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Fractional Branching Processes

| Can the meaning of derivatives with integer order be

generalised to derivatives with non integer order?

| What if the order will be 1=2?

| It will lead to a paradox. From this apparent paradox, one

day useful consequences will be drawn.

Gottfried Wilhelm Von Leibniz

& Guillaume De l'Hôpital

Around A.D. 1695





Chapter 1

Introduction

Summary

In this �rst chapter, along with the fundamental motivations that lead us to the study of fractional

branching processes, we review some basic classical properties of the point processes treated in

the following parts. We describe the Poisson as well as the nonlinear pure birth and pure death

processes and the linear birth-death process. Furthermore we highlight relations between Poisson

subordination and compound Poisson processes. At the end of the chapter, a brief overview of the

basic concepts of fractional calculus is given. The material presented in this chapter is necessary to

understand the construction of the fractional growth processes described in the succeding chapters.
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1.1 Motivations and basic facts on growth processes

The aim of the present work is to study a novel class of stochastic processes thought to modelling

growth phenomena. The proposed models are constructed on top of some well-known classical

point processes, namely those belonging to the class of birth-death processes, and then modi�ed

by means of fractional calculus.

The structure of this dissertation is as follows. In the �rst chapter, we review some basic notions

about the Poisson, pure birth, pure death, and birth-death processes. A particular construction

of compound Poisson processes by means of the principle of subordination is also derived and

commented in section 1.1.1. The last section of the �rst chapter is devoted to a brief review of

some fundamental properties and notions of fractional calculus.

Following some recent developements in the theory of anomalous di�usion and fractional phe-

nomena in general, in the remaining chapters we construct fractional growth processes, thus

obtaining a substantial generalisation of classical processes. References on fractional processes in

general can be for example Wyss (1986), Schneider and Wyss (1988), Nigmatullin (1986), Za-

slavsky (2002), Zaslavsky (2006). In particular, we develop and analyse in details the fractional

nonlinear pure birth process (Chapter 2), the fractional nonlinear pure death process (Chapter 3)

as well as several speci�c cases. Due to the complexity of the general birth-death case, in Chapter

4, we just treat its linear case, deriving, amongst other properties, and as in the previous chapters,

the explicit form of the state probability distribution. Chapter 5 is devoted to studying the frac-

tional linear pure birth process (named also fractional Yule process) in more details. Therein the

inter-birth waiting time distribution is derived as well as some interesting representations involving

time-changed Poisson processes. Simulations of the fractional Yule process are also performed and

estimators based on the method of moments, de�ned and then tested on simulated data. The last

chapter concerns the study of various generalisations of the proposed models. In particular, In

order to furnish the process with further randomness, we construct subordinated birth processes,

substituting the deterministic time t with random times represented as time-continuous stochastic

processes.

The fractional growth processes herein analysed can be succesfully implemented in modelling

real phenomena such as epidemics, anomalously expanding or contracting populations, branching

in fractals and so forth. Some possible applications are depicted in the chapters' introductions.

1.1.1 Poisson process and related models

Recall that a continuous-time Markov chain is a stochastic process X(t), t > 0, with continuous

time and �nite or countable state space satisfying the Markov property, that is, for a sequence of

instants 0 � t0 < � � � < tn, we have that

Pr fX(tn) = in j X(t0) = i0; : : : ; X(tn�1) = in�1g = Pr fX(tn) = in j X(tn�1) = in�1g : (1.1)

In other words, the future behaviour of the process is determined by the process' state at the last

known time.

The homogeneous Poisson process N(t), t > 0, is a continuous-time Markov chain taking values

in N [ f0g, de�ned by the following properties:

1. Pr fN(0) = 0g = 1;
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2. Pr fN(t; t+ dt] = 1g = �dt+ o(dt), where � > 0;

3. Pr fN(t; t+ dt] = 0g = 1� �dt+ o(dt);

4. Pr fN(t; t+ dt] > 0g = o(dt);

5. If (t1; t2) \ (t3; t4) = ;, with t1 < t2 < t3 < t4, then N(t1; t2) and N(t3; t4) are independent

random variables.

The Poisson process is a model for the counting process associated to the random occurrence of

points events. Indeed, with N(1; t] we indicate the number of events occurred in the time interval

(1; t] � R+. Considering the above properties, it is immediate to note that, in a small time interval

dt, the Poisson process N(t), t > 0, can either remain in the current state, say j, with in�nitesimal

probability 1��dt, or move to the above state, j+1, with probability �dt. Here � > 0 is the rate

of occurrence of events. Transitions are admitted only upwards.

The Poisson process is undoubtedly the simplest and most studied of all time-continuous Markov

chains. Over the years it has been considered as a model for completely di�erent phenomena such

as the arrival of customers at a desk (queueing systems), or to describe other point events: 
oods,

eruptions, damages occurring in machining etc. Despite its simplicity, the Poisson process exhibits

interesting properties. In the following we will review some of them.

Consider the state probabilities for the homogeneous Poisson process, i.e.

pk(t) = PrfN(t) = k j N(0) = 0g; k � 0: (1.2)

The state probabilities pk(t), t > 0, k � 0, satisfy the following di�erence-di�erential equations:

d

dt
pk(t) = ��pk(t) + �pk�1(t); k � 0; (1.3)

subject to the initial condition

pk(0) =

8<:0; k = 0;

1; k > 0;
(1.4)

and considering that p�1(t) = 0.

In order to obtain equations (1.3), we write

pk(t+ dt) = PrfN(t+ dt) = kg (1.5)

= Prf(N(t) = k;N(t; t+ dt) = 0) [ (N(t) = k � 1;N(t; t+ dt) = 1)

[
k[

j=2

(N(t) = k � j;N(t; t+ dt) = j)g

= pk(t)(1� �dt+ o(dt)) + pk�1(t)(�dt+ o(dt)) +

kX
j=2

pk�j(t)o(dt):

By rearranging (1.5) and letting dt! 0, we immediately retrieve formula (1.3).

From equation (1.5), we derive the di�erential equation satis�ed by the probability generating

function

G(u; t) =
1X
k=0

ukPrfN(t) = kg; t > 0; juj � 1; (1.6)
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is 8<: @
@tG(u; t) = �(u� 1) @

@uG(u; t);

G(u; 0) = 1:
(1.7)

In turn, the solution to (1.7) is

G(u; t) = e�t(u�1) =
1X
k=0

uk
e��t(�t)k

k!
: (1.8)

A comparison of (1.8) with (1.6) makes clear that the state probabilities have the following form:

pk(t) = PrfN(t) = k j N(0) = 0g = e��t
(�t)k

k!
; k � 0; t > 0 (1.9)

(Poisson distribution with parameter �t). A peculiar characteristic of the Poisson distribution is

that its mean value equals the variance:

EN(t) = VarN(t) = �t: (1.10)

Many other properties can be derived for the homogeneous Poisson process (for a complete

treatment, the reader can consult e.g. Bailey (1964) or Gikhman and Skorokhod (1996)); here we

just point out the following important fact. Let T1; : : : ; Tk, be the inter-arrival times (elapsed time

between two successive events), that is Tj represents the time between the jth and (j+1)th event.

It can be easily proved that, for every continuous-time Markov chain, the inter-arrival times are

exponentially distributed with speci�c parameters depending on the structure of the chain. For

the homogeneous Poisson process of rate �, we have that PrfTj � tg = 1� e��t.

A possible generalisation of the Poisson process consists of letting the arrival rate � to be

time-varying. The basic properties de�ning the process become:

1. Pr fN(0) = 0g = 1;

2. Pr fN(t; t+ dt] = 1g = �(t)dt+ o(dt), where �(t) > 0, t > 0;

3. Pr fN(t; t+ dt] = 0g = 1� �(t)dt+ o(dt);

4. Pr fN(t; t+ dt] > 0g = o(dt);

5. If (t1; t2) \ (t3; t4) = ;, with t1 < t2 < t3 < t4, then N(t1; t2) and N(t3; t4) are independent

random variables.

The process N(t), t > 0, satisfying the above properties is called non-homogeneous (or inhomo-

geneous) Poisson process, and the state probabilities pk(t) = PrfN(t) = k j N(0) = 0g solve the
Cauchy problem 8>>><>>>:

d
dtpk(t) = ��(t)pk(t) + �(t)pk�1(t);

pk(0) =

8<:1; k = 0;

0; k > 0;

(1.11)

taking into account that p�1(t) = 0. From equation (1.11), we also obtain the partial di�erential

equation satis�ed by the probability generating function G(u; t) =
P1

k=0 pk(t), t > 0, juj � 1:8<: @
@tG(u; t) = �(t)(u� 1)G(u; t); �(t) > 0;

G(u; t) = 1:
(1.12)
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By means of standard methods, we arrive at the solution to (1.12):

G(u; t) = e�(1�u)
R
t
0
�(s)ds (1.13)

= e�
R
t
0
�(s)ds

1X
k=0

uk
(
R t
0
�(s)ds)k

k!
:

Therefore, the probability distribution of the non-homogeneous Poisson process reads

pk(t) = PrfN(t) = k j N(0) = 0g = e�
R
t
0
�(s)ds (

R t
0
�(s)ds)k

k!
; k � 0; t > 0: (1.14)

In the homogeneous or non-homogeneous Poisson process, the jump width is always 1. A

possible generalisation leading to the compound Poisson process consists in letting the jumps to

have arbitrary (random) size.

Definition 1.1.1 (Compound Poisson process). Let N(t), t > 0, be a homogeneous Poisson

process with rate � > 0. Furthermore, let �j, j = 1; 2; : : : be i.i.d. random variables, sharing

the same mean E�j = �, and independent of N(t). The compound Poisson process is de�ned

as

X(t) =

N(t)X
j=1

�j ; t > 0: (1.15)

The behaviour of the compound Poisson process (which is a rather broad generalisation of the

Poisson process) mainly depends on the structure of the i.i.d. random variable, for example if they

are completely positively skewed, the process is increasing. Now, we present the explicit form of

the mean and the moment generating function of the compound Poisson process X(t), t > 0. The

mean value reads

EX(t) =
1X
k=0

EfX(t) j N = kgPrfN(t) = kg (1.16)

=

1X
k=0

k� e��t
(�t)k

k!
= ��te��t

1X
k=0

(�t)k

k!
= ��t;

while the moment generating function is

E exp (uX(t)) = E exp

0@uN(t)X
j=1

�j

1A (1.17)

= PrfN(t) = 0g+
1X
k=0

E

h
eu
Pk

j=1 �j
���N(t) = k

i
PrfN(t) = kg

= e��t +
1X
k=1

�
Eeu�

�k
e��t

(�t)k

k!
= e��t

 
1 +

1X
k=1

[�tEeu�]k

k!

!

= e��t
1X
k=0

[�tEeu�]k

k!
= e�t(E[e

u�]�1):

In the following subsection we present an alternative way of constructing compound Poisson

processes; we give a simple example but the same technique can be exploited to obtain more

general compound processes.
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A compound Poisson process through subordination

Consider two independent homogeneous Poisson processes, say N1(t), t > 0, with rate � > 0, and

N2(t), t > 0, with rate �, t > 0. We are interested in the subordinated process N̂(t) = N1(N2(t)),

t > 0. Subordination technique (Bochner, 1955) permits to introduce in the system further

randomness, thus permitting to model phenomena which exhibit either accelerated or slowed

down behaviour. In particular, the type of subordination implemented in this subsection is a little

di�erent. Poisson processes have at most countable state space so that the inner Poisson process

N2(t), t > 0, in addition to randomize the time, operates a sampling of the external process N1(t),

t > 0. Note that this sampling allows the subordinated process to have jumps of arbitrary positive

discrete size.

The state probabilities p̂k(t) = PrfN1(N2(t)) = kg, k � 0, t > 0, can be determined as follows.

p̂k(t) =

1X
r=0

e��r(�r)k

k!

e��t(�t)r

r!
=

�k

k!
e��t

1X
r=0

e��rrk(�t)r

r!
: (1.18)

By considering that

e�x
1X
r=0

rkxr

r!
= Bk(x); (1.19)

is the nth order Bell polynomial (for a review of Bell polynomials, the reader can consult for

example Boyadzhiev (2009)), we obtain that

p̂k(t) =
�k

k!
e��t(1�e

��)Bk
�
�te��

�
; k � 0; t > 0: (1.20)

By recalling the exponential generating function for Bell polynomials

1X
k=0

zk

k!
Bk(x) = ex(e

z�1); (1.21)

it is immediate to check that
P1

k=0 p̂k(t) = 1. The mean value is directly calculated as follows.

E
�
N1(N2(t))

�
=

1X
k=0

k

1X
r=0

e��r(�r)k

k!

e��t(�t)r

r!
=

1X
r=0

e��t(�t)r

r!
e��r

1X
k=0

k
(�r)k

k!
(1.22)

=

1X
r=0

e��t(�t)r

r!
e��r�r

X
(�r)k

k! = e��t
1X
r=0

�r(�t)r

r!

= e��t��t
1X
r=0

(�t)r

r!
= ��t; t > 0:

In order to determine the variance we �rst calculate the second order moment:

�2 =

1X
k=0

k2
1X
r=0

e��r(�r)k

k!

e��t(�t)r

r!
= e��t

1X
r=0

(�t)r

r!
e��r

1X
k=0

k2
(�r)k

k!
: (1.23)

Considering that

1X
k=0

k2
(�r)k

k!
=

1X
k=1

k
(�r)k

(k � 1)!
=

1X
k=0

(k + 1)
(�r)k+1

k!
(1.24)

=

1X
k=1

k
(�r)k+1

k!
+

1X
k=0

(�r)k+1

k!
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=

1X
k=0

(�r)k+2

k!
+ �re�r

= �re�r(�r + 1);

we have

�2 = e��t
1X
r=0

�r(�r + 1)(�t)r

r!
= e��t�

1X
r=1

(�r + 1)(�t)r

(r � 1)!
(1.25)

= e��t�
1X
r=0

(�r + �+ 1)(�t)r+1

r!
= e��t�

"
(�+ 1)

1X
r=0

(�t)r+1

r!
+ �

1X
r=1

r
(�t)r+1

r!

#

= �(�+ 1)�t+ e��t�2
1X
r=0

(�t)r+2

r!
= �(�+ 1)�t+ (��t)2:

Therefore, the variance of the process reads

Var
�
N1(N2(t))

�
= �(�+ 1)�t; t > 0: (1.26)

The probability generating function Ĝ(u; t) =
P1

k=0 u
kN̂(t) can be found in the following way:

Ĝ(u; t) =
1X
k=0

uk
1X
r=0

e��r(�r)k

k!

e��t(�t)r

r!
= e��t(1�e

��)
X
k=0

uk
�k

k!
B
�
�te��

�
(1.27)

= e��t(1�e
��)e�te

��(eu��1) = e�t(e
�(u�1)�1); t > 0; juj � 1:

A comparison of the probability generating function (1.27) of the process N̂(t), t > 0, with (1.17)

where E[eu�] = e�(e
u�1), makes clear that N̂(t), t > 0, is a compound Poisson process.

1.1.2 Pure birth process

In order to describe, for example, the evolution of a population, a useful model is that of pure

birth. The behaviour of this model depends in practice on the size of the population through its

birth rates �k > 0, k = 1; 2; � � � . In the simplest particular case (so-called Yule{Furry process),

the birth rates are linear, that is �k = k�, � > 0.

Let N (t), t > 0, the number of component in the population at time t. The evolution of the

population is determined by the following properties.

1. PrfN (0) = 1g;

2. PrfN (t; t+ dt] = 1 j N (t) = kg = �kdt+ o(dt);

3. PrfN (t; t+ dt] = 0 j N (t) = kg = 1� �kdt+ o(dt);

4. PrfN (t; t+ dt] > 1 j N (t) = kg = o(dt).

It can be shown that the state probabilities pk(t) = PrfN (t) = k j N (0) = 1g solve the Cauchy
problem 8>>><>>>:

d
dtpk(t) = ��kpk(t) + �k�1pk�1(t);

pk(0) =

8<:1; k = 1;

0; k = 0:

(1.28)
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The solution to (1.28), can be obtained by means of induction. A complete proof for the more

general fractional case can be found in Chapter 2, and this can be adapted to the classical case

setting � = 1. The state probabilities then turn out to be

Pr fN (t) = kg =
8<:
Qk�1

j=1 �j
Pk

m=1
e��mtQ

k
l=1;l 6=m(�l��m)

; k > 1;

e��1t; k = 1:
(1.29)

Remark 1.1.1. The pure birth process can have di�erent behaviour depending on the struc-

ture of the rates �k, k � 1. For example, if
P1

k=1(1=�k) < 1 the process can explode,

that is, an in�nite number of events in a �nite interval of time, can occur. This behaviour

can be intuitively explained by noting that the series converges when the �k's (and thus

the in�nitesimal birth probabilities) are small. For a proof of this result see Grimmett and

Stirzaker (2001), page 252.

