasite is given by γAKA, the percentage of nests inside the infection
area times the carrying capacity of the site with respect to species A.

The dynamics for each host species is directly generalized from the system of Eqs. (8), the main modification concerning
the parasite’s fitness function. If Hi(x, t), i = 1, . . . , n is the distribution of each host species, then the fraction of host
individuals within the vicinity of phenotype x is given by:

g (H1, . . . , Hn, x) =

n
i=1

γi
 x+ε

x−ε
Hi (x, t) dx

n
i=1

γi


Ω
Hi (x, t) dx

. (9)

Again, maximum fitness (with numerical value of 1) for the parasite is obtained when all host populations are within the
vicinity (x − ε, x + ε) and zero fitness is obtained when no host is found in it.

Finally we obtain the system of equations for n hosts:

∂Hi

∂t
= viri

∂2 [ fi (Hi, P, x)Hi]
∂x2

+ riHi


fi (Hi, P, x) −


Ω

Hi dx


Ki


, i = 1, . . . , n

∂P
∂t

= vP rP
∂2 [g(H1, . . . ,Hn, x)P]

∂x2
+ rPP


g(H1, . . . ,Hn, x) −


Ω

P dx


KP

 (10)

with the obvious meanings for the parameters.

3.4.3. Adimensional parameters
For the time variable we adopt t∗ = rP t , the time scale of the parasite reproduction dynamics, x∗

= x/
√

vP is the
adimensional variable for the phase space, hi(x, t) =

√
vPHi/Ki, i = 1, . . . , n the densities of the host species and

p(x, t) =
√

vPP/KP the parasite density. Dropping the stars, the adimensional system of equation is:

∂hi

∂t
= θiλi

∂2 [ fi (hi, p, x) hi]
∂x2

+ λihi


fi (hi, p, x) −


Ω

hi dx


, i = 1, . . . , n

∂p
∂t

=
∂2 [g(h1, . . . , hn, x)p]

∂x2
+ p


g(h1, . . . , hn, x) −


Ω

p dx
 (11)

where θi = vi/vP , λi = ri/rP andΩ = [0, L/
√

vP ]. θi is a measure of the ratio of the speed of change in phase space between
the host species i and the parasite, θi > 1 means that the host population i changes faster than the parasite. λi is a measure
of how fast the host species i reproduces, λi > 1 means that the host species reproduces faster than the parasite.

The fitness functions can be written in terms of the adimensional variables, yielding:

fi(hi, p, x) =

 x+δ

x−δ
hi (x, t) dx

Ω
hi (x, t) dx


1 − γi

 x+δ

x−δ
p (x, t) dx

Ω
p (x, t) dx



g (h1, . . . , hn, x) =

n
i=1

γiσi
 x+δ

x−δ
hi (x, t) dx

n
i=1

γiσi


Ω
hi (x, t) dx

(12)
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Table 1
Summary of model parameters and their biological meaning.

Symbol Meaning

Hi(x, t) Density of hosts of species i in the phenotypic position x at time instant t
P(x, t) Density of parasites the phenotypic position x at time instant t
vi Coefficient of generation of distinct phenotypes by host species i through reproduction
vP Coefficient of generation of distinct phenotypes by parasite i through reproduction
ri Maximum reproduction rate for host species i
rP Maximum reproduction rate for parasite species
Ki Carrying capacity of the environment with respect to host species i
KP Carrying capacity of the environment with respect to the parasite species (related to the

abundance of food plants)
ε Maximum distance in aspect space between ‘‘similar’’ phenotypes

Dimensionless symbols

hi(x, t) Density of hosts of species i in the phenotypic position x at time instant t
p(x, t) Density of parasites the phenotypic position x at time instant t
θi Ratio of the coefficient of generation of distinct phenotypes by host species i and the parasite’s

coefficient
λi Ratio of Maximum reproduction rate for host species i and the maximum reproductive rate of the

parasite species
γi Selection pressure over host species i (percentage of study area occupied by food plants)
σi = Ki/K1 Relative abundance of host species iwith respect to host species 1
fi(hi, p, x) Fitness function for host species i
g (h1, . . . , hn, x) Fitness function for the parasite species
δ = ε/

√
vP Ratio between a distance of significant change in the phenotype space and the distance traveled

through the generation of new phenotypes in the time scale of parasite reproduction

where δ = ε/
√

vP and σi = Ki / K1. From now on we suppose that the host species are ordered from the most abundant
one H1 to the less abundant H2 so each σi is in the interval [0, 1].