In the linear case (the so-called Yule{Furry process, indicated here as N(t), t > 0), originally

introduced by McKendrick (1914), the probability distribution (1.29), becomes much simpler. In

this particular case the rates are �k = k�, k � 1, � > 0. By noticing that

kY
l=1;l 6=m

(�l � �m) = �k�1
�
(1�m)(2�m) : : : (m� 1�m)(m+ 1�m) : : : (k �m)

�
(1.30)

= �k�1(�1)m�1(m� 1)!(k �m)!;

equation (1.29) can be written as

pk(t) = �k�1(k � 1)!

kX
m=1

e�mt

�k�1(m� 1)!(k �m)!
(�1)m�1 (1.31)

=

kX
m=1

e��mt(�1)m�1 (k � 1)!

(m� 1)!(k �m)!
=

k�1X
m=0

e��t(m+1)(�1)m (k � 1)!

m!(k �m� 1)!

= e��t
k�1X
m=0

�
k � 1

m

�
(�1)me��mt = e��t(1� e��t)k�1; k � 1:

The state probabilities (1.31) can be, in a more classical way, directly derived by solving the

governing di�erence-di�erential equations8>>><>>>:
d
dtpk(t) = ��kpk(t) + �(k � 1)pk�1(t);

pk(0) =

8<:1; k = 1;

0; k = 0;

(1.32)

as follows.

Consider the probability generating function G(u; t) =
P1

k=1 u
kpk(t), juj � 1. From (1.32) we

arrive at 8<: @
@tG(u; t) = �u(u� 1) @

@uG(u; t);

G(u; 0) = u:
(1.33)

The solution to (1.33) is G(u; t) = f
�
e��tu=(1� u)

�
. By means of the initial condition and letting

v = u=(1�u), we obtain immediately that f(v) = v=(1�v). In conclusion, we arrive at the explicit



9 Introduction

form of the probability generating function

G(u; t) =
e��t u

1�u
1 + u

1�ue
��t =

ue��t

1� u(1� e��t)
(1.34)

= ue��t
1X
k=0

uk(1� e��t)k =
1X
k=1

uke��t(1� e��t)k�1; (1.35)

and this con�rms result (1.31).

From the above result, it is straightforward to obtain the mean value and the variance, which

are, respectively

EN(t) = e�t; t > 0; (1.36)

VarN(t) = e�t
�
e�t � 1

�
; t > 0: (1.37)

1.1.3 Pure death process

Another stochastic process often used to modelling for example evolving populations and strictly

related to the pure birth process analysed in the preceding section is the pure death process.

Consider n0 initial individuals subject to individual death according to the following rule:

PrfM (t; t+ dt] = 1 j M (t) = kg = �kdt+ o(dt); 0 � k � n0; (1.38)

where M (t), t > 0, is the number of individuals in the population at time t, and �k > 0, 0 � k � n0,

are the death rates. The state probabilities �k(t) = PrfM (t) = k j M (0) = n0g, are thus subject
to the di�erence-di�erential equations8>>><>>>:

d
dt�k(t) = �k+1�k+1(t)� �k�k(t); 0 � k � n0;

�k(0) =

8<:1; k = n0;

0; 0 � k < n0;

(1.39)

and 8<: d
dt�0(t) = �1�1(t);

d
dt�n0(t) = �n0�n0(t):

(1.40)

In this nonlinear case the solution to the Cauchy problem (1.40) reads

�k(t) =

8>>>>>>>>>>><>>>>>>>>>>>:

e��n0 t; k = n0;
n0Q

j=k+1

�j

n0X
m=k

e��mt

n0Q
h=k
h 6=m

(�h � �m)

; 0 < k < n0;

1�
n0X
m=1

n0Y
h=1
h 6=m

�
�h

�h � �m

�
e��mt; k = 0; n0 > 1:

(1.41)

Obviously, for k = 0, n0 = 1,

��0(t) = 1� e��1t: (1.42)
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In the simple linear case, that is when �k = k�, � > 0, 0 � k � n0, the state probabilities

ρk(t) = PrfM(t) = k j M(0) = n0g, where M(t), t > 0 is the linear pure death process, take a

particularly neat form:

ρk(t) =

�
n0
k

�
e�k�t(1� e��t)n0�k; 0 � k � n0: (1.43)

For more results on the pure death process see Chapter 3, where a sublinear death process is

also considered.

1.1.4 Birth-death process

Here, we summarise some basic results related to the linear birth-death process. Consider an

evolving population; the initial number of individuals is �xed at 1 and the components of the

population are subject to both birth and death, as speci�ed by the following ruleset:

1. PrfN(0) = 1g = 1;

2. PrfN(t; t+ dt] = 1 j N(t) = kg = k�dt+ o(dt);

3. PrfN(t; t+ dt] = �1 j N(t) = kg = k�dt+ o(dt);

4. PrfN(t; t+ dt] = 0 j N(t) = kg = 1� k(�+ �)dt+ o(dt);

5. PrfjN(t; t+ dt]j > 1 j N(t) = kg = o(dt),

where �; � > 0 are respectively the birth and death rates, and N(t), t > 0, is the number of

individuals in the population at time t. The reader can immediately notice the linearity of this

model (rates proportional to the population size).

The di�erence-di�erential equations satis�ed by the state probabilities, in this case, read8<: d
dtpk(t) = �(k � 1)pk�1(t)� (�+ �)kpk(t) + �(k + 1)pk+1(t); k � 1

d
dtp0(t) = �p1(t); k = 0:

(1.44)

From equation (1.44) one can directly comes upon the partial di�erential equation governing the

moment generating function, thus obtaining8<: @
@th(s; t) = [� (es � 1) + � (e�s � 1)] @

@sh(s; t);

h(s; 0) = es:
(1.45)

The above di�erential equation can be solved, for example, by recurring to Laplace transforms

as in the preceding sections. We therefore arrive, in the case � 6= �, at the explicit form of the

moment generating function

h(s; t) =

�(es�1)e(���)t
�es�� � 1

�(es�1)e(���)t
�es�� � 1

; (1.46)

and consequently to that of the probability generating function:

G(u; t) =

�(u�1)e(���)t
�u�� � 1

�(u�1)e(���)t
�u�� � 1

; (1.47)



11 Introduction

which, in turn, leads to the state probability distribution of the linear birth-death process:8><>:pk(t) =
h
1� �(e(���)t�1)

�e(���)t��

ih
1� �(e(���)t�1)

�e(���)t��

ih
�(e(���)t�1)
�e(���)t��

ik�1
; k � 1

p0(t) =
h
�(e(���)t�1)
�e(���)t��

i
; k = 0:

(1.48)

When � = �, we obtain that the moment generating function and the probability generating

function, respectively read

h(s; t) =
1� (�t� 1) (es � 1)

1� �t (es � 1)
; (1.49)

G(u; t) =
1� (�t� 1) (u� 1)

1� �t (u� 1)
; (1.50)

thus obtaining the following state probabilities:8<:pk(t) =
(�t)k�1

(1+�t)k+1
; k � 1

p0(t) =
�t

1+�t ; k = 0:
(1.51)

The mean value EN(t), t > 0, from (1.47) and (1.49), can be written as

EN(t) =

8<:e(���)t; � 6= �

1; � = �;
(1.52)

which tells us that, for � 6= �, the mean value can be either increasing or decreasing depending

on the sign of (� � �). Also, in the other case (� = �), the mean value turns out to be constant

and equal to the initial number of progenitors. More insights on the evolution of the process, can

be revealed by analysing the limiting behaviour of the extinction probability p0(t), t > 0. From

(1.48) and (1.51), we obtain that

lim p0(t) =

8<:1; � � �;

�
� ; � > �:

(1.53)

Note that, in the case � = �, although EN(t) = 1, the extinction occurs with probability 1.

For more in-depth information about the linear birth-death process, the reader can consult the

book by Bailey (1964).

1.2 A brief introduction to fractional calculus

Fractional calculus is meant as a direct generalisation of the usual integer-order calculus to arbitrary

order. The whole term \fractional calculus" is actually a misnomer, as it should be correctly

named instead \arbitrary-order calculus". In the following, we present some basic de�nitions and

properties that prove to be useful in de�ning and analysing fractional growth processes.

1.2.1 Fractional integral, derivatives, and their properties

Consider the well-known Cauchy formula for evaluating multiple integrals:

Inf(x) =

Z x

0

dx1

Z x1

0

dx2 : : :

Z xn�1

0

f(xn)dxn (1.54)
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=
1

�(n)

Z x

0

(x� xn)
n�1f(xn)dxn;

where In, n 2 N, is the multiple integral operator, and �(z) is the gamma function, de�ned as

�(z) = lim
n!1

n!nz

z(z + 1) : : : (z + n)
; z 2 C: (1.55)

When z > 0, the following integral expansion also holds.

�(z) =

Z 1

0

yz�1e�ydy; z > 0: (1.56)

For details on gamma function, the reader can consult any good book on special functions, e.g.

Lebedev (1972); here we present just few properties without proofs.

1. If n 2 N, then �(n+ 1) = n! .

2. It has poles in �n, n 2 N [ f0g.

3. �(z + 1) = z�(z).

4. �(z)�(z + 1=2) = 21�2z
p
��(2z).

Formula (1.54) permits us to get rid of the multiple integral and retain just a single convolution-

type integral. Formula (1.54) is also a perfect means to generalising the notion of multiple integral

to that of fractional integral.

Let us consider a slight modi�cation of formula (1.54) in which n is replaced by a new parameter

� 2 C, R(�) 2 R+.

Definition 1.2.1 (Riemann{Liouville fractional integral). For an analytic function f(x), x 2
R+, we have that

0I
�f(x) =

1

�(�)

Z x

0

(x� y)��1f(y)dy: (1.57)

The operator 0I
� is called Riemann{Liouville fractional integral.

In particular, formula (1.57) is the Riemann formula. A more general de�nition is the following:

cI
�f(x) =

1

�(�)

Z x

c

(x� y)��1f(y)dy: (1.58)

When c = �1, we obtain the Liouville formula. Note that the fractional integral can be no longer

interpreted as a repeated integral, exactly as a power with a real exponent cannot be interpreted

as a repeated product.

After having de�ned the fractional integral, it is now necessary to construct a derivative oper-

ator. We have several possibilities and in the following we will describe the two major de�nitions.

For a more in-depth explanation of possible construction of fractional derivatives operators, we

refer to the classical books by Podlubny (1999) or Kilbas et al. (2006).

Definition 1.2.2 (Riemann{Liouville fractional derivative). Let 0 < � < 1, we have that

d�

dx�
f(x) =

d

dx

�
0I

1��f(x)
�
; x 2 R: (1.59)
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By exchanging the order of the derivative and integral operators in (1.59), we arrive at the

second de�nition:

Definition 1.2.3 (Caputo fractional derivative). Let 0 < � < 1, we have that

d�

dx�
f(x) = 0I

1��
�
d

dx
f(x)

�
; x 2 R: (1.60)

For the fractional integral 0I
� , the following two properties hold:

1. Linearity:

0I
1��(af(x) + bg(x)) = a0I

1��f(x) + b0I
1��g(x); a; b arbitrary constants. (1.61)

2. Semigroup property:

0I
�1(0I

�2f(x)) = 0I
�1+�2f(x) = 0I

�2(0I
�1f(x)); �1; �2 2 (0; 1): (1.62)

For the Riemann{Liouville fractional derivative, the linearity property holds as well

d�

dx�
[af(x) + bg(x)] = a

d�

dx�
f(x) + b

d�

dx�
g(x); (1.63)

while the semigroup property does not hold:

d�1

dx�1

�
d�2

dx�2
f(x)

�
6= d�1+�2

dx�1+�2
f(x); �1; �2 2 (0; 1): (1.64)

Another important fact is that, di�erently from the classical case (� = 1),

0I
1��

�
d�

dx�
f(x)

�
6= f(x); (1.65)

but

d�

dx�
�
0I

1��f(x)
�
= f(x): (1.66)

A fundamental tool for our next analyses is the Laplace transform. Therefore, we highlight the

following relations involving Laplace transforms of the two main de�nitions of fractional derivative.

For the Riemann{Liouville fractional derivative we have:Z 1

0

e��x
d�

dx�
f(x)dx = L

�
d�

dx�
f(x)

�
(�) = ��Lff(x)g (�)� d��1

dx��1
f(x)

����
x=0

; (1.67)

while for the Caputo fractional derivative we have:Z 1

0

e��x
d�

dx�
f(x)dx = L

�
d�

dx�
f(x)

�
(�) = ��Lff(x)g (�)� ���1f(x)

��
x=0

: (1.68)





Chapter 2

Fractional Pure Birth Processes

Summary

In this chapter we consider a fractional version of the classical nonlinear birth process of which the

Yule{Furry model is a particular case. Fractionality is obtained by replacing the �rst-order time

derivative in the di�erence-di�erential equations which govern the probability law of the process,

with the Dzhrbashyan{Caputo fractional derivative. We derive the probability distribution of the

number N � (t) of individuals at an arbitrary time t. We also present an interesting representation

for the number of individuals at time t, in the form of the subordination relationship N � (t) =

N (T2� (t)), where N (t) is the classical generalised birth process and T2� (t) is a random time whose

distribution is related to the fractional di�usion equation. The fractional linear birth process is

examined in detail in section 2.2 and various forms of its distribution are given and discussed.
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2.1 Introduction

We consider a birth process and denote by N (t), t > 0 the number of components in a stochastically

developing population at time t. Possible examples are the number of particles produced in a

radioactive disintegration and the number of particles in a cosmic ray shower where death is not

permitted. The probabilities pk (t) = Pr fN (t) = kg satisfy the di�erence-di�erential equations

dpk
dt

= ��kpk + �k�1pk�1; k � 1; (2.1)

where at time t = 0

pk (0) =

(
1; k = 1;

0; k � 2:
(2.2)

This means that we have initially one progenitor igniting the branching process. For information

on this process consult Gikhman and Skorokhod (1996) page 322.

We here examine a fractional version of the birth process where the probabilities are governed

by
d�pk
dt�

= ��kpk + �k�1pk�1; k � 1; (2.3)

and where the fractional derivative is understood in the Dzhrbashyan{Caputo sense, that is as

d�pk
dt�

=
1

� (1� �)

Z t

0

d
dspk (s)
(t� s)

� ds; for 0 < � < 1; (2.4)

(see Podlubny (1999)). The use of Dzhrbashyan{Caputo derivative is preferred because in this

case initial conditions can be expressed in terms of integer-order derivatives.

Extensions of continuous-time point processes like the homogeneous Poisson process to the

fractional case have been considered in Jumarie (2001), Cahoy (2007), Laskin (2003), Wang and

Wen (2003), Wang et al. (2006), Wang et al. (2007), Uchaikin and Sibatov (2008), Repin and

Saichev (2000) and Beghin and Orsingher (2009b). A recently published paper (Uchaikin et al.

(2008)) considers a fractional version of the Yule{Furry process where the mean value EN� (t) is

analysed.

By solving recursively the equation (2.3) (we write pk (t), t > 0 in equations (2.3) and p�k (t) for
the solutions) we obtain that

p�k (t) = Pr fN� (t) = kg =

8>>>><>>>>:
k�1Q
j=1

�j

kX
m=1

(
1

kQ
l=1
l6=m

(�l � �m)

E�;1 (��mt�)
)
; k > 1;

E�;1 (��1t�) ; k = 1:

(2.5)

Result (2.5) generalises the classical distribution of the birth process (see Gikhman and Skorokhod

(1996) page 322, or Bartlett (1978), page 59) where instead of the exponentials we have the

Mittag{Le�er functions de�ned as

E�;1 (x) =

1X
h=0

xh

� (�h+ 1)
; x 2 R; � > 0: (2.6)

The fractional pure birth process has some speci�c features entailed by the fractional derivative

appearing in (2.4) which is a non-local operator. The process governed by fractional equations (and
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therefore the related probabilities p�k (t) = Pr fN � (t) = kg ; k � 1) displays a slowly decreasing

memory which seems a characteristic feature of all real systems (for example the hereditariety and

the related aspects observed in phenomena such as the fatigue of metals, magnetic hysteresis and

others). Fractional equations of various types have proved to be useful in representing di�erent

phenomena in optics (light propagation through random media), transport of charge carriers and

also in economics (a survey of applications can be found in Podlubny (1999)). We show below

that for the linear birth process N� (t) ; t > 0 the mean values EN� (t), VarN� (t) are increasing

functions as the order of fractionality � decreases. This shows that the fractional birth process

is capable of representing explosively developing epidemics, accelerated cosmic showers and in

general very rapidly expanding populations. This is a feature which the fractional pure birth

process shares with its Poisson fractional counterpart whose practical applications are studied in

recent works (see for example Laskin (2003) and Cahoy (2007)).

We are able to show that the fractional birth process N� (t) can be represented as

N� (t) = N (T2� (t)) ; t > 0; 0 < � � 1; (2.7)

where T2� (t), t > 0 is the random time process whose distribution at time t is obtained from the

fundamental solution to the fractional di�usion equation (the fractional derivative is de�ned in

(2.4))
@2�u

@t2�
=

@2u

@s2
; 0 < � � 1; (2.8)

subject to the initial conditions u (s; 0) = � (s) for 0 < � � 1 and also ut (s; 0) = 0 for 1=2 < � � 1,

as

Pr fT2� (t) 2 dsg =
(

2u2� (s; t) ds for s > 0;

0 for s < 0:
(2.9)

This means that the fractional birth process is a classical birth process with a random time

T2� (t) which is the sole component of (2.7) a�ected by the fractional derivative. In equation (2.8)

and throughout the whole chapter the fractional derivative must be understood in Dzhrbashyan{

Caputo sense (2.3). The representation (2.7) leads to

Pr fN� (t) = kg =
Z 1

0

Pr fN (s) = kgPr fT2� (t) 2 dsg ; (2.10)

where

Pr fN (s) = kg =

8>>>><>>>>:
k�1Q
j=1

�j

kX
m=1

e��ms

kQ
l=1
l 6=m

(�l � �m)

; k > 1, s > 0;

e��1s; k = 1; s > 0:

(2.11)

Formula (2.10) shows that
P

k Pr fN� (t) = kg = 1 i�
P

k Pr fN (t) = kg = 1. It is well-known

that the process N (t), t > 0 is such that Pr (N (t) <1) = 1 for all t > 0 (non-exploding) ifP
k �

�1
k =1 (consult Feller (1968), page 452).

A special case of the above fractional birth process is the fractional linear birth process where

�k = �k. The distribution (2.5) reduces in this case to the simple form

p�k (t) =

kX
j=1

�
k � 1

j � 1

�
(�1)j�1E�;1 (��jt�) ; k � 1, t > 0: (2.12)

For � = 1, we retrieve from (2.12) the classical geometric structure of the linear birth process with

a single progenitor, that is

p1k (t) =
�
1� e��t

�k�1
e��t; k � 1, t > 0: (2.13)
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An interesting qualitative feature of the fractional linear birth process can be extracted from (2.12);

it permits us to highlight the dependence of the branching speed on the order of fractionality �.

We show in section 2.3 that

Pr fN� (dt) = n0 + 1 jN� (0) = n0g � �n0 (dt)
�

� (� + 1)
; (2.14)

and this proves that a decrease in the order of fractionality � speeds up the reproduction of

individuals. We are not able to generalise (2.14) to the case

Pr fN� (t+ dt) = n0 + 1 jN� (t) = n0g ; (2.15)

because the process we are investigating is not time-homogeneous. For the fractional linear birth

process the representation (2.7) reduces to the form

N� (t) = N (T2� (t)) ; t > 0; 0 < � � 1; (2.16)

and has an interesting special structure when � = 1=2n. For example for n = 2 the random time

appearing in (2.16) becomes a folded iterated Brownian motion. This means that

N
1
4 (t) = N (jB1 (jB2 (t)j)j) : (2.17)

Clearly jB2 (t)j is a re
ecting Brownian motion starting from zero and jB1 (jB2 (t)j)j is a re
ecting
iterated Brownian motion. This permits us to write the distribution of (2.17) in the following form

Pr
n
N

1
4 (t) = k jN 1

4 (0) = 1
o

(2.18)

=

Z 1

0

�
1� e��s

�k�1
e��s

(
22
Z 1

0

e�
s2

4!p
2�2!

e�
!2

4tp
2�2t

d!

)
ds:

The case � = 1=2n involves the (n� 1)-times iterated Brownian motion

In�1 (t) = B1 (jB2 (� � � jBn (t)j � � � ) j) ; (2.19)

with distribution

Pr fjB1 (jB2 (� � � jBn (t)j � � � ) )j 2 dsg (2.20)

= ds 2n
Z 1

0

e�
s2

4!1p
4�!1

d!1

Z 1

0

e�
!2
1

4!2p
4�!2

d!2 � � �
Z 1

0

e�
!2
n�1
4tp
4�t

d!n�1:

For details on this point see Orsingher and Beghin (2009).

2.2 The distribution function for the generalised fractional

birth process

We present now the explicit distribution

Pr fN� (t) jN (0) = 1g = p�k (t) ; t > 0; k � 1; 0 < � � 1 (2.21)

of the number of individuals in the population expanding according to (2.3). Our technique is

based on successive applications of the Laplace transform. Our �rst result is the next theorem

below.
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Theorem 2.2.1. The solution to the fractional equations8>><>>:
d�pk
dt�

= ��kpk + �k�1pk�1 k � 1; 0 < � � 1;

pk (0) =

(
1 k = 1;

0 k � 2;

(2.22)

is given by

p�k (t) = Pr fN� (t) = kg =

8>>>><>>>>:
k�1Q
j=1

�j

kX
m=1

(
1

kQ
l=1
l 6=m

(�l � �m)

E�;1 (��mt�)
)
; k > 1;

E�;1 (��1t�) ; k = 1:

(2.23)

Proof. We prove result (2.23) by a recursive procedure.

For k = 1, the equation
d�p1
dt�

= ��1p1; p1 (0) = 1; (2.24)

is immediately solved by

p�1 (t) = E�;1 (��1t�) : (2.25)

For k = 2 equation (2.3) becomes8<:
d�p2
dt�

= ��2p2 + �1E�;1 (��1t�) ;
p2 (0) = 0:

(2.26)

In view of the fact that Z 1

0

e��tE�;1 (��1t�) dt = ���1

�� + �1
; (2.27)

the Laplace transform of (2.26) yields

L2 (�) =
�1�

��1

�2 � �1

�
1

�� + �1
� 1

�� + �2

�
: (2.28)

In light of (2.27), from (2.28) we can extract the probability p�2 (t)

p�2 (t) = [E�;1 (��1t�)� E�;1 (��2t�)] �1
�2 � �1

: (2.29)

Now the Laplace transform of

d�p3
dt�

= ��3p3 +
�2�1

�2 � �1
[E�;1 (��1t�)� E�;1 (��2t�)] (2.30)

yields, after some computations

L3 (�) = �2�1�
��1

�
1

(�2 � �1) (�3 � �1)

1

�� + �1
(2.31)

+
1

(�1 � �2) (�3 � �2)

1

�� + �2
+

1

(�1 � �3) (�2 � �3)

1

�� + �3

�
:

From this result it is clear that

p�3 (t) = �2�1

�
1

(�2 � �1) (�3 � �1)
E�;1 (��1t�) (2.32)
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+
1

(�1 � �2) (�3 � �2)
E�;1 (��2t�) + 1

(�1 � �3) (�2 � �3)
E�;1 (��3t�)

�
:

The procedure for k > 3 becomes more complicated. However the special case k = 4 is instructive

and we treat it �rst.

The Laplace transform of the equation

d�p4
dt�

= � �4p4 + �1�2�3

�
1

(�2 � �1) (�3 � �1)
E�;1 (��1t�) (2.33)

+
1

(�1 � �2) (�3 � �2)
E�;1 (��2t�) + 1

(�1 � �3) (�2 � �3)
E�;1 (��2t�)

�
;

subject to the initial condition p4 (0) = 0 becomes

L4 (�) = �1�2�3�
��1

�
1

(�2 � �1) (�3 � �1) (�4 � �1)

�
1

�� + �1
� 1

�� + �4

�
(2.34)

+
1

(�1 � �2) (�3 � �2) (�4 � �2)

�
1

�� + �2
� 1

�� + �4

�
+

1

(�1 � �3) (�2 � �3) (�4 � �3)

�
1

�� + �3
� 1

�� + �4

��
:

The critical point of the proof is to show that

� [(�3 � �2) (�4 � �2) (�4 � �3)� (�3 � �1) (�4 � �1) (�4 � �3) (2.35)

+ (�2 � �1) (�4 � �1) (�4 � �2)] = [(�2 � �1) (�3 � �1) (�4 � �1) (�3 � �2)

� (�4 � �2) (�4 � �3)]

=
1

(�1 � �4) (�2 � �4) (�3 � �4)
:

We note that

0 = det

0BBB@
1 1 1 1

1 1 1 1

�1 �2 �3 �4

�21 �22 �23 �24

1CCCA = det

0B@ 1 1 1

�2 �3 �4

�22 �23 �24

1CA (2.36)

� det

0B@ 1 1 1

�1 �3 �4

�21 �23 �24

1CA+ det

0B@ 1 1 1

�1 �2 �4

�21 �22 �24

1CA� det

0B@ 1 1 1

�1 �2 �3

�21 �22 �23

1CA
= (�3 � �2) (�4 � �2) (�4 � �3)� (�3 � �1) (�4 � �1) (�4 � �3)

+ (�2 � �1) (�4 � �1) (�4 � �2)� (�2 � �1) (�3 � �1) (�3 � �2) ;

where in the last step the Vandermonde formula is applied.

By inserting (2.36) into (2.34) we now have that

L4 (�) = �1�2�3�
��1

�
1

(�2 � �1) (�3 � �1) (�4 � �1)

1

�� + �1
(2.37)

+
1

(�1 � �2) (�3 � �2) (�4 � �2)

1

�� + �2

+
1

(�1 � �3) (�2 � �3) (�4 � �3)

1

�� + �3

+
1

(�1 � �4) (�2 � �4) (�3 � �4)

1

�� + �4

�
;
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so that by inverting (2.37) we extract the following result

p�4 (t) =
3Q

j=1

�j

(
4X

m=1

1
4Q
l=1
l 6=m

(�l � �m)

E�;1 (��mt�)
)
: (2.38)

We now tackle the problem of showing that (2.23) solves the Cauchy problem (2.22) for all k > 1,

by induction. This means that we must solve8>>>><>>>>:
d�pk
dt�

= ��kpk +
k�1Q
j=1

�j

(
k�1X
m=1

1
k�1Q
l=1
l 6=m

(�l � �m)

E�;1 (��mt�)
)
;

pk (0) = 0;

k > 4 : (2.39)

The Laplace transform of (2.39) reads

Lk (�) =
k�1Q
j=1

�j

"
k�1X
m=1

���1

kQ
l=1
l6=m

(�l � �m)

1

�� + �m
� ���1

�� + �k

k�1X
m=1

1
kQ
l=1
l6=m

(�l � �m)

#
: (2.40)

We must now prove that

�
k�1X
m=1

1
kQ
l=1
l 6=m

(�l � �m)

=
1

kQ
l=1
l6=k

(�l � �k)

; (2.41)

and this relationship is important also for the proof of (2.11).

In order to prove (2.41) we rewrite the left-hand side as

�
k�1X
m=1

k�1Q
h=1

kQ
l>h

(�l � �h)

kQ
l=1
l 6=m

(�l � �m)

� 1
k�1Q
h=1

kQ
l>i

(�l � �h)

; (2.42)

and concentrate our attention on the numerator of (2.42). In analogy with the calculations in

(2.36) we have that

0 = det

0BBBBBB@
1 1 � � � 1 � � � 1

1 1 � � � 1 � � � 1

�1 �2 � � � �m � � � �k

� � � � � � � � � � � � � � � � � �
�k�21 �k�22 � � � �k�2m � � � �k�2k

1CCCCCCA (2.43)

=

kX
m=1

(�1)m�1 det

0B@ 1 � � � 1 1 � � � 1

�1 � � � �m�1 �m+1 � � � �k

�k�21 � � � �k�2m�1 �k�2m+1 � � � �k�2k

1CA

=

kX
m=1

k�1Q
h=1

kQ
l>h

(�l � �h)

kQ
l=1
l 6=m

(�l � �m)

=

k�1X
m=1

k�1Q
h=1

kQ
l>h

(�l � �h)

kQ
l=1
l 6=m

(�l � �m)

+

k�1Q
h=1

kQ
l>h

(�l � �h)

kQ
l=1
l6=k

(�l � �k)

:
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In the third step of (2.43) we applied the Vandermonde formula and considered that the n-th

column is missing. It must also be taken into account that

kQ
l>1

(�l � �1)

(�m � �1)
�

kQ
l>2

(�l � �2)

(�m � �2)
� � �

kQ
l>m�1

(�l � �m�1)

(�m � �m�1)
(2.44)

�

kQ
l>m

(�l � �m)

kQ
l>m

(�l � �m)

�
kQ

l>m+1

(�l � �m+1) � � �
kQ

l>k�1
(�l � �k�1) =

k�1Q
h=1

kQ
l>h

(�l � �h)

(�1)m�1

kQ
l=1
l 6=m

(�l � �m)

:

From (2.42) and (2.43) we have that

�
k�1X
m=1

1
kQ
l=1
l6=m

(�l � �m)

= �
k�1X
m=1

k�1Q
h=1

kQ
l>h

(�l � �h)

kQ
l=1
l6=m

(�l � �m)

� 1
k�1Q
i=1

kQ
l>i

(�l � �i)

=
1

kQ
l=1
l 6=k

(�l � �k)

: (2.45)

In view of (2.45) we can write that

Lk (�) =
k�1Q
j=1

�j

kX
m=1

���1

kQ
l=1
l6=m

(�l � �m)

� 1

�� + �m
; (2.46)

because the k-th term of (2.46) coincides with the last term of (2.40) and therefore by inversion

of the Laplace transform we get (2.23).

Remark 2.2.1. We now prove that for the generalised fractional birth process the represen-

tation

N � (t) = N (T2� (t)) ; t > 0; 0 < � � 1; (2.47)

holds. This means that the process under investigation can be viewed as a generalised birth

process at a random time T2� (t), t > 0, whose distribution is the folded solution to the

fractional di�usion equation (2.8).Z 1

0

e��tG� (u; t) dt (2.48)

by (2.23)
=

Z 1

0

( 1X
k=2

uk
k�1Y
j=1

�j

kX
m=1

E�;1 (��mt�)
kQ

j 6=m
(�j � �m)

+ uE�;1 (��1t�)
)
e��tdt

=

1X
k=2

uk
k�1Y
j=1

�j

kX
m=1

���1

�� + �m

1
kQ

j 6=m
(�j � �m)

+
u���1

�� + �1

=

Z 1

0

( 1X
k=2

uk
k�1Y
j=1

�j

kX
m=1

���1

kQ
j 6=m

(�j � �m)

e�s(�
�+�m) + ue�s(�

�+�1)

)
ds

=

Z 1

0

G (u; s)���1e�s��ds =
Z 1

0

G (u; s)
Z 1

0

e��tfT2� (s; t) dt ds

=

Z 1

0

e��t
�Z 1

0

G (u; s) fT2� (s; t) ds
�
dt;
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where Z 1

0

e��tfT2� (s; t) dt = ���1e�s�
�

; s > 0; (2.49)

is the Laplace transform of the folded solution to (2.8). From (2.48) we infer that

G� (u; t) =
Z 1

0

G (u; s) fT2� (s; t) ds; (2.50)

and from this the representation (2.47) follows.

Remark 2.2.2. The relationship (2.47) permits us to conclude that the functions (2.23) are

non-negative because

Pr fN � (t) = kg =
Z 1

0

Pr fN (s) = kgPr fT2� (t) 2 dsg ; (2.51)

and Pr fN (s) = kg > 0 and
P

k Pr fN (s) = kg = 1 as shown, for example in Feller (1968),

page 452. Furthermore the fractional birth process is non-exploding if and only if
P

k (1=�k) =

1, for all values of 0 < � � 1.

2.3 The fractional linear birth process

In this section we examine in detail a special case of the previous fractional birth process, namely

the fractional linear birth process which generalises the classical Yule{Furry model. The birth

rates in this case have the form

�k = �k; � > 0, k � 1; (2.52)

and indicate that new births occur with a probability proportional to the size of the population.

We denote by N� (t) the number of individuals in the population expanding according to the rates

(2.52) and we have that the probabilities

p�k (t) = Pr
�
N� (t) = k

��N� (0) = 1
	
; k � 1; (2.53)

satisfy the di�erence-di�erential equations8>><>>:
d�pk
dt�

= ��kpk + � (k � 1) pk�1; 0 < � � 1, k � 1;

pk (0) =

(
1 k = 1;

0 k � 2:

(2.54)

The distribution (2.53) can be obtained as a particular case of (2.23) or directly by means of a

completely di�erent approach, as follows.

Theorem 2.3.1. The distribution of the fractional linear birth process with a simple initial

progenitor reads

p�k (t) = Pr fN� (t) = k jN� (0) = 1g (2.55)

=

kX
j=1

�
k � 1

j � 1

�
(�1)j�1E�;1 (��jt�) ; k � 1; 0 < � � 1;

where E�;1 (x) is the Mittag{Le�er function (2.6).
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Proof. We can prove result (2.55) by solving equation (2.54) recursively. This means that p�k�1 (t)
has the form (2.55) so p�k (t) mantains the same structure. This is tantamount to solving the

Cauchy problem8>><>>:
d�pk (t)

dt�
= ��kpk (t) + � (k � 1)

k�1X
j=1

�
k � 2

j � 1

�
(�1)j�1E�;1 (��jt�) ;

pk (0) = 0; k > 1:

(2.56)

By applying the Laplace transform Lk;� (�) =
R1
0

e��tpk (t) dt to (2.56) we have that

Lk;� (�) = � (k � 1)

8<:
k�1X
j=1

�
k � 2

j � 1

�
(�1)j�1 �k�1

�� + �j

9=; 1

�� + �k
: (2.57)

The Laplace transform (2.57) can conveniently be written as

Lk;� (�) = ���1
��

1

�� + �
� 1

�� + �k

�
� (k � 1)

�
1

�� + 2�
� 1

�� + �k

�
(2.58)

+
(k � 1) (k � 2)

2

�
1

�� + 3�
� 1

�� + k�

�
+ � � �

+(k � 1) (�1)k�2
�

1

�� + (k � 1)�
� 1

�� + �k

��
= ���1

k�1X
j=1

�
k � 1

j � 1

�
(�1)j�1 1

�� + j�
� ���1

�� + �k

k�1X
j=1

�
k � 1

j � 1

�
(�1)j�1 :

This permits us to conclude that

Lk;� (�) = ���1
kX

j=1

�
k � 1

j � 1

�
(�1)j�1 1

�� + j�
: (2.59)

By inverting (2.59) we arrive immediately at result (2.55).