To have a clear biological interpretation of parameter δ, we will begin by exposing the meaning of parameters ε and
√

vP . Parameter ε is the maximum distance in phase space in which a host individual can be exploited by a parasite, so
if the distance between the parasite and the host is greater than ε, that individual cannot be exploited by the parasite. In
this sense, ε is a measure of significant change in phase space. In reaction–diffusion phenomena, the speed of propagation
of the population can be approximated by 2

√
UD where U is the reaction rate and D is the diffusion coefficient. In the

present model, the diffusion coefficient is given by rPvP while the ‘‘rate of reaction’’ is the population reproduction rate
rP which leads to the speed: V = 2rp

√
vP . If we now multiply this speed by the time scale of the reproduction 1/ rp we

obtain the distance traveled by the population in the reproduction time scale: 2
√

vP . Now δ = ε/
√

vP is the ratio between
a distance of significant change in the phenotype space and the distance traveled by the population in the time scale of
parasite reproduction.With this δ ≪ 1means that the parasite population can change significantly (in phenotypic space) in
the time scale of reproduction (of course if θi ∼= 1 so do the host populations), while δ ≫ 1 means that phenotypic changes
in the population occur slowly.

In Table 1 we present a summary with all the parameters and their biological meaning.

3.4.4. Boundary conditions
The phase space Ω = [0, L] is the space of phenotypic characteristics and, as such, it is an abstraction useful to model

and understand some aspects of the evolution of the Maculinea–Myrmica system. Different types of boundary conditions
could be assigned, for instance, the homogeneous Dirichlet boundary condition u(0, t) = u(L, t) = 0 would represent a
situationwhere there are lethal phenotypes at the boundaries and any individual bornwith a phenotype outsideΩ = [0, L]
would die before reproducing. Zero flux conditions at the boundaries would mean that no further phenotypic variation is
allowed beyond the boundaries of the domain. Although those are interesting conditions and raise some other interesting
biological questions, we will focus our simulations on situations where the boundaries do not affect the qualitative results,
in other words, ideally we would be simulating the phase space Ω∗

= (−∞, +∞).

4. Simulations

4.1. Numerical methods, presentation format of the simulation results and initial conditions

To solve the system we employed the Crank–Nicholson finite difference scheme [43], with approximation for the
functionals f and g as f n+1 ∼= f n and gn+1 ∼= gn. Two more routines were implemented: a simple forward-scheme and
a Runge–Kutta type scheme to check the results. All methods provided very similar results.

The solutions for the system of differential equations are n + 1 functions of two variables: hi(x, t), i = 1, . . . , n and
p(x, t). To optimally present the results a movie resource would be necessary. Thus to create clear and concise images of the
results wewill restrict the figures to bidimensional graphics. In order to do that, we observe that hi(x, t), inmost simulations
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are close to bell-shaped distributions in the variable x, moving in phase space as t changes. Similarly p(x, t) has also a bell-
shaped distribution in x inmost simulations, sometimes splitting into two ormore bell-shaped curveswith distinct averages.

Given the above considerations, we will display only the trajectory of the average phenotypes in each of the curves
hi(x, t), p(x, t) as long as those distributions do not split in two. In the rare cases when such splitting occurs we will plot the
split of the average phenotype into two other average phenotypes. To obtain the average phenotype of hi(x, t) and p(x, t),
we use the formula:

hi(t) =


Ω
xhi (x, t) dx

Ω
hi (x, t) dx

p(t) =


Ω
xp (x, t) dx

Ω
p (x, t) dx

.

(13)

Results of the simulationswill be presented as graphs of hi(t) and p(t). Unless stated otherwise it will be implicit that hi (x, t)
and p (x, t) are in fact bell-shaped distributions around the averages hi(t) and p(t). From now on we also drop the bars on
hi(t) and p(t) for a cleaner look.

To construct the initial host and parasite distributions, we first used a basic distribution

S(x) = (1 + ξi)e−((x−m)/v)2 (14)

where m is the average of the initial distribution, v the initial variance and ξi is a random variable uniformly distributed in
[0, 1/10]. The index i for the random variable is associated with each point of the discretization grid used in the numerical
approximations for the solution. For each host and parasite species a basic distribution S(x) was constructed with its initial
variances and averages, each distribution was them normalized to produce coherent initial population numbers:

Q (x) = 0.4 S(x)


S(x)dx. (15)

The qualitative results of the simulations were, for the most part, independent of the initial conditions. The cases in which
the final qualitative behavior depended on the initial conditions are mentioned explicitly.

4.2. Simulation results

4.2.1. Results for a single host species
For the scenarios with a single host species there are two qualitative behaviors that can be displayed: an arms race

between parasite and host or a stationary distribution of phenotypes, meaning that the coevolution of phenotypes comes
to a halt. The arms race behavior is observed in two different dynamics called by us: (i) continuous and (ii) complex. In the
continuous arms race, both species evolve in a fixed direction, while in the complex regimen the direction can change and
the population can go through cycles with regular periods before evolving to a different cycle. Fig. 1 presents the qualitative
behaviors observed in the simulations of the model.

As we conducted an exploration of the parameter space (δ, θ, γ , λ), the stationary distributions presented three
important types of results, whichwe shall define as two peaks, flat and one peak. Fig. 2 presents examples of such stationary
distributions.

We should note that the two peaked stationary distributions show a sign of maladaptation by the parasite. In fact it can
be shown [44] that this is related with the magnitude of the phenotypic variation coefficient and the scale of change of
the fitness function. We shall not enter the details of the result in this paper, but we mention that this maladaptation is
analogous to the ones presented in models with a high mutation rate.