For � = 1 (2.59) can be written asZ 1

0

e��tp1k (t) dt =
Z 1

0

e��te��t
k�1X
j=0

�
k � 1

j

�
(�1)j e��jtdt (2.60)

=

Z 1

0

e��t
n
e��t

�
1� e��t

�k�1o
dt;

and this is an alternative derivation of the Yule{Furry linear birth process distribution.

Remark 2.3.1. An alternative form of the distribution (2.55) can be derived by writing ex-

plicitly the Mittag{Le�er function and manipulating conveniently the double sums obtained.

We have therefore

p�k (t) =

k�1X
m=0

(��t�)m
� (�m+ 1)

k�1X
j=0

�
k � 1

j

�
(�1)j (j + 1)

m
(2.61)

+

1X
m=k

(��t�)m
� (�m+ 1)

k�1X
j=0

�
k � 1

j

�
(�1)j (j + 1)

m

=
(�t�)

k�1
(k � 1)!

� (� (k � 1) + 1)
+

1X
m=k

(��t�)m
� (�m+ 1)

k�1X
j=0

�
k � 1

j

�
(�1)j (j + 1)

m
:
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The last step of (2.61) is justi�ed by the following formulae (0:154(6) and 0:154(5) Gradshteyn

and Ryzhik (1980), page 4:)

NX
k=0

(�1)k
�
N

k

�
(�+ k)

n�1
= 0; valid for N � n � 1; (2.62)

nX
k=0

(�1)k
�
n

k

�
(�+ k)

n
= (�1)n n! : (2.63)

What is remarkable about (2.63) is that the result is independent of �. This can be ascer-

tained as follows

S�n =

nX
k=0

(�1)k
�
n

k

� nX
r=0

�
n

r

�
�rkn�r =

nX
r=0

�
n

r

�
�r

nX
k=0

(�1)k
�
n

k

�
kn�r+1�1: (2.64)

By formula 0.154(3) of Gradshteyn and Ryzhik (1980), page 4, the inner sum in (2.64)

equals zero for 1 � n � r + 1 � n, that is for 1 � r � n. Therefore (see Gradshteyn and

Ryzhik (1980) formula 0.154(4), page 4)

S�n =

�
n

0

�
�0

nX
k=0

(�1)k
�
n

k

�
kn = (�1)n n! : (2.65)

We now provide a direct proof that the distribution (2.55) sums to unity. This is based on

combinatorial arguments and will subsequently be validated by resorting to the representation of

N� (t) as a composition of the Yule{Furry model with the random time T2� (t).

Theorem 2.3.2. The distribution (2.55) is such that

1X
k=1

p�k (t) =

1X
k=1

kX
j=1

�
k � 1

j � 1

�
(�1)j�1E�;1 (��jt�) = 1: (2.66)

Proof. We start by evaluating the Laplace transform L� (�) of (2.66) as follows

L� (�) =

1X
k=1

kX
j=1

�
k � 1

j � 1

�
(�1)j�1 ���1

�� + �j
=

���1

�

1X
k=1

k�1X
j=0

�
k � 1

j

�
(�1)j 1

��

� + 1 + j
: (2.67)

A crucial role is here played by the well-known formula (see Kirschenhofer (1996))

NX
k=0

�
N

k

�
(�1)k 1

x+ k
=

N !

x (x+ 1) � � � (x+N)
: (2.68)

Therefore

L� (�) =
���1

�

1X
k=1

(k � 1)!�
��

� + 1
� �

��

� + 2
� � � � ���� + k

� = ���1

�

1X
l=0

� (l+ 1)�
�
��

� + 1
�

�
�
��

� + 1 + (l+ 1)
�

=
���1

�

1X
l=0

B

�
l+ 1;

��

�
+ 1

�
=

���1

�

Z 1

0

1X
l=0

xl (1� x)
��

� dx (2.69)

=
���1

�

Z 1

0

(1� x)
��

� �1 dx =

Z 1

0

e��tdt;

where B (h; q) =
R 1
0
xh�1 (1� x)

q�1
dx, for h; q > 0. This concludes the proof of (2.66).



2.3 The fractional linear birth process 26

The presence of alternating sums in (2.55) imposes the check that p�k (t) � 0 for all k. This is

the task of the next remark.

Remark 2.3.2. In order to check the non-negativity of (2.55) we exploit the results of the

proof of theorem 2.3.2, suitably adapted. The expression

1X
k=1

Z 1

0

e��tp�k (t) dt =
���1

�

1X
k=1

B

�
k;
��

�
+ 1

�
; (2.70)

which emerges from (2.69), permits us to write thatZ 1

0

e��tp�k (t) dt =
Z 1

0

xk�1
���1

�
(1� x)

��

� dx =

Z 1

0

xk�1
���1

�
e
��

� ln(1�x)dx (2.71)

=

Z 1

0

xk�1
���1

�
e
���

�

1P
r=1

xr

r
dx =

Z 1

0

xk�1
���1

�
e�

��x
�

1Q
r=2

e�
��xr

�r dx:

The terms

e�
��xr

�r = Ee��Xr =

Z 1

0

e��tqr� (x; t) dt; (2.72)

are the Laplace transforms of stable r.v's Xr = S (�r; 1; 0) where �r =
�
xr

�r cos
��
2

� 1
�

(for details

on this point see Samorodnitsky and Taqqu (1994), page 15). The term ���1

2� exp(��� jxj
� ); is

the Laplace transform of the solution of the fractional di�usion equation(
@2�u
@t2� = �2 @

2u
@x2 ; 0 < � � 1;

u (x; 0) = � (x) ;
(2.73)

with the additional condition ut (x; 0) = 0 for 1=2 < � � 1, and can be written as

u2� (x; t) =
1

2�� (1� �)

Z t

0

p� (x; s)

(t� s)
� ds (2.74)

(see formula (3.5) Orsingher and Beghin (2004)), where p� (x; 1) = q1� (x; 1) is the stable law

with �1 =
�
x
� cos

��
2

� 1
� : We can represent the product

���1

�
e�

x��

�

1Y
r=2

e�
��xr

�r =

Z 1

0

e��t
�Z t

0

u2� (x; s) q� (x; t� s) ds

�
dt; (2.75)

where Z 1

0

e��tq� (x; t) dt =
1Y
r=2

e�
��xr

�r : (2.76)

Thus q� (x; t) appears as an in�nite convolution of stable laws whose parameters depend on

r and x. In light of (2.75) we have therefore thatZ 1

0

e��tp�k (t) dt = 2

Z 1

0

e��t
Z 1

0

xk�1
Z t

0

u2� (x; s) q� (x; t� s) ds dx dt: (2.77)

Since p�k (t) appears as the result of the integral of probability densities, we can conclude that

p�k (t) � 0 for all k � 1 and t > 0.

We provide an alternative proof of the non-negativity of p�k (t), t > 0, and of
P

k p
�
k (t) = 1

based on the representation of the fractional linear birth process N� (t) as

N� (t) = N (T2� (t)) ; 0 < � � 1; (2.78)
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where T2� (t) possesses distribution coinciding with the folded solution of the fractional di�usion

equation 8<:
@2�u

@t2�
=

@2u

@x2
; 0 < � � 1;

u (x; 0) = � (x) ;
(2.79)

with the further condition ut (x; 0) = 0 for 1=2 < � � 1.

Theorem 2.3.3. The probability generating function G� (u; t) = EuN
�(t) of N� (t), t > 0 has

the following Laplace transformZ 1

0

e��tG� (u; t) dt =

Z 1

0

ue��t

1� u (1� e��t)
���1e��

�tdt: (2.80)

Proof. We evaluate the Laplace transform (2.80) as followsZ 1

0

e��tG� (u; t) dt (2.81)

=

Z 1

0

e��t
1X
k=1

uk
kX

j=1

�
k � 1

j � 1

�
(�1)j�1E�;1 (��jt�) dt

=

1X
k=1

uk
kX

j=1

�
k � 1

j � 1

�
(�1)j�1 ���1

�� + �j

=
���1

�

1X
k=1

uk
k�1X
j=0

�
k � 1

j

�
(�1)j 1

��

� + 1 + j

(by (2.68))
=

���1

�

1X
k=1

uk
(k � 1)!�

��

� + 1
� �

��

� + 2
� � � � ���� + k

�
=

u���1

�

1X
l=0

ul
l!�

��

� + 1
� � � � ���� + 1 + l

�
=

u���1

�

1X
l=0

ulB

�
l+ 1;

��

�
+ 1

�

=
u���1

�

Z 1

0

1X
l=0

ulxl (1� x)
��

� dx; for 0 < ux < 1

=
u���1

�

Z 1

0

(1� x)
��

�

(1� ux)
dx

(1�x=e��t)
=

Z 1

0

ue��t

1� u (1� e��t)
e�t�

�

���1dt:

Remark 2.3.3. In order to extract from (2.80) the representation (2.78) we note thatZ 1

0

e��t
( 1X
k=0

ukPr fN (T2� (t)) = kg
)
dt (2.82)

=

Z 1

0

e��t
(Z 1

0

1X
k=0

ukPr fN (s) = kg fT2� (s; t) ds
)
dt

=

Z 1

0

G (u; s)���1e��
�sds;
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which coincides with (2.80). It can be shown thatZ 1

0

e��tfT2� (s; t) dt = ���1e�s�
�

; s > 0; (2.83)

is the Laplace transform of the folded solution to

@2�u

@t2�
=

@2u

@s2
; 0 < � � 1; (2.84)

with the initial condition u (s; 0) = � (s) for 0 < � � 1 and also ut (s; 0) = 0 for 1=2 < � � 1.

In force of (2.78) the non-negativity of p�k (t) is immediate because

Pr fN� (t) = kg =
Z 1

0

Pr fN (s) = kgPr fT2� (t) 2 dsg : (2.85)

The relation (2.85) leads to the conclusion that
P1

k=1Pr fN� (t) = kg = 1:

Some explicit expressions for (2.85) can be given when the Pr fT2� (t) 2 dsg can be worked out

in detail.

We know that for � = 1=2n we have that

Pr
n
T 1

2n�1
(t) 2 ds

o
= Pr fjB1 (jB2 (� � � jBn (t)j � � � )j ) 2 dsg (2.86)

= ds 2n
Z 1

0

e�
s2

4!1p
4�!1

d!1

Z 1

0

e�
!2
1

4!2p
4�!2

d!2 � � �
Z 1

0

e�
!2
n�1
4tp
4�t

d!n�1:

For details about (2.86) see theorem 2:2 of Orsingher and Beghin (2009), where the di�erences of

the constants depend on the fact that the di�usion coe�cient in equation (2.84) equals 1 instead

of 2(1=2
n)�2. The distribution (2.86) represents the density of the folded (n� 1)-times iterated

Brownian motion and therefore B1; � � � ;Bn are independent Brownian motions with volatility equal

to 2.

For � = 1=3 the process (2.78) has the form N 1
3
(t) = N (jA (t)j), where A (t) is a process whose

law is the solution of
@
2
3u

@t
2
3

=
@2u

@x2
; u (x; 0) = � (x) : (2.87)

In Orsingher and Beghin (2009) it is shown that the solution to (2.87) is

u 2
3
(x; t) =

3

2

1
3
p
3t
Ai

� jxj
3
p
3t

�
; (2.88)

where

Ai (x) =
1

�

Z 1

0

cos

�
�x+

�3

3

�
d�; (2.89)

is the Airy function. Therefore the distribution (2.85) in this case reads

p
1
3

k (t) =

Z 1

0

e��s
�
1� e��s

�k�1 3
3
p
3t
Ai

�
s
3
p
3t

�
ds; k � 1, t > 0: (2.90)

Remark 2.3.4. From (2.54) it is straightforward to show that the probability generating

function G� (u; t) = EuN
�(t) satis�es the partial di�erential equation8<:
@�

@t�
G (u; t) = �u (u� 1)

@

@u
G (u; t) ; 0 < � � 1;

G (u; 0) = u;
(2.91)
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and thus EN� (t) = @G
@u

��
u=1

is the solution to8<:
d�

dt�
EN� = �EN� ; 0 < � � 1;

EN� (0) = 1:
(2.92)

The solution of (2.92) is

EN� (t) = E�;1 (�t
�) ; t > 0: (2.93)

Clearly, result (2.93) can be also derived by evaluating the following Laplace transformZ 1

0

e��tEN� (t) dt =

Z 1

0

e��t
( 1X
k=1

k

Z 1

0

Pr fN (s) = kgPr fT2� (t) 2 dsg
)
dt

=

Z 1

0

e��t
Z 1

0

e�sPr fT2� (t) 2 dsg dt

=

Z 1

0

e�s���1e�s�
�

ds

=
���1

�� � �
=

Z 1

0

e��tE�;1 (�t
�) dt;

and this con�rms (2.93). The mean-value (2.93) can be obtained in a third manner.

Z 1

0

e��tEN� (t) =

1X
k=1

k

kX
j=1

�
k � 1

j � 1

�
(�1)j�1

Z 1

0

E�;1 (��jt�) e��tdt (2.94)

=

1X
k=1

k

kX
j=1

�
k � 1

j � 1

�
(�1)j�1 ���1

�� + �j

=
���1

�

1X
k=1

k

k�1X
j=0

�
k � 1

j

�
(�1)j 1

��

� + 1 + j

=
���1

�

1X
k=1

k
(k � 1)!�

��

� + 1
� � � � ���� + k

�
=

���1

�

1X
k�1

k
� (k) �

�
��

� + 1
�

�
�
��

� + k + 1
�

=
���1

�

Z 1

0

1X
k=1

kxk�1 (1� x)
��

�

=
���1

�� � �
=

Z 1

0

e��tE�;1 (�t
�) dt:

The result of remark 2.3.4, EN� (t) = E�;1 (�t
�) should be compared with the results of Uchaikin

et al. (2008).

An interesting representation of (2.93) following from (2.78) gives that

EN� (t) =

Z 1

0

e�sPr fT2� (t) 2 dsg =
Z 1

0

EN (s) Pr fT2� (t) 2 dsg : (2.95)

Remark 2.3.5. By twice deriving (2.91) w.r.t. u we obtain the fractional equation for the

second-order factorial moment

E fN� (t) (N� (t)� 1)g = g� (t) ; (2.96)
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Figure 2.1: Mean number of individuals at time t for various values of �.

that is 8<:
@�

@t�
g� (t) = 2�g� (t) + 2�EN� (t) ; 0 < � � 1;

g� (0) = 0:
(2.97)

The Laplace transform of the solution to (2.97) is

H� (t) =

Z 1

0

e��tg� (t) dt =
2����1

(�� � �) (�� � 2�)
= 2���1

�
1

�� � 2�
� 1

�� � �

�
: (2.98)

The inverse Laplace transform of (2.98) is

E fN� (t) (N� (t)� 1)g = 2E�;1 (2�t
�)� 2E�;1 (�t

�) : (2.99)

It is now straightforward to obtain the variance from (2.99)

VarN� (t) = 2E�;1 (2�t
�)� E�;1 (�t

�)� E2
�;1 (�t

�) : (2.100)

For � = 1 we retrieve from (2.100) the well-known expression of the variance of the linear

birth process

VarN1 (t) = e�t
�
e�t � 1

�
: (2.101)

Remark 2.3.6. If X1; � � � ; Xn are i.i.d. r.v's with common distribution F (x) = Pr (X < x)

then we can write the following probability

Pr
�
max

�
X1; � � � ; XN�(t)

�
< x

	
(2.102)

=

1X
k=1

(Pr fX < xg)k Pr fN� (t) = kg

by (2.78)
=

Z 1

0

G (F (x) ; s)Pr fT2� (t) 2 dsg
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=

Z 1

0

F (x) e��s

1� F (x) (1� e��s)
Pr fT2� (t) 2 dsg :

Analogously we have that

Pr
�
min

�
X1; � � � ; XN�(t)

�
> x

	
(2.103)

=

Z 1

0

(1� F (x)) e��s

1� (1� F (x)) (1� e��s)
Pr fT2� (t) 2 dsg :

Remark 2.3.7. If the initial number of the components of the population is n0 then the p.g.f.

becomes

E

�
uN

�(t) jN� (0) = n0

�
(2.104)

=

1X
k=0

uk+n0
Z 1

0

e��zn0
�
n0 + k � 1

k

��
1� e��z

�k
Pr fT2� (t) 2 dzg :

From (2.104) we can extract the distribution of the population size at time t as

Pr fN� (t) = k + n0 jN� (0) = n0g (2.105)

=

�
n0 + k � 1

k

�Z 1

0

e��zn0
�
1� e��z

�k
Pr fT2� (t) 2 dzg ; k � 0:

If we write k + n0 = k0 we can rewrite (2.105) as

Pr fN� (t) = k0 jN� (0) = n0g (2.106)

=

�
k0 � 1

k0 � n0

�Z 1

0

e��zn0
�
1� e��z

�k0�n0
Pr fT2� (t) 2 dzg ; k0 � n0;

where k0 is the number of individuals in the population at time t. For n0 = 1 formulae

(2.105), (2.106) coincide with (2.55). The random time T2� (t), t > 0, appearing in (2.105)

and (2.106) has a distribution which is related to the fractional equation

@2�u

@t2�
=

@2u

@z2
; 0 < � � 1: (2.107)

It is possible to change a little bit the structure of formulae (2.105), (2.106) by means of the

transformation �z = y so that the distribution of T2� (t) becomes related to equation

@2�u

@t2�
= �2

@2u

@y2
; 0 < � � 1; (2.108)

where (2.52) shows the connection between the di�usion coe�cient in (2.108) and the birth

rate.

Remark 2.3.8. If we assume that the initial number of individuals in the population is

N� (0) = n0 we can generalise the result (2.55) o�ering a representation of the distribution

of N� (t) alternative to (2.106). If we take the Laplace transform of (2.106) we have thatZ 1

0

e��tPr fN� (t) = k + n0 jN� (0) = n0g dt (2.109)

=

Z 1

0

�
n0 + k � 1

k

�Z 1

0

e��zn0
�
1� e��z

�k
Pr fT2� (t) 2 dzg dt

by (2.83)
=

Z 1

0

�
n0 + k � 1

k

�
e��zn0

�
1� e��z

�k
���1e��

�zdz
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=

�
n0 + k � 1

k

�
���1

Z 1

0

e�z(�n0+�
�)
�
1� e��z

�k
dz

=

�
n0 + k � 1

k

�
���1

kX
r=0

�
k

r

�
(�1)r

Z 1

0

e�z(�n0+�r+�
�)dz

=

�
n0 + k � 1

k

�
���1

kX
r=0

�
k

r

�
(�1)r 1

� (n0 + r) + ��
:

By taking the inverse Laplace transform of (2.109) we have that

Pr fN� (t) = k + n0 jN� (0) = n0g (2.110)

=

�
n0 + k � 1

k

� kX
r=0

�
k

r

�
(�1)r E�;1 (� (n0 + r)�t�) :

From (2.110) we can infer the following interesting information.

Pr fN� (dt) = n0 + 1 jN� (0) = n0g (2.111)

= n0

1X
r=0

�
1

r

�
(�1)r E�;1

�� (n0 + r)� (dt)
��

= n0
�
E�;1

��n0� (dt)��� E�;1

��� (n0 + 1) (dt)
���

� n0
� (dt)

�

� (� + 1)
;

by writing only the lower order terms. This shows that the probability of a new o�spring at

the beginning of the process is proportional to (dt)
�
and to the initial number of progenitors.

From our point of view this is the most important qualitative feature of our results, since it

makes explicit the dependence on the order � of the fractional birth process.

Theorem 2.3.4. The Laplace transform of the probability generating function G� (t; u) of the

fractional linear birth process has the form

H� (�; u) =

Z 1

0

e��tG� (t; u) dt (2.112)

=
u���1

�

Z 1

0

(1� x)
��

�

1� xu
dx; 0 < u < 1, � > 0:

Proof. We have seen above that the function G� solves the Cauchy problem8<:
@�G�

@t�
= �u (u� 1)

@G�

@u
; 0 < � � 1;

G� (u; 0) = u:
(2.113)

By taking the Laplace transform of (2.113) we have that

��H� � ���1u = �u (u� 1)
@H�

@u
: (2.114)

By inserting (2.112) into (2.114) and performing some integration by parts we have that

u�2��1

�

Z 1

0

(1� x)
��

�

1� xu
dx� u���1 (2.115)

= �u (u� 1)

24���1
�

Z 1

0

(1� x)
��

�

1� xu
dx+

u���1

�

Z 1

0

(1� x)
��

� x

(1� xu)
2 dx

35
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= �u (u� 1)

24���1
�

Z 1

0

(1� x)
��

�

1� xu
dx+

���1

�

x (1� x)
��

�

1� xu

�����
x=1

x=0

� ���1

�

Z 1

0

(1� x)
��

�

(1� xu)
dx+

�2��1

�2

Z 1

0

x (1� x)
��

� �1

(1� xu)
dx

35
=

u (u� 1)�2��1

�

Z 1

0

x (1� x)
��

� �1

(1� xu)
dx

= � u���1 +
u�2��1

�

Z 1

0

(1� x)
��

�

(1� xu)
dx:

This concludes the proof of theorem 2.3.4.

Remark 2.3.9. We note that H� (�; u)
��
u=1

= 1=� because G� (t; 1) = 1. Furthermore

@H� (�; u)

@u

����
u=1

=
���1

�� � �
=

Z 1

0

e��tE�;1 (�t
�) dt; (2.116)

which accords well with (2.93).





Chapter 3

Fractional Pure Death Processes

Summary

This chapter is devoted to the study of a fractional version of nonlinear M �(t), t > 0, linearM�(t),

t > 0 and sublinear M�(t), t > 0, death processes. Fractionality is introduced by replacing the

usual integer-order derivative in the di�erence-di�erential equations governing the state probabil-

ities, with the fractional derivative understood in the sense of Dzhrbashyan{Caputo. We derive

explicitly the state probabilities of the three death processes and examine the related probability

generating functions and mean values. A useful subordination relation is also proved, allowing

us to express the death processes as compositions of their classical counterparts with the random

time process T2�(t), t > 0. This random time has one-dimensional distribution which is the folded

solution to a Cauchy problem of the fractional di�usion equation.



3.1 Introduction 36

3.1 Introduction

We assume that we have a population of n0 individuals or objects. The components of this

population might be the set of healthy people during an epidemic or the set of items being sold

in a store, or even, say, melting ice pack blocks. However even a coalescence of particles can

be treated in this same manner, leading to a large ensemble of physical analogues suited to the

method. The main interest is to model the fading process of these objects and, in particular, to

analyse how the size of the population decreases.

The classical death process is a model describing this type of phenomena and, its linear version

is analysed in Bailey (1964), page 90. The most interesting feature of the extinguishing population

is the probability distribution

ρk(t) = Pr fM(t) = k jM(0) = n0g ; t > 0; 0 � k � n0; (3.1)

whereM(t), t > 0 is the point process representing the size of the population at time t. If the death

rates are proportional to the population size, the process is called linear and the probabilities (3.1)

are solutions to the initial-value problem8>>><>>>:
d
dtρk(t) = �(k + 1)ρk+1(t)� �kρk(t); 0 � k � n0;

ρk(0) =

8<:1; k = n0;

0; 0 � k < n0;

(3.2)

with ρn0+1(t) = 0.

The distribution satisfying (3.2) is

ρk(t) =

�
n0
k

�
e��kt

�
1� e��t

�n0�k
; 0 � k � n0: (3.3)

The equations (3.2) are based on the fact that the death rate of each component of the population

is proportional to the number of existing individuals.

In the nonlinear case, where the death rates are �k, 0 � k � n0, equations (3.2) must be

replaced by 8>>><>>>:
d
dt�k(t) = �k+1�k+1(t)� �k�k(t); 0 � k � n0;

�k(0) =

8<:1; k = n0;

0; 0 � k < n0:

(3.4)

In this chapter we consider fractional versions of the processes described above, where fraction-

ality is obtained by substitution of the integer-order derivatives appearing in (3.2) and (3.4), with

the fractional derivative called Caputo or Dzhrbashyan{Caputo derivative, de�ned as follows8><>:
d�f(t)
dt� = 1

�(1��)

Z t

0

f 0 (s)
(t� s)

� ds; 0 < � < 1;

f 0 (t) ; � = 1:

(3.5)

The main advantage of the Dzhrbashyan{Caputo fractional derivative over the usual Riemann{

Liouville fractional derivatives is that the former requires only integer-order derivatives in the

initial conditions.

The fractional derivative operator is vastly present in the physical and mathematical literature.

It appears for example in generalisations of di�usion-type di�erential equations (see Wyss (1986),
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Schneider and Wyss (1988), Nigmatullin (1986) and Mainardi (1996)), hyperbolic equations such

as telegraph equation (see Orsingher and Beghin (2004)), reaction-di�usion equations (see Saxena

et al. (2006)), or in the study of continuous time random walks (CTRW) scaling limits (see Bening

et al. (2007), Meerschaert et al. (2002)). Fractional calculus has also been considered by some

authors to describe cahotic Hamiltonian dynamics in low dimensional systems (see e.g. Zaslavsky

(1994), Saichev and Zaslavsky (1997), Saxena et al. (2002), Saxena et al. (2004a) and Saxena et al.

(2004b)). For a complete review of fractional kinetics the reader can consult Zaslavsky (2002) or

the book by Zaslavsky (2006). In the literature are also present fractional generalisations of point

processes, such as the Poisson process (see Repin and Saichev (2000), Laskin (2003), Mainardi and

Goren
o (2004), Cahoy (2007), Uchaikin and Sibatov (2008) and Beghin and Orsingher (2009b))

and the birth and birth-death processes (see Uchaikin et al. (2008), Orsingher and Polito (2010),

Orsingher and Polito (2011)). Fractional models are also used in other �elds, for example �nance

(Meerschaert and Scalas (2006), Scalas et al. (2000)).

The population size is governed by8>>><>>>:
d�

dt� �k(t) = �k+1�k+1(t)� �k�k(t); 0 � k � n0;

�k(0) =

8<:1; k = n0;

0; 0 � k < n0;

(3.6)

and is denoted by M �(t), t > 0.

Let us assume that a crack has the form of a process T2�(t), t > 0. For � = 1=2, this coincides

with a re
ecting Brownian motion and has been described and derived in Chudnovsky and Kunin

(1987). For � 6= 1=2, the process T2�(t), t > 0, can be identi�ed with a stable process (see for

details on this point Orsingher and Beghin (2009)). The ensemble of n0 particles moves on the

fracture and, at the same time, undergoes a decaying process which respects the same probabilistic

rules of the usual death process. For the number of existing particles, we have therefore

��k(t) =

Z 1

0

�k(s)Pr fT2�(t) 2 dsg : (3.7)

We observe that

Pr fT2�(t) 2 dsg = q(s; t)ds; (3.8)

is a solution to
@2�

@t2�
q(s; t) =

@2

@s2
q(s; t); s > 0; t > 0; (3.9)

with the necessary initial conditions. Furthermore we recall thatZ 1

0

e�ztq(s; t)dt = z��1e�z
�s; z > 0; s > 0: (3.10)

The distribution q(s; t) is also a solution to

@�

@t�
q(s; t) = � @

@s
q(s; t); s > 0; (3.11)

as can be ascertained directly. If we take the fractional derivative in (3.7) we get

d�

dt�
��k(t) =

Z 1

0

�k(s)
@�

@t�
Pr fT2�(t) 2 dsg (3.12)

= �
Z 1

0

�k(s)
@

@s
q(s; t)ds
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= �q(s; t)�k(s)
��1
0
+

Z 1

0

d�k(s)

ds
q(s; t)ds

=

Z 1

0

[��k�k(s) + �k+1�k+1(s)] q(s; t)ds

= ��k��k(t) + �k+1�
�
k+1(t):

This shows that replacing the time derivative with the fractional derivative corresponds to consid-

ering a death process (annihilating process) on particles displacing on a crack.

We now give some details about (3.11). By taking the Laplace transform of both members of

(3.11) we have that Z 1

0

e�zt
@�

@t�
q(s; t)dt = � @

@s

�Z 1

0

e�ztq(s; t)dt
�

(3.13)

= � @

@s

�
z��1e�sz

�
�
= z2��1e�sz

�

:

Furthermore, Z 1

0

e�zt
@�

@t�
q(s; t)dt = z�

Z 1

0

e�ztq(s; t)dt� z��1q(s; 0) (3.14)

= z�
�
z��1e�sz

�
�
� z��1�(s);

and therefore, for s > 0, this establishes that q(s; t) solves equation (3.11). We note that a gas

particle moving on a fracture has inspired to di�erent authors the iterated Brownian motion (see

DeBlassie (2004)).

The distribution

��k(t) = Pr fM �(t) = k j M �(0) = n0g ; 0 � k � n0; (3.15)

is obtained explicitly and reads

��k(t) =

8>>>>>>>>>>><>>>>>>>>>>>:

E�;1(��n0t�); k = n0;
n0Q

j=k+1

�j

n0X
m=k

E�;1(��mt�)
n0Q
h=k
h 6=m

(�h � �m)

; 0 < k < n0;

1�
n0X
m=1

n0Y
h=1
h 6=m

�
�h

�h � �m

�
E�;1(��mt�); k = 0; n0 > 1:

(3.16)

Obviously, for k = 0, n0 = 1,

��0(t) = 1� E�;1(��1t�): (3.17)

The Mittag{Le�er functions appearing in (3.16) are de�ned as

E�;
 (x) =

1X
h=0

xh

� (�h+ 
)
; x 2 R; �; 
 > 0: (3.18)

For � = 
 = 1, E1;1(x) = ex and formulae (3.16) provide the explicit distribution of the classical

nonlinear death process.

For �k = k� the distribution of the fractional linear death process can be obtained either

directly by solving the Cauchy problem (3.6) with �k = k � � and ρn0+1(t) = 0, or by specialising
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(3.16) resulting in the following form

ρ�k(t) =

�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)rE�;1(�(k + r)�t�): (3.19)

A technical tool necessary for our manipulations is the Laplace transform of Mittag{Le�er

functions which we write here for the sake of completeness:Z 1

0

e�ztt
�1E�;
(�#t�)dt = z��


z� � #
; R(z) > j#j 1� : (3.20)

Another special case is the so-called fractional sublinear death process (for sublinear birth

processes consult Donnelly et al. (1993)) where the death rates have the form �k = �(n0 +1� k).

In the sublinear process, the annihilation of particles or individuals accelerates with decreasing

population size.

The distribution }�k(t), 0 � k � n0 of the fractional sublinear death process M�(t), t > 0, is

strictly related to that of the fractional linear birth process N�(t), t > 0 (see, for details on this

point, Orsingher and Polito (2010)):

Pr fM�(t) = 0 jM�(0) = n0g = Pr fN�(t) > n0 j N�(0) = 1g : (3.21)

In general, the connection between the fractional sublinear death process and the fractional linear

birth process is expressed by the relation

Pr fM�(t) = n0 � (k � 1) jM�(0) = n0g (3.22)

= Pr fN�(t) = k j N�(0) = 1g ; 1 � k � n0:

This shows a sort of symmetry in the evolution of fractional linear birth and fractional sublinear

death processes.

For all fractional processes considered in this chapter, a subordination relationship holds. In

particular, for the fractional linear death process we can write that

M�(t) =M(T2�(t)); 0 < � < 1; t > 0; (3.23)

where T2�(t) is a process for which

Pr fT2�(t) 2 dsg = q(s; t)ds; (3.24)

is a solution to the following Cauchy problem (see Beghin and Orsingher (2009a))8>><>>:
@2�

@t2� q(s; t) =
@2

@s2 q(s; t); t > 0; s > 0;

@
@tq(s; t)

��
s=0

= 0;

q(s; 0) = �(s); 0 < � � 1;

(3.25)

with the additional initial condition

qt(s; 0) = 0; 1=2 < � � 1: (3.26)

In equation (3.23), M(t), t > 0, represents the classical linear death process. Subordination

relations of this type are extensively treated in Orsingher and Beghin (2009) and Kolokoltsov

(2009).

We also show that all the fractional death processes considered below can be viewed as classical

death processes with rate � � �, where � is a Wright-distributed random variable.
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Figure 3.1: Plot of ρ0:7n0 (t) (in black) and ρ1n0(t) (in grey), both with n0 = 10.

3.2 The fractional linear death process and its properties

In this section we derive the distribution of the fractional linear death process as well as some

interesting related properties and interpretations.

Theorem 3.2.1. The distribution of the fractional linear death process M�(t), t > 0 with n0

initial individuals and death rates �k = � � k, is given by

ρ�k(t) = Pr fM�(t) = k jM�(0) = n0g (3.27)

=

�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)rE�;1(�(k + r)�t�);

where 0 � k � n0, t > 0 and � 2 (0; 1]. The function E�;1(x) is the Mittag{Le�er function

previously de�ned in (3.18).

Proof. The state probability ρ�n0(t), t > 0 is readily obtained by applying the Laplace transform

to equation (3.6), with �k = � � k, and then transforming back the results, thus yielding

ρ�n0(t) = E�;1(�n0�t�); t > 0; � 2 (0; 1]: (3.28)

When k = n0 � 1, in order to solve the related di�erential equation, we can write

z�Lfρn0�1g (z) = �n0
z��1

z� + n0�
� �(n0 � 1)Lfρn0�1g (z) (3.29)

, Lfρn0�1g (z) = �n0z
��1 1

z� + n0�
� 1

z� + (n0 � 1)�

, Lfρn0�1g (z) = n0z
��1

�
1

z� + (n0 + 1)�
� 1

z� + n0�

�
:

By inverting equation (3.29), we readily obtain that

ρ�n0�1(t) = n0 (E�;1(�(n0 � 1)�t�)� E�;1(�n0�t�)) : (3.30)
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Figure 3.2: Plot of ρ0:7n0�1(t) (in black) and ρ1n0�1(t) (in grey). Here n0 = 10.