In Fig. 3 we present the qualitative results obtained from 630 simulations.
Parameter γ : As expected, low selection pressures (γ < 0.2) tend to lead to a stationary behavior. Of course this is

coherent with the theoretical expectations about coevolution of host and parasite, because under very weak selection
pressures (on phenotypic similarity with the parasite) all phenotypes have similar reproduction rates, and the effect of
natural selection cannot change significantly the distribution of phenotypes in the population. We must remark that in the
model individuals very different from the average phenotype are penalized, if this factor is removed, even very low selection
pressures will lead to changes in the phenotypic distribution of the host population. A high selection pressure alone does
not lead to a consistent arms race regimen in the model, as one could expect. In part this is because hosts, in this case, are
penalized if they differ too much from their own population, while parasites do not face this difficulty (here we must stress
that we are focusing the model on the larvae phenotypes for being adopted by the hosts, while certainly it is important for
the adult butterfly to be similar to its own species population). As a result, we could say that hosts might be in a situation
where it is difficult for them to evolve countermeasures against the parasite (in this case, to evolve phenotypes very different
from the parasite) because this also imposes a penalty on the host’s own reproduction rate. Note that this reasoning is also
valid for the evolution of a behavior that makes individuals less tolerant to slightly different phenotypes, since they would
also tend to be less tolerant also with individuals of their own species. Of course these considerations are valid if hosts are
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Fig. 1. Average phenotypes h(t) (host) and p(t) (parasite). (a) Stationary distribution of phenotypes. (θ = 0.24, λ = 0.33, γ = 0.89, δ = 0.27)
(b) Complex arms race between host and parasite. (θ = 0.27, λ = 0.10, γ = 0.97, δ = 8.74) (c) Arms race with both species changing their average
phenotypes in the same direction. (θ = 0.36, λ = 10.00, γ = 0.40, δ = 5.40).
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Fig. 2. Examples of stationary distributions. (a) Two peaks: θ = 0.125, λ = 1, γ = 0.60, δ = 1. (b) Flat: θ = 0.25, λ = 1, γ = 0.60, δ = 0.5. (c) One
peak: θ = 0.5, λ = 1, γ = 0.60, δ = 0.5.

really penalizedwhen they have a very distinct phenotype from the average (with the usual assumption that the population
distribution is a bell-shaped curve). Self-recruitment of new queens might play a relevant role in this dynamics but it would
be necessary to describe also the spatial distribution of colonies, adding further complexities to the model.

Parameter θ :Withmoderate to strong selection pressure (0.4 < γ < 0.8), high values of θ(>10)will lead to an arms race
regimen. This means that the host’s rate of change in the phase space would have to be faster than the parasite’s in order for
the host to create a permanent arms race with the parasite. Again, this is related to the hypothesis that the host might be in
conflict with its own population when changing phenotypes. Values of θ near unity and below lead to a stationary regimen,
where the parasite exploits the host without any evolution of countermeasures (in terms of phenotypes). Of course this is
also in agreement with what is expected from the theoretical point of view, if a parasite can change faster than the host, it
will be hard for the host population to escape exploitation by evolving its phenotype distribution in phase space.

Parameter λ: Just as for parameter θ moderate to strong selection pressure in combination with high values of λ(>5) can
lead to a permanent arms race regimen. As observed in the modeling section, the diffusion coefficient is dependent on the
reproduction rates of the populations. λ > 1 means that hosts can reproduce faster than the parasites (comparing the best
possible phenotypes). So a consequence of λ > 1 is that the host population can evolve faster than the parasite population,
creating the permanent regimen of arms race. When λ ≤ 1 the parasite population evolves faster than hosts and the system
displays a stationary behavior.
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Fig. 3. Qualitative results from simulations. Each rectangle represents the result of the simulation with the parameters in its lower left corner. 2 PEAKS:
stationary distribution as in Fig. 2-(a). FLAT: stationary distribution as in Fig. 2-(b). 1 PEAK: stationary distribution as in Fig. 3-(c). A.R: arms race regimen
as in Fig. 1-(c). C. A. R: complex arms race regimen as in Fig. 1-(b).

Parameter δ: Again, a moderate to strong selection pressure is necessary for the system to display a permanent arms race
behavior.When δ ≫ 1we are simulating a situationwhere populations change very slowly in the phase space. In opposition
to what we could intuitively expect, this condition leads to a permanent arms race behavior. Also, this was the only scenario
in which the complex arms race, presented in Fig. 1(b), occurred. The opposite situation, δ ≪ 1, when populations change
very quickly in phase space, tends to lead to stable stationary distributions.

Since we have four parameters in the model, exploring the possible outcomes of the simulations becomes a challenging
task. It is not feasible to explore in detail the whole space of possible combinations. As complement to the simulations
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Table 2
Taking a random sample of the parameter space (as described
in this section) in 27% of the simulations we observed an arms
race behavior. All other simulations displayed a convergent
stationary behavior.

Qualitative behavior Frequency (%)

Arms race 27
Stationary 73

presented in Fig. 3, we also took random samples from the parameter space and analyze the frequency of the observed
behaviors.

Since each of the parameters has a clear biological meaning, we should not (in the absence of precise information on
the biological system) assign a greater probability to particular biological situations when taking a random sample from the
parameter space. For example, parameter λ defines the rate of reproduction of the host in relation to the parasite, when
λ > 1 the host reproduces faster than the parasite and when λ < 1 the parasite reproduces faster. Those two are very
clear and distinct biological situations and we do not want to assign a greater probability to any of them. So our procedure
will be to create a set of possible values for the parameter λ: Iλ = [1/10, 1] ∪ [1, 10], and assign a probability of 0.5
to λ ∈ I1 = [1/10, 1], and a probability of 0.5 to λ ∈ I2 = [1, 10]. Once defined which interval λ is in, I1 or I2, we
sample λ from a uniform distribution within the interval. We apply the same reasoning for parameters δ and θ , obtaining:
θ ∈ Iθ = [1/10, 1] ∪ [1, 10] and δ ∈ Iδ = [1/10, 1] ∪ [1, 10].

Parameter γ is the selection pressure, the fraction of the population that is inside the infection area. To create the random
sample of the parameter space, γ is sampled in the interval Iγ = [0, 1] with a uniform distribution. While initial conditions
may play a role in some aspects of the dynamics of the system, the qualitative behavior is not usually affected by the initial
distributions. Both parasite and host initial distributions are Gaussian curves to which some noise is added.

In Table 2we present the percentage of each qualitative behavior in 100 simulationswith parameters sampled as defined
above.

4.2.2. Results for two host species
One of the main objectives for the creation of the mathematical model for the evolution of phenotypic characters in the

Maculinea–Myrmica systemwas to afford the possibility to simulate the evolution ofmultiple/single host behavior over long
time ranges.

To explore the possible outcomes in terms of host specificity behavior, we ran simulations both systematically exploring
the parameter space and taking random samples of it. We begin by presenting the simulations from the random samples of
the parameter space.

The simulations with two host species clearly increase the number of parameters. In this case, instead of having only
one parameter λ we have λ1, representing the rate of reproduction of host 1 and λ2 the rate of reproduction of host 2. By
analogy, we also have parameters γ1, γ2 (selection pressures), θ1, θ2 (host rate of change in phase space), σ1, σ2 (abundance
of hosts in population site). In our simulations, the parameter δ is unaltered by the number of host species (although one
could think of a situation where the parameter δ is different for each host species).

As in the simulations for one host species we sampled the parameter space following exactly the same rules defined
in Section 4.2.1. The parameters σi, as defined in Section 3.4.3 are given by Ki/K1 where Ki is the carrying capacity of the
population site for species i (i.e., a measure of the abundance of species i) and host 1 is the most abundant species at the site
of study, not necessarily in the infection area. As a consequence, each σi, is in the interval (0, 1], for our simulations σ1 = 1
and σ2 has a uniform distribution in (0, 1].

The same qualitative behaviors observed in the one host simulations and their relation with the parameters are also
present in the simulations for two hosts. The difference of the dynamics is that the parasite can now exhibit multiple host
behavior, referred to as MHB for the rest of this paper. Single host behavior shall be referred to as SHB.

MHBwas present in the simulations both as a transient and as a stable behavior. Transient MHB occurs when the parasite
population, while evolving, goes through a stage where it exploits more than one host simultaneously, but, as time passes,
it becomes more and more specialized in just one of the host species. Stable MHB is the behavior displayed by the parasite
when it does not concentrate in just one host species and, independently of how long we simulate the system, exploits both
host species. In Fig. 4 we present simulations of both situations.

Transient MHB can happen in almost any situation. Host populations may have, by chance, similar initial phenotypic
distributions. The parasite populationmay have to travel through phase space to exploit themost abundant species, crossing
in its path the region where the population of a less abundant species lies. This is especially true in the case of a one-
dimensional phase space model, since there is only one path connecting two distinct points in the phenotypic space. The
duration of a transientMHB is dependent on the parameters of themodel which represent selection pressure, rate of change
in phenotypic space, species abundance and other factors. Given the above considerations, wewill consider only stableMHB
as ‘‘true’’ multiple host behavior.

We ran 100 simulations of the two host model, and in 19 the parasite displayed MHB behavior. In 16 of those 19
simulations, the parasite population splits in two subpopulations, each one adapting to the phenotype of one host species;
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Fig. 4. Average phenotypes of hosts and parasite. (a) Evolution of single host behavior, the parasite population concentrates its average phenotype in only
one host species. (b) Stable multiple host behavior. Parasite population splits into two subpopulations, each with an average phenotype similar to one host
species.

in the other 3 the parasite population created a valley (i.e., two close peaks in the distribution) that imprisoned both host
species within it, in these 3 special cases, results of MHB behavior were strongly dependent on the initial conditions.