For general values of k, with 0 � k < n0, we must solve the following Cauchy problem:

d�

dt�
ρk(t) = �(k + 1)

�
n0

k + 1

�
(3.31)

�
n0�k�1X
r=0

�
n0 � k � 1

r

�
(�1)rE�;1(�(k + 1 + r)�t�)� �kρk(t);

subject to the initial condition ρk(0) = 0 and with � 2 (0; 1]. The solution can be found by

resorting to the Laplace transform, as we see in the following.

z�Lfρkg (z) = �(k + 1)

�
n0

k + 1

�
(3.32)

�
n0�k�1X
r=0

�
n0 � k � 1

r

�
(�1)r z��1

z� + (k + 1 + r)�
� �kLfρkg (z):

The Laplace transform Lfρkg (z) can thus be written as

Lfρkg (z) (3.33)

= �(k + 1)

�
n0

k + 1

� n0�k�1X
r=0

�
n0 � k � 1

r

�
(�1)r z��1

z� + (k + 1 + r)�
� 1

z� + k�

=

�
n0
k

� n0�k�1X
r=0

�
n0 � k

r + 1

�
(�1)rz��1

�
1

z� + k�
� 1

z� + (k + 1 + r)�

�

=

�
n0
k

� n0�kX
j=1

�
n0 � k

j

�
(�1)j�1z��1

�
1

z� + k�
� 1

z� + (k + j)�

�

=

�
n0
k

� n0�kX
j=1

�
n0 � k

j

�
(�1)j z��1

z� + (k + j)�

�
�
n0
k

�
z��1

z� + k�

n0�kX
j=1

�
n0 � k

j

�
(�1)j
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=

�
n0
k

� n0�kX
j=1

�
n0 � k

j

�
(�1)j z��1

z� + (k + j)�
+

�
n0
k

�
z��1

z� + k�

=

�
n0
k

� n0�kX
j=0

�
n0 � k

j

�
(�1)j z��1

z� + (k + j)�
:

By taking now the inverse Laplace transform of (3.33), we obtain the claimed result (3.19).

Remark 3.2.1. When � = 1, equation (3.19) easily reduces to the distribution of the classical

linear death process, i.e.

ρk(t) =

�
n0
k

�
e�k�t

�
1� e��t

�n0�k
; t > 0; 0 � k � n0: (3.34)

In the following theorem we give a proof of an interesting subordination relation.

Theorem 3.2.2. The fractional linear death process M�(t), t > 0 can be represented as

M�(t)
i:d:
= M(T2�(t)); t > 0; � 2 (0; 1]; (3.35)

where M(t), t > 0 is the classical linear death process (see e.g. Bailey (1964), page 90) and

T2�(t), t > 0, is a random time process whose one-dimensional distribution coincides with

the folded solution to the following fractional di�usion equation8<: @2�

@t2� q(s; t) =
@2

@s2 q(s; t); t > 0; � 2 (0; 1];

q(s; 0) = �(s);
(3.36)

with the additional condition qt(s; 0) = 0 if � 2 (1=2; 1] (see Beghin and Orsingher (2009a)).

Proof. By evaluating the Laplace transform of the generating function of the fractional linear

death process M�(t), t > 0, we obtain thatZ 1

0

e�ztG�(u; t)dt (3.37)

=

Z 1

0

e�zt
n0X
k=0

uk
�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)rE�;1(�(k + r)�t�)dt

=

n0X
0

uk
�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)r z��1

z� + (k + r)�

=

Z 1

0

n0X
k=0

uk
�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)rz��1e�s(z�+(k+r)�)ds

=

Z 1

0

e�sz
�

z��1
(

n0X
k=0

uk
�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)re�s(k+r)�

)
ds

=

Z 1

0

e�sz
�

z��1
(

n0X
k=0

uk
�
n0
k

�
e��sk

n0�kX
r=0

�
n0 � k

r

�
(�1)re�sr�

)
ds

=

Z 1

0

e�sz
�

z��1
(

n0X
k=0

uk
�
n0
k

�
e��sk(1� e��s)n0�k

)
ds

=

Z 1

0

e�sz
�

z��1G(u; s)ds
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=

Z 1

0

e�zt
Z 1

0

n0X
k=0

ukPr fM(s) = kg fT2� (s; t)ds dt

=

Z 1

0

e�zt
( 1X
k=0

ukPr fM(T2�(t)) = kg
)
dt;

and this is su�cient to prove that (3.35) holds. Note that we used two facts. The �rst one is thatZ 1

0

e�ztfT2� (s; t)dt = z��1e�sz
�

; s > 0; z > 0; (3.38)

is the Laplace transform of the solution to (3.36). The second fact is that the Laplace transform

of the Mittag{Le�er function is Z 1

0

e�ztE�;1(�#t�)dt = z��1

z� + #
: (3.39)

In �gures 3.1 and 3.2, we compare the behaviour of the fractional probabilities ρ0:7n0 (t) and

ρ0:7n0�1(t) with their classical counterparts ρ1n0(t) and ρ1n0�1(t), t > 0. What emerges from the

inspection of both �gures is that, for large values of t, the probabilities, in the fractional case,

decrease more slowly than ρ1n0(t) and ρ1n0�1(t). The probability ρ0:7n0�1(t), increases initially faster

than ρ1n0�1(t), but after a certain time lapse, ρ1n0�1(t) dominates ρ0:7n0�1(t).

Remark 3.2.2. For � = 1=2, in view of the integral representation

E 1
2 ;1

(x) =
2p
�

Z 1

0

e�w
2+2xwdw; x 2 R; (3.40)

we extract from (3.19) that

ρ
1
2

k (t) =
2p
�

Z 1

0

e�w
2

�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)re�2w(k+r)�t

1
2 (3.41)

=

Z 1

0

e�
y2

4tp
�t

ρ1k(y)dy = Pr fM(jB(t)j) = kg ;

where B(t), t > 0 is a Brownian motion with volatility equal to 2.

Remark 3.2.3. We can interpret formula (3.19) in an alternative way, as follows. For each

integer k 2 [0; n0] we have that

ρ�k(t) = Pr fM�(t) = k jM�(0) = n0g (3.42)

=

Z 1

0

ρk(s)Pr fT2�(t) 2 dsg

=

�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)r

Z 1

0

e��(k+r)sPr fT2�(t) 2 dsg

=

�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)r

Z 1

0

e��(k+r)st��W��;1��(�st��)ds

=

�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)r

Z 1

0

e���(k+r)t
�

W��;1��(��)d�

=

Z 1

0

W��;1��(��)Pr fM�(t
�) = k jM�(0) = n0g d�;
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where W��;1��(��) is the Wright function de�ned as

W��;1��(��) =
1X
r=0

(��)r
r!� (1� �(r + 1))

; 0 < � � 1: (3.43)

We therefore obtain an interpretation in terms of a classical linear death process M�(t), t > 0

evaluated on a new time scale and with random rate � � �, where � is a random variable,

� 2 R+, with Wright density

f�(�) =W��;1��(��); � 2 R+: (3.44)

From equation (3.6) with �k = k � �, the related fractional di�erential equation governing the

probability generating function, can be easily obtained, leading to8<: @�

@t�G
�(u; t) = ��u(u� 1) @

@uG
�(u; t); � 2 (0; 1];

G�(u; 0) = un0 :
(3.45)

From this, and by considering that EM�(t) = @
@uG

�(u; t)
��
u=1

, we obtain that8<: d�

dt� EM
�(t) = ��EM�(t); � 2 (0; 1];

EM�(t) = n0:
(3.46)

Equation (3.46) is easily solved by means of the Laplace transforms, yielding

EM�(t) = n0E�;1(��t�); t > 0; � 2 (0; 1]: (3.47)

Remark 3.2.4. The mean value EM�(t) can also be directly calculated.

EM�(t) =

n0X
k=0

kρ�k(t) (3.48)

=

n0X
k=0

k

�
n0
k

� n0X
r=k

�
n0 � k

r � k

�
(�1)r�kE�;1(�r�t�)

=

n0X
r=0

E�;1(�r�t�)(�1)r
rX

k=1

k

�
n0
k

��
n0 � k

r � k

�
(�1)k

=

n0X
r=1

E�;1(�r�t�)(�1)rn0
�
n0 � 1

r � 1

� rX
k=1

�
r � 1

k � 1

�
(�1)k

= n0E�;1(��t�):
This last step in (3.48) holds because

rX
k=1

�
r � 1

k � 1

�
(�1)k =

r�1X
k=0

�
r � 1

k

�
(�1)k+1 =

8<:�1; r = 1;

0; r > 1:
(3.49)

3.3 Related models

In this section we present two models which are related to the fractional linear death process. The

�rst one is its natural generalisation to the nonlinear case i.e. we consider death rates in the form

�k > 0, 0 � k � n0. The second one is a sublinear process (see Donnelly et al. (1993)), namely

with death rates in the form �k = �(n0 + 1� k); the death rates are thus an increasing sequence

as the number of individuals in the population decreases towards zero.



45 Fractional Pure Death Processes

3.3.1 Generalisation to the nonlinear case

Let us denote by M �(t), t > 0 the random number of components of a nonlinear fractional death

process with death rates �k > 0, 0 � k � n0.

The state probabilities ��k(t) = Pr fM �(t) = k j M �(0) = n0g, t > 0, 0 � k � n0, � 2 (0; 1] are

governed by the following di�erence-di�erential equations8>>>>>>>><>>>>>>>>:

d�

dt� �k(t) = �k+1�k+1(t)� �k�k(t); 0 < k < n0;

d�

dt� �0(t) = �1�1(t); k = 0;

d�

dt� �n0(t) = ��n0�n0(t); k = n0;

�k(0) =

8<:0; 0 � k < n0;

1; k = n0:

(3.50)

The fractional derivatives appearing in (3.50) provide the system with a global memory; i.e. the

evolution of the state probabilities ��k(t), t > 0, is in
uenced by the past, as de�nition (3.5) shows.

This is a major di�erence with the classical nonlinear (and, of course, linear and sublinear) death

processes, and reverberates in the slowly decaying structure of probabilities extracted from (3.50).

In the nonlinear process, the dependence of death rates from the size of the population is

arbitrary, and this explains the complicated structure of the probabilities obtained. Further gen-

eralisation can be considered by assuming that the death rates depend on t (non-homogeneous,

nonlinear death process).

We outline here the evaluation of the probabilities ��k(t), t > 0, 0 � k � n0, which can be

obtained, as in the linear case, by means of a recursive procedure (similar to that implemented in

Orsingher and Polito (2010) for the fractional linear birth process).

Let k = n0. By means of the Laplace transform applied to equation (3.50) we immediately

obtain that

��n0(t) = E�;1(��n0t�): (3.51)

When k = n0 � 1 we get

z�L���n0�1	 (z) = ��n0�1L
�
��n0�1

	
(z) + �n0

z��1

z� + �n0
(3.52)

, L���n0�1	 (z) = �n0
z��1

z� + �n0
� 1

z� + �n0�1

, L���n0�1	 (z) = �n0z
��1

�
1

z� + �n0
� 1

z� + �n0�1

�
1

�n0�1 � �n0

, ��n0�1(t) =
�n0

�n0�1 � �n0

�
E�;1(��n0t�)� E�;1(��n0�1t�)

�
:

For k = n0 � 2 we obtain in the same way that

z�L���n0�2	 (z) (3.53)

= ��n0�2L
�
��n0�2

	
(z) +

�n0�n0�1
�n0�1 � �n0

�
z��1

z� + �n0
� z��1

z� + �n0�1

�
;

so that

L���n0�2	 (z) (3.54)
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=
�n0�n0�1

�n0�1 � �n0
z��1

�
1

z� + �n0
� 1

z� + �n0�1

�
1

z� + �n0�2

=
�n0�n0�1

�n0�1 � �n0
z��1

��
1

z� + �n0
� 1

z� + �n0�2

�
1

�n0�2 � �n0

�
�

1

z� + �n0�1
� 1

z� + �n0�2

�
1

�n0�2 � �n0�1

�
:

By inverting the Laplace transform we readily arrive at the following result

��n0�2(t) = �n0�n0�1

�
E�;1(��n0t�)

(�n0�1 � �n0)(�n0�2 � �n0)
(3.55)

� E�;1(��n0�2t�)
(�n0�1 � �n0)(�n0�2 � �n0)

� E�;1(��n0�1t�)
(�n0�1 � �n0)(�n0�2 � �n0�1)

+
E�;1(��n0�2t�)

(�n0�1 � �n0)(�n0�2 � �n0�1)

�
= �n0�n0�1

�
E�;1(��n0t�)

(�n0�1 � �n0)(�n0�2 � �n0)

+
E�;1(��n0�2t�)
(�n0�1 � �n0)

�
1

�n0�2 � �n0�1
� 1

�n0�2 � �n0

�
� E�;1(��n0�1t�)
(�n0�1 � �n0)(�n0�2 � �n0�1)

�
= �n0�n0�1

�
E�;1(��n0t�)

(�n0�1 � �n0)(�n0�2 � �n0)

+
E�;1(��n0�2t�)

(�n0�2 � �n0�1)(�n0�2 � �n0)
� E�;1(��n0�1t�)

(�n0�1 � �n0)(�n0�2 � �n0�1)

�
:

The structure of the state probabilities for arbitrary values of k = n0 � l, 0 � l < n0, can now

be easily obtained. The proof follows the lines of the derivation of the state probabilities for the

fractional nonlinear pure birth process adopted in Theorem 2.1 in Orsingher and Polito (2010).

We have that

��n0�l(t) =

8>>>>><>>>>>:

l�1Q
j=0

�n0�j
lX

m=0

E�;1(��n0�mt�)
lQ

h=0
h 6=m

(�n0�h � �n0�m)
; 1 � l < n0;

E�;1(��n0t�); l = 0:

(3.56)

By means of some changes of indices, formula (3.56) can also be written as

��k(t) =

8>>>>>>><>>>>>>>:

n0Q
j=k+1

�j

n0X
m=k

E�;1(��mt�)
n0Q
h=k
h 6=m

(�h � �m)

; 0 < k < n0;

E�;1(��n0t�); k = n0:

(3.57)

For the extinction probability, we have to solve the following initial value problem:8>>>>>>><>>>>>>>:

d�

dt� �0(t) = �1
n0Q
j=2

�j

n0X
m=1

E�;1(��mt�)
n0Q
h=1
h 6=m

(�h � �m)

; n0 > 1;

d�

dt� �0(t) = �1E�;1(��1t�); n0 = 1;

�0(0) = 0; n0 � 1:

(3.58)
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When n0 > 1, starting from (3.58) and by resorting to the Laplace transform once again, we have

that

Lf��0g (z) =
n0Q
j=1

�j

n0X
m=1

1
n0Q
h=1
h 6=m

(�h � �m)

� z�1

z� + �m
: (3.59)

The inverse Laplace transform of (3.59) leads to

��0(t) =
n0Q
j=1

�j

n0X
m=1

1
n0Q
h=1
h 6=m

(�h � �m)

t�E�;�+1(��mt�) (3.60)

=
n0Q
j=1

�j

n0X
m=1

1
n0Q
h=1
h 6=m

(�h � �m)

� 1

�m
[1� E�;1(��mt�)]

=

n0X
m=1

n0Y
h=1
h 6=m

�
�h

�h � �m

�
�

n0X
m=1

n0Y
h=1
h 6=m

�
�h

�h � �m

�
E�;1(��mt�)

= 1�
n0X
m=1

n0Y
h=1
h 6=m

�
�h

�h � �m

�
E�;1(��mt�):

Note that, in the last step, we used the following fact:

n0X
m=1

n0Y
h=1
h 6=m

�
�h

�h � �m

�
= 1: (3.61)

This can be ascertained by observing that

Y
1�h<l�n0

(�h � �l) = detA =

n0X
j=1

a1;j(�1)j+1Min1;j (3.62)

where

A =

������������

1 1 : : : 1

�1 �2 : : : �n0
�21 �22 : : : �2n0
...

...
. . .

...

�n0�11 �n0�12 : : : �n0�1n0

������������
; (3.63)

is a Vandermonde matrix and Min1;j is the determinant of the matrix resulting fromA by removing

the �rst row and the j-th column.