Another important point related to host specificity is the question whether the parasite population will always converge
to the most abundant host species in the infection area. In our model the abundance of host i in the infection area can
be approximated by γi Ki, the population abundance in the whole site times the percentage of nests inside the infection
area.

In each simulation, we observedwhichwas the host species the parasite population converged to. In the SHB simulations
the classification of convergence for each case was obvious, and in 76.5% (62 of 81 SHB cases) of the simulations the parasite
converged to the hostmost abundant in the infection area. Inmost caseswhere the parasite population converged to the less
abundant species there was a common factor: the rate of change in phase space of the more abundant species was greater
than unity and the less abundant was lower than unity. In biological terms this implies at least two important features: the
more abundant species evolves faster and also has a greater population variance. If the host species evolves faster, it makes
it harder for the parasite population to adapt and pursue its phenotype in phase space, creating a favorable scenario for the
parasite to converge to a less abundant host species (that does not evolve so quickly). Contributing in the same direction,
the less abundant species has a smaller rate of change in the aspect space, evolving slower and having a smaller population
variance. This smaller variance creates a peak of adaptation for the parasite species, since themajority of the host individuals
can be found in a smaller vicinity around the average. This also contributes for the parasite population to converge to the
less abundant species because although the species is less abundant it could provide the most common phenotype in the
host population as a whole.

Convergence to less abundant species has been observed in field studies [45] and, of course, there are other conceivable
explanations besides the one exposed above. One possible explanation is simply transient state of evolution, host species
densities are changing with time and the parasite does not had yet the time to adapt to the most abundant one. Another
possible explanation is just distance in phase space. If the most abundant host species is too ‘‘far away’’ in phase space
from the parasite population, it is possible that there is no feasible way for evolution to create a ‘‘jump’’ in adaptation for
the parasite population to exploit the most abundant species. In other words, the parasite species is separated from a peak
of higher fitness by a long valley of low adaptation (the region between the host species where there are no exploitable
phenotypes).

In the cases where MHB was observed classification of convergence to the most abundant species became more
subjective, since the parasite population now divides its phenotypic distribution between two host species. Even so there
were cases where we could identify convergence of the majority of the parasite population to one host species, in 78.9% (15
of 19 cases) the convergence was to the most abundant host species. In the 4 cases where convergence was not clear the
population divided almost equally between the host species.

Arms race behavior was more frequent with two host species being present in 39% of the simulations. It occurred in 30%
(25 of 81) of the cases of SHB, a percentage similar to the one host simulations, and in 73% (14 of 19) of the cases of MHB. In
the MHB cases the parasite could be in an arms race with one of the host species while in stationary regimenwith the other.
In such cases the regimen was counted as an arms race.

In Table 3 we present a summary of the two-host simulation results.
All the above considerations are related to the simulations in which we took a random sample of the parameter space.

To explore further the relations of parasite and host when there are 2 host species, we also ran systematic simulations,
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Table 3
Summary of results for the two-host simulations.

Behavior Frequency (%) Arms race (%) Convergence to most
common host (%)

MHB 19 74 79
SHB 81 30 77

Table 4
Simulation results for δ = 8, λ = 0.5. S—Stationary distribution, AR—simple arms race
regimen, CAR—complex arms race. For example: H1-AR/H2-Smeans that the parasite population
subdivided into two subpopulations, having as primary host H1 and is in an arms race with it;—
host H2 is a secondary host and the parasite subpopulation has a stationary distribution. The
other combinations have analogous interpretation: H2-S/H1-CAR. The ‘‘=’’ sign means that the
parasite subdivides into subpopulations of equal number of individuals.

σ2 = 1

γ2

γ1

0.2 0. 4 0.6 0.8 1
0.2 H1-S=H2-S H2-S H2-AR H2-AR H2-AR/H1-S
0.4 H1-S H1-S=H2-S H2-S/H1-S H2-S/H1-S H2-AR/H1-S
0.6 H1-AR H1-S/H2-S H1-S=H2-S H2-S/H1-S H2-S/H1-S
0.8 H1-AR H1-S/H2-S H1-S/H2-S H1-S=H2-S H1-S=H2-S
1 H1-AR/H2-S H1-AR/H2-S H1-S/H2-S H1-S=H2-S H1-S=H2-S

σ2 = 0.5

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S/H2-S H2-S/H1-S H2-S/H1-S H2-AR/H1-S
0.4 H1-S H1-S H1-S/H2-S H1-S/H2-S H1-S/H2-S
0.6 H1-AR H1-AR H1-S/H2-S H1-S/H2-S H1-S/H2-S
0.8 H1-AR H1-AR H1-AR/H2-S H1-S/H2-S H1-S/H2-S
1 H1-CAR H1-AR/H2-S H1-AR/H2-S H1-AR/H2-S H1-AR/H2-S

σ2 = 0.25

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S H1-S H1-S/H2-S H1-S/H2-S
0.4 H1-S H1-S H1-S H1-S H1-S/H2-S
0.6 H1-CAR H1-AR H1-AR H1-AR H1-S/H2-S
0.8 H1-CAR H1-AR H1-AR H1-AR H1-AR/H2-S
1 H1-CAR H1-CAR H1-AR H1-AR/H2-S H1-AR/H2-S

σ2 = 0.125

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S H1-S H1-S H1-S
0.4 H1-S H1-S H1-S H1-S H1-S
0.6 H1-CAR H1-CAR H1-AR H1-AR H1-AR
0.8 H1-CAR H1-CAR H1-CAR H1-AR H1-AR
1 H1-CAR H1-CAR H1-CAR H1-CAR H1-CAR

restricting the parameter space with the following assumptions:

(a) All populations have similar phenotypic variation coefficients, i.e., θi = 1. This assumes that the rate of phenotypic
change in the populations due to mutation, recombination and other factors are similar for all species.

(b) Themaximum reproduction rates λi = λ are equal for each host species and are smaller or equal 1. This assumes that the
timescale of population dynamics is similar for all host species and slower than the parasite timescale (i.e., the population
of parasite exhibit significant changes faster than the hosts). This could be indeed a good hypothesis, since parasite and
host generation times are distinct, the parasite’s being significantly shorter.

To explore the occurrence of stable multiple host behavior we ran 1200 simulations, corresponding to the combination
of parameters δ ∈ {0.125, 1, 8} , λ ∈ {0.125, 0.25, 0.5, 1} , σ2 = K2/K1 ∈ {0.125, 0.25, 0.5, 1} and γ1,2 ∈ {0.2, 0.4,
0.6, 0.8, 1}.

Since parameter λ did not affect much the results in the simulations with two hosts, we present variation in terms of
δ, σ2 and γ1,2. Results are shown in Tables 4–6.
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Table 5
Simulation results for δ = 1, λ = 0.5. S—Stationary distribution, AR—simple arms race
regimen, CAR—complex arms race. For example: H1-AR/H2-Smeans that the parasite population
subdivided into two subpopulations, having as primary host H1 and is in an arms race with it;—
host H2 is a secondary host and the parasite subpopulation has a stationary distribution. The
other combinations have analogous interpretation: H2-S/H1-CAR. The ‘‘=’’ sign means that the
parasite subdivides into subpopulations of equal number of individuals.

σ2 = 1

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S=H2-S H2-S H2-S H2-S H2-S
0.4 H1-S H1-S=H2-S H2-S H2-S H2-S
0.6 H1-S H1-S H1-S=H2-S H2-S/H1-S H2-S
0.8 H1-S H1-S H1-S/H2-S H1-S=H2-S H2-S/H1-S
1 H1-S H1-S H1-S H1-S/H2-S H1-S=H2-S

σ2 = 0.5

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S H2-S H2-S H2-S
0.4 H1-S H1-S H1-S H1-S/H2-S H2-S/H1-S
0.6 H1-S H1-S H1-S H1-S H1-S/H2-S
0.8 H1-S H1-S H1-S H1-S H1-S
1 H1-S H1-S H1-S H1-S H1-S

σ2 = 0.25

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S H1-S H1-S/H2-S H2-S/H1-S
0.4 H1-S H1-S H1-S H1-S H1-S
0.6 H1-S H1-S H1-S H1-S H1-S
0.8 H1-S H1-S H1-S H1-S H1-S
1 H1-S H1-S H1-S H1-S H1-S

σ2 = 0.125

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S H1-S H1-S H1-S
0.4 H1-S H1-S H1-S H1-S H1-S
0.6 H1-S H1-S H1-S H1-S H1-S
0.8 H1-S H1-S H1-S H1-S H1-S
1 H1-S H1-S H1-S H1-S H1-S

From Tables 4–6, we can draw the following conclusions:

(a) As the parameter δ increases, the frequency of MHB also increases. This is to be expected, since one possible biological
interpretation of high values of δ is that the host populations are very tolerant (i.e., phenotypical changes that occur in
the timescale of reproduction are not noticed by the host population).

(b) The parasite population goes through a transition of host specificity as the relative abundance of host changes. Such
gradual shift can be seen in Table 5, when σ2 = 1 and γ2 = 0.8, as γ1 changes, the parasite population shifts its primary
host.

As an example of the host transition in Fig. 5 we present the fraction of the total parasite population exploiting host 1 as
γ1 changes (δ = 1, λ = 0.5, γ2 = 0.6, σ2 = 0.5).

4.2.3. More than two hosts
Preliminary exploration of the parameter space in the cases of three or more hosts indicates that the same qualitative

behaviors are expected. In particular, stablemultiple host behaviorwithmore than two hostswas observed in simulations of
randomexploration of the parameter space, the key factor formultiple host behavior being, as before, the relative abundance
of hosts.