When n0 = 1 we obtain

Lf��0g (z) = �1
z�1

z� + �1
; (3.64)

so that the inverse Laplace transform can be written as

��0(t) = �1t
�E�;�+1(��1t�) (3.65)

= 1� E�;1(��1t�):
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We can therefore summarise the results obtained as follows:

��k(t) =

8>>>><>>>>:
n0Q

j=k+1

�j

n0X
m=k

E�;1(��mt�)
n0Q
h=k
h 6=m

(�h � �m)

; 0 < k < n0; n0 > 1;

E�;1(��n0t�); k = n0; n0 � 1;

(3.66)

and

��0(t) =

8>>><>>>:
1�

n0X
m=1

n0Y
h=1
h 6=m

�
�h

�h � �m

�
E�;1(��mt�); n0 > 1;

1� E�;1(��1t�); n0 = 1:

(3.67)

3.3.2 A fractional sublinear death process

We consider in this section the process where the in�nitesimal death probabilities have the form

Pr fM(t; t+ dt] = �1 jM(t) = kg = �(n0 + 1� k)dt+ o(dt); (3.68)

where n0 is the initial number of individuals in the population. The state probabilities

}k(t) = Pr fM(t) = k jM(0) = n0g ; 0 � k � n0; (3.69)

satisfy the equations8>>>>><>>>>>:

d
dt}k(t) = ��(n0 + 1� k)}k(t) + �(n0 � k)}k+1(t); 1 � k � n0;

d
dt}0(t) = �n0}1(t); k = 0;

}k(0) =

8<:1; k = n0;

0; 0 � k < n0:

(3.70)

In this model the death rate increases with decreasing population size.

The probabilities }�k(t) = Pr fM�(t) = k jM�(0) = n0g of the fractional version of this process

are governed by the equations8>>>>><>>>>>:

d�

dt� }k(t) = ��(n0 + 1� k)}k(t) + �(n0 � k)}k+1(t); 1 � k � n0;

d�

dt� }0(t) = �n0}1(t); k = 0;

}k(0) =

8<:1; k = n0;

0; 0 � k < n0:

(3.71)

We �rst observe that the solution to the Cauchy problem8<: d�

dt� }n0(t) = ��}n0(t);
}n0(0) = 1;

(3.72)

is }�n0(t) = E�;1(��t�), t > 0.

In order to solve the equation8<: d�

dt� }n0�1(t) = �2�}n0�1(t) + �E�;1(��t�);
}n0�1(0) = 0;

(3.73)
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Figure 3.3: Plot of ρ0:7n0 (t) (in black) and }0:7n0 (t) (in grey), with n0 = 2.

we resort to the Laplace transform and obtain that

L�}�n0�1	 (z) = �z��1
1

z� + �
� 1

z� + 2�
(3.74)

= z��1
�

1

z� + �
� 1

z� + 2�

�
:

By inverting (3.74) we extract the following result

}�n0�1(t) = E�;1(��t�)� E�;1(�2�t�): (3.75)

By the same technique we solve8<: d�

dt� }n0�2(t) = �3�}n0�2(t) + 2� [E�;1(��t�)� E�;1(�2�t�)] ;
}n0�2(0) = 0;

(3.76)

thus obtaining

L�}�n0�2	 (z) = 2�z��1
�

1

z� + �
� 1

z� + 2�

�
1

z� + 3�
(3.77)

= 2�z��1
��

1

z� + �
� 1

z� + 3�

�
1

2�
�
�

1

z� + 2�
� 1

z� + 3�

�
1

�

�
=

z��1

z� + �
� 2

z��1

z� + 2�
+

z��1

z� + 3�
:

In light of (3.77), we infer that

}�n0�2(t) = E�;1(��t�)� 2E�;1(�2�t�) + E�;1(�3�t�): (3.78)

For all 1 � n0 �m � n0, by similar calculations, we arrive at the general result

}�n0�m =

mX
l=0

�
m

l

�
(�1)lE�;1 (� (l+ 1)�t�) ; 1 � n0 �m � n0: (3.79)
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Figure 3.4: Plot of ρ0:7n0�1(t) (in black) and }0:7n0�1(t) (in grey), with n0 = 2.

Introducing the notation n0 �m = k, we rewrite the state probabilities (3.79) in the following

manner

}�k =

n0�kX
l=0

�
n0 � k

l

�
(�1)lE�;1 (� (l+ 1)�t�) ; 1 � k � n0: (3.80)

For the extinction probability we must solve the following Cauchy problem8<: d�

dt� }0(t) = �n0
Pn0�1

l=0

�
n0�1
l

�
(�1)lE�;1 (� (l+ 1)�t�) ;

}0(0) = 0:
(3.81)

The Laplace transform of (3.81) yields

z�Lf}�0g (z) = �n0

n0�1X
l=0

�
n0 � 1

l

�
(�1)l z��1

z� + �(l+ 1)
: (3.82)

The inverse Laplace transform can be written down as

}�0(t) = �n0

n0�1X
l=0

�
n0 � 1

l

�
(�1)l 1

�(�)

Z t

0

E�;1 (�(l+ 1)�s�) (t� s)��1ds: (3.83)

The integral appearing in (3.83) can be suitably evaluated as followsZ t

0

E�;1 (�(l+ 1)�s�) (t� s)��1 (3.84)

=

1X
m=0

(�(l+ 1)�)m

�(�m+ 1)

Z t

0

s�m(t� s)��1ds

=

1X
m=0

(�(l+ 1)�)m

�(�m+ 1)

t�(m+1)�(�)�(�m+ 1)

�(�m+ � + 1)

=
�(�)

(��(l+ 1))

1X
m=0

(�(l+ 1)�t�)m+1

�(�(m+ 1) + 1)

=
�(�)

(��(l+ 1))
[E�;1(�(l+ 1)�t�)� 1] :
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By inserting result (3.84) into (3.83), we obtain

}�0(t) = n0

n0�1X
l=0

�
n0 � 1

l

�
(�1)l+1

l+ 1
[E�;1(�(l+ 1)�t�)� 1] (3.85)

=

n0�1X
l=0

�
n0
l+ 1

�
(�1)l+1 [E�;1(�(l+ 1)�t�)� 1]

=

n0X
l=1

�
n0
l

�
(�1)lE�;1(�l�t�)�

n0X
l=1

�
n0
l

�
(�1)l

= 1 +

n0X
l=1

�
n0
l

�
(�1)lE�;1(�l�t�)

=

n0X
l=0

�
n0
l

�
(�1)lE�;1(�l�t�):

Remark 3.3.1. We check that the probabilities (3.80) and (3.85) sum up to unity. We start

by analysing the following sum:

n0X
k=1

}�k(t) =

n0X
k=1

n0�kX
l=0

�
n0 � k

l

�
(�1)lE�;1(�(l+ 1)�t�): (3.86)

In order to evaluate (3.86), we resort to the Laplace transform

n0X
k=1

Lf}�kg (z) =
z��1

�

n0X
k=1

n0�kX
l=0

�
n0 � k

l

�
(�1)l 1

z�

� + 1 + l
: (3.87)

By using formula (6) of Kirschenhofer (1996) (see also Graham et al. (1994), formula

(5.41), page 188), we obtain that

n0X
k=1

Lf}�kg (z) =
z��1

�

n0X
k=1

�(n0 � k + 1)�
z�

� + 1
��

z�

� + 2
�
: : :
�
z�

� + 1 + n0 � k
� (3.88)

=
z��1

�

n0X
k=1

�
�
z�

� + 1
�
� (n0 � k + 1)

�
�
z�

� + 1 + n0 � k
�

=
z��1

�

n0X
k=1

Z 1

0

x
z�

� (1� x)n0�kdx

=
z��1

�

Z 1

0

x
z�

� �1 [1� (1� x)n0 ] dx

=
1

z
� z��1

�

Z 1

0

x
z�

� �1(1� x)n0dx

(� lnx=y)
=

1

z
� z��1

�

Z 1

0

e�y
z�

�
�
1� e�y

�n0
dy

(y=�=w)
=

1

z
z��1

Z 1

0

e�wz
� �
1� e��w

�n0
dw

=
1

z
� z��1

n0X
k=0

�
n0
k

�
(�1)k

Z 1

0

e�z
�w��wkdw

=
1

z
� z��1

n0X
k=0

�
n0
k

�
(�1)k 1

z� + �k
:
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The inverse Laplace transform of (3.88) is therefore

n0X
k=1

}�k(t) = 1�
n0X
k=0

�
n0
k

�
(�1)kE�;1(��kt�) (3.89)

= �
n0X
k=1

�
n0
k

�
(�1)kE�;1(��kt�):

By putting (3.85) and (3.89) together, we conclude that

n0X
k=0

}�k(t) = 1; (3.90)

as it should be.

Remark 3.3.2. We observe that, in the linear and sublinear death processes, the extinction

probabilities coincide. This implies that although the state probabilities ρ�k(t) and }�k(t) di�er

for all 1 � k � n0, we have that

n0X
k=1

ρ�k(t) =

n0X
k=1

}�k(t): (3.91)

This can be checked by performing the following sum

n0X
k=1

Lfρ�k(t)g (z) (3.92)

=

n0X
k=1

�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)r z��1

z� + �(k + r)

=
z��1

�

n0X
k=1

�
n0
k

� n0�kX
r=0

�
n0 � k

r

�
(�1)r 1

z�

� + k + r

=
z��1

�

n0X
k=1

�
n0
k

�
(n0 � k)!�

z�

� + k
��

z�

� + k + 1
�
: : :
�
z�

� + n0

�
=

z��1

�

n0X
k=1

�
n0
k

�� (n0 � k + 1)�
�
z�

� + k
�

�
�
z�

� + n0 + 1
�

=
z��1

�

Z 1

0

(1� x)
z�

� �1
n0X
k=1

�
n0
k

�
xn0�k(1� x)kdx

=
z��1

�

Z 1

0

(1� x)
z�

� �1 (1� xn0) dx

=
1

z
� z��1

�

Z 1

0

xn0(1� x)
z�

� �1dx:

This coincides with the fourth-to-last step of (3.88) and therefore we can conclude that

n0X
k=1

ρ�k(t) = �
n0X
k=1

�
n0
k

�
(�1)kE�;1(��kt�) =

n0X
k=1

}�k(t): (3.93)

Mean value

Theorem 3.3.1. Consider the fractional sublinear death process M�(t), t > 0 de�ned above.

The probability generating function G�(u; t) =
Pn0

k=0 u
k}�k(t), t > 0, juj � 1, satis�es the
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following partial di�erential equation:

@�

@t�
G�(u; t) = �(n0 + 1)

�
1

u
� 1

�
[G�(u; t)� }�0(t)] + �(u� 1)

@

@u
G�(u; t): (3.94)

subject to the initial condition G�(u; 0) = un0 , for juj � 1, t > 0.

Proof. Starting from (3.71), we obtain that

d�

dt�

n0X
k=0

uk}�k(t) (3.95)

= ��
n0X
k=1

uk(n0 + 1� k)}�k(t) + �

n0�1X
k=0

uk(n0 � k)}�k+1(t);

so that

@�

@t�
G�(u; t) = � �(n0 + 1) [G�(u; t)� }�0(t)] + �u

@

@u
G�(u; t) (3.96)

+
�(n0 + 1)

u
[G�(u; t)� }�0(t)]� �

@

@u
G�(u; t)

= �(n0 + 1)

�
1

u
� 1

�
[G�(u; t)� }�0(t)] + �(u� 1)

@

@u
G�(u; t):

Theorem 3.3.2. The mean number of individuals EM�(t), t > 0 in the fractional sublinear

death process, reads

EM�(t) =

n0X
k=1

�
n0 + 1

k + 1

�
(�1)k+1E�;1(��kt�); t > 0; � 2 (0; 1]: (3.97)

Proof. From (3.94) and by considering that EM�(t) = @
@uG

�(u; t)
��
u=1

, we directly arrive at the

following initial value problem:8<: d�

dt� EM
�(t) = ��(n0 + 1) [1� }�0(t)] + �EM�(t);

EM�(0) = n0;
(3.98)

which can be solved by resorting to the Laplace transform, as follows:

LfEM�(t)g (z) = n0
z��1

z� � �
+ �(n0 + 1)

n0X
k=1

�
n0
k

�
(�1)k z��1

z� + �k
� 1

z� � �
(3.99)

= n0
z��1

z� � �
+

n0X
k=1

�
n0 + 1

k + 1

�
(�1)k

�
z��1

z� � �
� z��1

z� + �k

�
:

In (3.99), formula (3.85) must be considered. By inverting the Laplace transform we obtain that

EM�(t) (3.100)

= n0E�;1(�t
�) +

n0X
k=1

�
n0 + 1

k + 1

�
(�1)k [E�;1(�t

�)� E�;1(��kt�)]

= n0E�;1(�t
�) + E�;1(�t

�)

n0X
k=1

�
n0 + 1

k + 1

�
(�1)k
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�
n0X
k=1

�
n0 + 1

k + 1

�
(�1)kE�;1(��kt�)

=

n0X
k=1

�
n0 + 1

k + 1

�
(�1)k+1E�;1(��kt�);

as desired.

Remark 3.3.3. The mean value (3.97) can also be directly derived as follows.

EM�(t) =

n0X
k=0

k}�k(t) (3.101)

=

n0X
k=1

k

n0�kX
l=0

�
n0 � k

l

�
(�1)lE�;1(�(l+ 1)�t�)

=

n0X
k=1

k

n0+1�kX
l=1

�
n0 � k

l� 1

�
(�1)l�1E�;1(��lt�)

=

n0X
l=1

(�1)l�1E�;1(��lt�)
n0+1�lX
k=1

k

�
n0 � k

l� 1

�
:

It is now su�cient to show that

n0+1�lX
k=1

k

�
n0 � k

l� 1

�
=

�
n0 + 1

l+ 1

�
: (3.102)

Indeed,

n0+1�lX
k=1

k

�
n0 � k

l� 1

�
=

n0�1X
k=l�1

(n0 � k)

�
k

l� 1

�
(3.103)

=

n0�1X
k=l�1

(n0 + 1� k � 1)

�
k

l� 1

�

= (n0 + 1)

n0�1X
k=l�1

�
k

l� 1

�
� l

n0�1X
k=l�1

�
k + 1

l

�

= (n0 + 1)

n0X
k=l

�
k � 1

l� 1

�
� l

n0+1X
k=l+1

�
k � 1

l

�

= (n0 + 1)

�
n0
l

�
� l

�
n0 + 1

l+ 1

�
=

�
n0 + 1

l+ 1

�
:

The crucial step of (3.103) is justi�ed by the following formula

n0X
k=j

�
k � 1

j � 1

�
= 1 +

�
j

j � 1

�
+ � � �+

�
n0 � 1

j � 1

�
=

�
n0
j

�
: (3.104)

Figure 3.5 shows that in the sublinear case, the mean number of individuals in the population,

decays more slowly than in the linear case, as expected.

Note that (3.97) satis�es the initial condition EM�(0) = n0. In order to check this, it is su�cient

to show that

n0X
k=1

�
n0 + 1

k + 1

�
(�1)k+1 =

n0+1X
r=2

�
n0 + 1

r

�
(�1)r (3.105)
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Figure 3.5: Plot of EM0:7(t) (in black) and EM0:7(t) (in grey), n0 = 2.

=

"
n0+1X
r=0

�
n0 + 1

r

�
(�1)r

#
� 1 +

�
n0 + 1

1

�
= n0:

The details in (3.105) explain also the last step of (3.100).

Comparison of M�(t) with the fractional linear death process M�(t) and the fractional

linear birth process N�(t)

The distributions of the fractional linear and sublinear processes examined above display a be-

haviour which is illustrated in Table 3.1.

Table 3.1: State probabilities ρ�k(t) for the fractional linear death process M�(t), t > 0, and }�k(t)

for the fractional sublinear death process M�(t).
State Probabilities

ρ�n0 (t) = E�;1(��n0t�)

}�n0 (t) = E�;1(��t�)

ρ�n0�1(t) = n0 [E�;1(�(n0 � 1)�t�)� E�;1(�n0�t�)]

}�n0�1(t) = E�;1(��t�)� E�;1(�2�t�)

...

ρ�k(t) =
�
n0
k

�Pn0�k
l=0

�
n0�k

l

�
(�1)lE�;1(�(k + l)�t�)

}�k(t) =
Pn0�k

l=0

�
n0�k

l

�
(�1)lE�;1 (� (l+ 1)�t�)

...

ρ�1(t) = n0
Pn0�1

l=0

�
n0�1

l

�
(�1)lE�;1(�(1 + l)�t�)

}�1(t) =
Pn0�1

l=0

�
n0�1

l

�
(�1)lE�;1 (� (l+ 1)�t�)

ρ�0(t) =
Pn0

l=0

�
n0
l

�
(�1)lE�;1(�l�t�)

}�0(t) =
Pn0

l=0

�
n0
l

�
(�1)lE�;1(�l�t�)
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Table 3.2: Mean values for the fractional linear birth N�(t), fractional linear death M�(t) and

fractional sublinear death M�(t) processes.

EN�(t) = E�;1(�t�)

EM�(t) = n0E�;1(��t�)

EM�(t) =
Pn0

k=1

�
n0+1

k+1

�
(�1)k+1E�;1(��kt�)

The most striking fact about the models dealt with above, is that the linear probabilities decay

faster than the corresponding sublinear ones, for small values of k; whereas, for large values of k,

the sublinear probabilities take over and the extinction probabilities in both cases coincide. The

reader should also compare the state probabilities of the death models examined here with those

of the fractional linear pure birth process (with birth rate � and one progenitor). These read

p�k(t) =

kX
j=1

�
k � 1

j � 1

�
(�1)j�1E�;1(��jt�); k � 1: (3.106)

Note that p�1(t) = E�;1(��t�) is of the same form as }�n0(t) = E�;1(��t�). We now show that

1X
k=n0+1

p�k(t) = 1�
n0X
k=1

p�k(t) (3.107)

= 1�
n0X
k=1

kX
j=1

�
k � 1

j � 1

�
(�1)j�1E�;1(��jt�)

= 1�
n0X
j=1

(�1)j�1E�;1(��jt�)
n0X
k=j

�
k � 1

j � 1

�

= 1�
n0X
j=1

(�1)j�1
�
n0
j

�
E�;1(��jt�)

= (3.85) with � replacing �:

Note that in the above step we used formula (3.104).