5. Conclusions

Below we present a summary of the conclusions obtained through the simulations of the model and discussed in detail
in the previous section.
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Table 6
Simulation results for δ = 0.125, λ = 0.5. S—Stationary distribution, AR—simple arms race
regimen, CAR—complex arms race. For example: H1-AR/H2-Smeans that the parasite population
subdivided into two subpopulations, having as primary host H1 and is in an arms race with it;—
host H2 is a secondary host and the parasite subpopulation has a stationary distribution. The
other combinations have analogous interpretation: H2-S/H1-CAR. The ‘‘=’’ sign means that the
parasite subdivides into subpopulations of equal number of individuals.

σ2 = 1

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S=H2-S H2-S H2-S H2-S H2-S
0.4 H1-S H1-S=H2-S H2-S H2-S H2-S
0.6 H1-S H1-S H1-S=H2-S H2-S H2-S
0.8 H1-S H1-S H1-S H1-S=H2-S H2-S
1 H1-S H1-S H1-S H1-S H1-S=H2-S

σ2 = 0.5

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S/H2-S H2-S H2-S H2-S
0.4 H1-S H1-S H1-S H1-S/H2-S H2-S
0.6 H1-S H1-S H1-S H1-S H1-S
0.8 H1-S H1-S H1-S H1-S H1-S
1 H1-S H1-S H1-S H1-S H1-S

σ2 = 0.25

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S H1-S H1-S/H2-S H2-S
0.4 H1-S H1-S H1-S H1-S H1-S
0.6 H1-S H1-S H1-S H1-S H1-S
0.8 H1-S H1-S H1-S H1-S H1-S
1 H1-S H1-S H1-S H1-S H1-S

σ2 = 0.125

γ2

γ1

0.2 0.4 0.6 0.8 1
0.2 H1-S H1-S H1-S H1-S H1-S
0.4 H1-S H1-S H1-S H1-S H1-S
0.6 H1-S H1-S H1-S H1-S H1-S
0.8 H1-S H1-S H1-S H1-S H1-S
1 H1-S H1-S H1-S H1-S H1-S
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Fig. 5. Host transition simulations with parameters δ = 1, λ = 0.5, γ2 = 0.6, σ2 = 0.5. As γ1 increases, the parasite population gradually shifts from
host 2 to multiple host behavior and then finally to host 1. The fraction N1/N is the parasite population exploiting host 1 divided by the total parasite
population.

5.1. Multiple host behavior

Our simulations show thatmultiple host behavior can occur in both transient and stable forms during the evolution of the
system. In transient MHB we should expect superposition of phenotypes while in stable MHB we would expect to observe
distinct phenotypes for the exploited populations, with the parasite population splitting into two subpopulations each
exploiting one host species. These are testable conclusions in long term studies, being necessary to monitor the evolution of
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phenotypes at sites where this behavior was observed. Our simulations also point out that SHB is expected to be the most
common behavior, with the parasite exploiting the most common host species.

Thomas et al. [34] point out four possible scenarios to explain MHB inMaculinea populations. We discuss them below in
light of the mathematical model:

1—Benign environmental conditions: non-host species can raiseMaculinea larvae under favorable conditions. In themodel,
this could be interpreted as a momentary (= temporal) change in the parameter δ (more precisely, it would be a change in
the ε parameter which defines δ), making it possible for the parasite population to exploit the host populations that were
beyond reach under a smaller value of δ. Results presented in Table 4 of this paper indicate that high values of tolerance can
lead to MHB. This transient MHB effect referred to by Thomas is also present in our model but one should not use the same
explanation for MHB if this is too often recorded in different places and environmental conditions.

2—Polymorphic larvae of Maculinea may be adapted to MHB: our simulations results point out that, in stable
MHB, parasite populations would split in subpopulations each adapting to a different host. In our model we are not
investigating the possibility of a speciation event, but it is clear that this divergence of adaptation might lead to the rise of
two distinct species. If we interpret the result as one species with two different phenotypes, we will have the polymorphic
scenario. On the other hand, if we look at the results with the possibility of a speciation event we get the next possible
scenario.

3—Mixed-host populations may occupy habitats in areas that are on biogeographic boundaries like between single-host M.
alcon and M. rebeli areas: in this case we would be looking at two distinct species (their separation in good species is
also questioned by the Tartally et al. [24] each one having a SHB behavior). This scenario is analogous to the population
subdividing into two subpopulations and considering this as a speciation event.

4—Truly generalist Maculinea populations may show phenotypic adaptations to more than one host: in this last scenario we
are considering the case where hosts have very distinct phenotypes and, yet, the parasite is adapted to both. The current
version of themodel does not include this possibility since wewould have to consider a distinct topology in the phase space
(a parasite could have a phenotype x that is both close to z and ywhile z and y themselves are far apart).

Note that transient MHB behavior is also another possible scenario to explain observations of MHB behavior.

5.2. Exploitation of the most abundant hosts

As expected, our simulations indicate that parasite populations should typically adapt to exploit the most common
host species inside the infection area. On the other hand, special combinations of parameters (rates of reproduction and
evolution) can lead to the exploitation of less abundant species. Transient exploitation of less abundant species is also
observed in the simulations with more than two host species, the populations of the two less abundant species can create
a ‘‘common phenotype’’ attracting the parasite population as though both were just one population. Finally, convergence
to a less abundant species was observed in the simulations if the distance in phase space from the parasite population to
the abundant host was too great for the population to reach it. Indirect evidence of these conclusions could be obtained by
checking particular cases where the parasite converged to the less abundant species: if the cause of this convergence was
due to faster evolution of the most abundant species, we would expect to observe a greater variance of phenotypes in the
most abundant species than in the less abundant one. If the cause of the convergence was distance in phase space, distance
in phenotypic space can also be measured, and we could expect the distance from host to non-host to be greater in this case
than in other regular cases (i.e., when the parasite population converged to the most abundant host). Finally, if the case was
the one in which the parasite exploits the two less abundant species instead of exploiting themost abundant one, wewould
expect to see a superposition of the phenotypes of the less abundant species.

5.3. Arms race

The simulations indicate that arms race between host and parasite is expected to occur under the combination of certain
factors. For instance, strong selective pressure and hosts with a higher rate of reproduction or mutation than parasites.
Multiple host simulations indicate that, under certain conditions, the parasite may be in an arms race with one of the hosts
while being in stable stationary state with respect to the other. This kind of dynamics may be suggested as a mechanism for
a speciation event, leading to two distinct parasite species.

5.4. Relations to other models and approaches

The approach we have used to model the evolutionary dynamics of parasite–host interactions and the general model
presented in Section 3.4 is, to the best of our knowledge, a novelty andpresents significant differences fromothermodels that
use EES concepts or classic models from population genetics based on the dynamics of gene frequencies. As both approaches
refer to the same phenomena, connections and certain equivalences between them are expected to occur. For example we
quote [6], whose general results are very similar to our one host simulations:

‘‘[. . . ]. Victim–exploiter coevolution can lead to four qualitatively different dynamic regimes. If the victim is under
strong stabilizing selection, the outcome is similar to the one of a mutualistic interaction. If this is not the case and
if the exploiter can evolve faster than the victim, the system may reach a stable equilibrium where the victim is
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trapped at a fitness minimum and experiences disruptive selection. If, in contrast, the victim can evolve faster than
the exploiter, both species may undergo coevolutionary cycles [. . . ]’’.

It is beyond the scope of this paper to explore the full range of correspondences between the approaches.

5.5. Cautionary remarks

Since the model presented was not designed to fit any specific data it is natural that it should raise some skepticism and
doubt by thosewhowish to understand the dynamics of the real biological system. About this specific pointwewould like to
call the attention to the following point: when trying to draw a general evolutionary explanation for the patterns observed
in the host specificity behavior of the Maculinea–Myrmica system the scientist has access only to few field studies of the
process of evolution, usually from different places. Each field study can be thought of as a ‘‘snapshot’’ of the distributions of
the populations in the phenotypic phase space and offers some information about the process as it is occurring in modern
times in some specific places. From those few studies the scientist may try to create a logic explanation of the patterns
observed, and they usually take the form of a linguistic sequence such as (Jackson [46]):

[. . . ]. Clearly selectionmust favour highly virulent parasites, those whichmore quickly exploit host resources, but this
process might lead to the death of all potential hosts [. . . ].

Of course this is just an example, but in any such evolutionary reasoning we would see that the reasoning is much less
precise than the mathematical model. In the model, at least all the hypotheses are explicit and the parameters explained
while in the linguistic sequence much is left undefined and referred to only in a subjective way. Just to be clear, however, it
is far from our objective to diminish the importance and value of the expert advice in the understanding of the evolutionary
processes or to criticize this particular article/reasoning. Our point is to stress that the model may be a valuable tool for
the theoretical biologist who wishes to try his ideas in a controlled ‘‘environment’’, where all hypotheses are clear even
though the model is not meant to fit any specific quantitative data (also the logical reasoning in not adjustable to fit
quantitative data). We think that a two-dimensional version of themodel, given enough field studies, could be developed to
fit evolutionary data, although we observe that the amount of necessary data could make the project infeasible. From this
point of view, the limitation in data-fitting would come not from themodel, but from the difficulty of gathering enough data
to fit the model.

With this in mind, we observe that the percentage of observed behaviors in the model should not be used to validate or
invalidate the model, because it is dependent on the probability distribution of the parameters in the natural system. For
example, in some simulations, there are host species that reproduce four times faster than others.While thismay be possible
under certain conditions and at specific places this may not be probable. In our sampling of the parameters space we took
a uniform distribution over [1, 10], while the distribution of the parameter in the natural system may not be uniform. The
percentage of observed behaviors do indicate that some will require a special combination of factors to occur, for instance,
stable MHB and convergence to less abundant species. To state clearly, we expect the qualitative results drawn from the
percentages observed in the simulations to be reflected in the real biological system.

Finally we cite Oster and Wilson [47, preface pp. 8–9] to illustrate our view of the model’s main relevance:
‘‘[. . . ]. The most important role models plays in science is to help us to perceive a problem more clearly and to generate

thoughts that might not otherwise have occurred [. . . ]’’.
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