By comparing formulae (3.4) of Orsingher and Polito (2010) and (3.80) above, we arrive at the

conclusion that (for � = �)

Pr fN�(t) = k j N�(0) = 1g (3.108)

=

kX
j=1

�
k � 1

j � 1

�
(�1)j�1E�;1(��jt�)

= Pr fM�(t) = n0 + 1� k jM(0) = n0g ; 1 � k � n0:

For k = 0 the probability of extinction corresponds to the probability of the event fN�(t) > n0g
for the fractional linear birth process.



Chapter 4

Fractional Linear Birth-Death

Processes

Summary

In this chapter we introduce and examine a fractional linear birth-death process N� (t), t > 0,

whose fractionality is obtained by replacing the time-derivative with a fractional derivative in the

system of di�erence-di�erential equations governing the state probabilities p�k (t), t > 0, k � 0. We

present a subordination relation connecting N� (t), t > 0, with the classical birth-death process

N (t), t > 0, by means of the time process T2� (t), t > 0, whose distribution is related to a time-

fractional di�usion equation. We obtain explicit formulae for the extinction probability p�0 (t),

and the state probabilities p�k (t), t > 0, k � 1, in the three relevant cases � > �, � < �, � = �

(where � and � are respectively the birth and the death rates) and discuss their behaviour in

speci�c situations. We highlight the connection of the fractional linear birth-death process with

the fractional pure birth process. Finally the mean values EN� (t) and VarN� (t) are derived and

analysed.
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4.1 Introduction

In Chapter 2 (see also Orsingher and Polito (2010)) we constructed a fractional version of the pure

birth process N � (t) ; t > 0 (both in the general and in the linear case), by considering the fractional

equations governing their distributions. In this chapter we examine the linear birth-death process

N� (t), t > 0, where the state probabilities

p�k (t) = Pr fN� (t) = k j N� (0) = 1g ; (4.1)

are assumed to satisfy the fractional di�erence-di�erential equations

d�pk (t)

dt�
= � (�+ �) kpk (t) + � (k � 1) pk�1 (t) + � (k + 1) pk+1 (t) ; (4.2)

with k � 1, 0 < � � 1.

The fractional operator appearing in (4.2) is de�ned as8><>:
d�f (t)

dt�
=

1

� (1� �)

Z t

0

d
dsf (s)

(t� s)
� ds; 0 < � < 1;

f 0 (t) ; � = 1:

(4.3)

The derivative (4.3) is usually called Caputo or Dzhrbashyan{Caputo fractional derivative and

di�ers from the classical Riemann{Liouville derivative by exchanging the integral and derivative

operators (see Podlubny (1999)). An advantage of Caputo over Riemann{Liouville is that Caputo

does not require fractional-order derivatives in the initial conditions which is good for practical

purposes. The positive parameters � and � are respectively the birth and death rates.

The exact distribution of the linear birth-death process reads (see Bailey (1964) page 91, Feller

(1968) page 454)

p1k (t) = (�� �)
2
e�(���)t

�
�
�
1� e�(���)t

��k�1�
�� �e�(���)t

�k+1
; k � 1; t > 0; � 6= �: (4.4)

When � = � the distribution (4.4) is much simpler and takes the form

p1k (t) =
(�t)

k�1

(1 + �t)
k+1

; t > 0; k � 1: (4.5)

The exact expressions for the extinction probabilities are

p10 (t) =

8><>:
�t

1 + �t
� = �;

�� �e�t(���)

�� �e�t(���)
� 6= �:

(4.6)

From (4.2) we can infer that the probability generating function of N� (t), t > 0,

G� (u; t) = EuN�(t); juj � 1; 0 < � � 1; t > 0; (4.7)

satis�es the Cauchy problem8<:
@�

@t�
G� (u; t) = (�u� �) (u� 1)

@

@u
G� (u; t) ; � 2 (0; 1]; juj � 1;

G� (u; 0) = u:
(4.8)



59 Fractional Linear Birth-Death Processes

We will show below that from (4.8) one can arrive at the subordination relation

N� (t)
i.d.
= N (T2� (t)) ; t > 0; (4.9)

where T2� (t), t > 0, is the random time process whose distribution is obtained by folding the

solution of the following fractional di�usion equation8<:
@2�q

@t2�
=

@2q

@x2
; 0 < � � 1; x 2 R; t > 0;

q (x; 0) = � (x) :
(4.10)

The processN (t) ; t > 0, found in (4.9), is the classical linear birth-death process whose distribution

is given in (4.4), (4.5) and (4.6). A relation similar to (4.9) holds also for the fractional pure birth

process (Orsingher and Polito (2010)) and the fractional Poisson process (Beghin and Orsingher

(2009b)). In this context it represents the main tool of our analysis and leads to a number of

interesting explicit distributions. We consider the subordinator related to (4.10) because the p.g.f.

of the distribution of (4.9) satis�es the simplest fractional equation generalising the classical one.

For the extinction probabilities of the fractional linear birth-death process we have the following

attractive formulas

p�0 (t) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

�

�
� �� �

�

+1X
m=1

��
�

�m
E�;1 (�t� (�� �)m) ; � > �;

1� �� �

�

+1X
m=1

�
�

�

�m
E�;1 (�t� (�� �)m) ; � < �;

1�
Z +1

0

e�wE�;1 (��t�w) dw � = �:

(4.11)

for t > 0; 0 < � � 1.

The function E�;� (x), appearing in (4.11) is the generalised Mittag{Le�er function, de�ned as

E�;� (x) =

+1X
m=0

xm

� (�m+ �)
; x 2 R; � > 0; � > 0: (4.12)

From (4.11) we can easily retrieve the classical extinction probabilities (4.6) for � = 1 by holding

in mind that E1;1 (x) = ex.

For the state distributions p�k (t) ; t > 0; k � 1 we have formulas similar to (4.11) but with a

more complicated structure.

p�k (t) =

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

�
�� �

�

�2 1X
l=0

�
l+ k

l

���
�

�l
�

k�1X
r=0

(�1)r
�
k � 1

r

�
E�;1 (� (l+ r + 1) (�� �) t�) ; � > �;

�
�

�

�k�1�
�� �

�

�2 1X
l=0

�
l+ k

l

��
�

�

�l
�

k�1X
r=0

(�1)r
�
k � 1

r

�
E�;1 (� (l+ r + 1) (�� �) t�) ; � < �;

(�1)k�1 �k�1
k!

dk

d�k
[� (1� p�0 (t))] ; � = �:

(4.13)
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Also from (4.13), for � = 1 one can reobtain the distributions (4.4), (4.5).

We will show below that the probabilities p�k (t), t > 0, k � 1, appearing in (4.13) are strictly

related to the distributions of the fractional linear pure birth processN�(t), t > 0, with an arbitrary

number of progenitors and a birth rate equal to � � � with � > �. In particular, we can extract

from the �rst of (4.13) that

Pr fN� (t) = k j N� (0) = 1g (4.14)

=
�� �

�

1X
l=0

��
1 +

�

k (�� �)

�
Pr fG = lg+ �

k

d

d�
Pr fG = lg

�
� Pr fN� (t) = k + l j N� (0) = l+ 1g ;

where

Pr fG = lg =
�
1� �

�

���
�

�l
; l � 0; (4.15)

is a geometric law for the number of progenitors. We also note that the distribution (4.13), for

� = � can be expressed in terms of the extinction probability (4.11):

Pr fN� (t) = kg = (�1)k�1 �k�1
k!

dk

d�k
[� (1� Pr fN� (t) = 0g)] ; k � 1; t > 0: (4.16)

The extinction probability (4.11) can be viewed as being a suitable weighted mean of the waiting

times of the fractional Poisson process P�
� (t) ; t > 0, for which it is well-known that (Beghin and

Orsingher (2009b))

Pr fP�
� (t) = 0g = E�;1 (��t�) ; t > 0: (4.17)

The fractional linear birth-death process dealt with in this chapter, provides a generalisation

of the classical linear birth-death process and may well prove to be capable of modelling queues

in service systems, epidemics and the evolution populations under accelerating conditions. The

introduction of the fractional derivative furnishes the system with a global memory. Furthermore,

the qualitative features illustrated in the last section show that the fractional counterpart of the

linear birth-death process has a faster mean evolution (and variance expansion) as was pointed

out in similar fractional generalisations, e.g. for the Poisson process (see Cahoy (2007), Uchaikin

and Sibatov (2008), Laskin (2003) and Beghin and Orsingher (2009b)), for fractional branching

processes (Uchaikin et al. (2008)) and for pure birth processes (Orsingher and Polito (2010)).

4.2 The extinction probabilities

We begin this section by proving the subordination relation (4.9) which is interlaced with all the

distributional results of this chapter.

Theorem 4.2.1. The fractional linear birth-death process N� (t) ; t > 0, can be represented

as

N� (t) = N (T2� (t)) ; t > 0; 0 < � � 1; (4.18)

where N (t) ; t > 0, is the classical linear birth-death process and T2� (t) ; t > 0, is a ran-

dom process whose one-dimensional distribution coincides with the folded solution to the

fractional di�usion equation

@2�q

@t2�
=

@2q

@x2
; 0 < � � 1; x 2 R; t > 0; (4.19)

subject to the initial conditions q (x; 0) = � (x) for 0 < � � 1 and qt (x; 0) = 0 for 1=2 < � � 1.
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Proof. The Laplace transform ~G� (u; z) =
R1
0

e�ztG� (u; t) dt, applied to the fractional p.d.e.8<:
@�

@t�
G� (u; t) = (�u� �) (u� 1)

@

@u
G� (u; t) ; 0 < � � 1;

G� (u; 0) = u:
(4.20)

yields

z� ~G� (u; z)� z��1u = (�u� �) (u� 1)
@

@u
~G� (u; z) ; 0 < � � 1; z > 0; juj � 1: (4.21)

We now observe that

~G� (u; z) =

Z 1

0

e�zt
" 1X
k=0

ukPr fN� (t) = kg
#
dt: (4.22)

If (4.18) holds then

~G� (u; z) =

Z 1

0

e�zt
" 1X
k=0

uk
Z 1

0

Pr fN (s) = kgPr fT2� (t) 2 dsg
#
dt (4.23)

=

Z 1

0

e�zt
�Z 1

0

G (u; s) Pr fT2� (t) 2 dsg
�
dt

=

Z 1

0

G (u; s) z��1e�sz
�

ds:

In the last step we applied the folded version of equation (3.3) in Orsingher and Beghin (2004) for

c = 1, that being therefore Z 1

0

e�ztPr fT2� (t) 2 dsg = e�sz
�

z��1ds: (4.24)

We now show that (4.23) satis�es equation (4.21); by inserting the Laplace transform into (4.21)

we obtain

z�z��1
Z 1

0

G (u; s) e�sz
�

ds� z��1u = (�u� �) (u� 1) z��1
Z 1

0

@

@u
G (u; s) e�sz

�

ds: (4.25)

The inversion of the integral with @=@u is justi�ed because���� @@uG(u; s)
���� =

�����
1X
k=1

kuk�1Pr fN(s) = kg
����� �

1X
k=1

kPr fN(s) = kg = EN(s) <1: (4.26)

Taking into account that G (u; t) satis�es the �rst-order p.d.e.

@G

@s
= (�u� �) (u� 1)

@G

@u
; (4.27)

from (4.25), we have that

z�
Z 1

0

G (u; s) e�sz
�

ds� u =

Z 1

0

@

@s
G (u; s) e�sz

�

ds (4.28)

= G (u; s) e�sz
�
���s=1
s=0

+ z�
Z 1

0

G (u; s) e�sz
�

ds

= �u+ z�
Z 1

0

G (u; s) e�sz
�

ds:

This shows that (4.18) holds for the one-dimensional distributions. This concludes the proof of

theorem 4.2.1.
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Remark 4.2.1. For � = 1=2n; n 2 N, the density fT2� of the random time T2� appearing in

(4.18) becomes the probability density of an (n� 1)-iterated Brownian motion, i.e.

Pr
n
T 1

2n�1
(t) 2 ds

o
= Pr fjB1 (jB2 (� � � jBn (t)j � � � )j )j 2 dsg (4.29)

= ds 2n
Z 1

0

e�
s2

4!1p
4�!1

d!1

Z 1

0

e�
!2
1

4!2p
4�!2

d!2 � � �
Z 1

0

e�
!2
n�1
4tp
4�t

d!n�1;

as can easily be inferred from Theorem 2.1 in Orsingher and Beghin (2009). The di�erences

between (4.29) and its corresponding formula in the cited paper, is that here the di�usion

coe�cient is equal to 1.

In the following theorems we derive separately the three di�erent expressions of the probability

of extinction in the cases � > �; � < � and � = �. We prefer to treat them separately because

their proofs are somewhat di�erent.

Theorem 4.2.2. For a fractional linear birth-death process with rates � > � the probability

of extinction has the following form

p�0 (t) = Pr fN� (t) = 0g = �

�
� �� �

�

1X
m=1

��
�

�m
E�;1 (�t� (�� �)m) ; (4.30)

for t > 0; 0 < � � 1, and where E�;1 (x) is the Mittag{Le�er function (4.12).

Proof. In light of the subordination relation (4.18) of Theorem 4.2.1 and by taking into account

the extinction probability of the classical linear birth-death process

Pr fN (t) = 0g = �� �e�t(���)

�� �e�t(���)
; t > 0; (4.31)

we can write that

Pr fN� (t) = 0g =
Z +1

0

�� �e�s(���)

�� �e�s(���)
Pr fT2� (t) 2 dsg ; (4.32)

for all t > 0 and 0 < � � 1. By taking the Laplace transform of (4.32) we obtain thatZ 1

0

e�ztPr fN� (t) = 0g dt (4.33)

=

Z 1

0

�� �e�s(���)

�� �e�s(���)
z��1e�sz

�

ds

=
�

�

Z 1

0

�
1� e�s(���)

� 1X
m=0

��
�
e�s(���)

�m
z��1e�sz

�

ds

=
�

�

1X
m=0

��
�

�m
z��1

�Z 1

0

�
e�s(���)m�sz

� � e�s(���)(1+m)�sz�
�
ds

�

=
�

�
z��1

( 1X
m=0

��
�

�m 1

(�� �)m+ z�
�

1X
m=1

��
�

�m�1 1

(�� �)m+ z�

)

=
�

�
z��1

1X
m=1

1

(�� �)m+ z�

��
�

�m�
1� �

�

�
+
�

�
z��1

1

z�
:

The above steps are valid because 0 < (�=�)e�s(���) < 1 for � > �. By keeping in mind the

Laplace transform of the Mittag{Le�er function E�;1(�xt�)Z 1

0

e�stE�;1(�xt�)dt = s��1

s� + x
; (4.34)
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we readily arrive at the claimed result.

Remark 4.2.2. When � = 1, from (4.30) we obtain the form of the extinction probability

(4.31) for the classical birth-death model.

Pr fN (t) = 0g = �� �

�

"
+1X
m=1

��
�

�m
e�(���)mt

#
+
�

�
(4.35)

=
�� �

�

�
1

1� �
�e
�(���)t � 1

�
+
�

�
=

�� �

�

"
�
�e
�t(���)

1� �
�e
�t(���)

#
+
�

�
=

�� �e�t(���)

�� �e�t(���)
:

From (4.32) for � = 1, Pr fT2 (t) 2 dsg = � (s� t) and again we retrieve result (4.31).

Remark 4.2.3. From (4.30) we note that

Pr fN� (t) = 0g t!+1�! �

�
; 8 � 2 (0; 1] (4.36)

which is the asymptotic extinction probability irrespective of the value of �.

Let us now deal with the case � < �, i.e. when the rate of birth is strictly lower than the rate

of death.

Theorem 4.2.3. For � > � the probability p�0 (t) = Pr fN� (t) = 0g of complete extinction of

the population is

p�0 (t) = 1� �� �

�

+1X
m=1

�
�

�

�m
E�;1 (�t� (�� �)m) ; (4.37)

where t > 0, 0 < � � 1 and E�;1 (x) is the Mittag{Le�er function (4.12).

Proof. We start by rewriting (4.31) as

p0 (t) =
�e�t(���) � �

�e�t(���) � �
: (4.38)

Using (4.18) we are able to write

p�0 (t) =

Z +1

0

�e�s(���) � �

�e�s(���) � �
Pr fT2� (t) 2 dsg : (4.39)

By applying the Laplace transform to (4.39) we obtain that

L�0 (z) =

Z +1

0

�e�s(���) � �

�e�s(���) � �
z��1e�sz

�

ds =

Z +1

0

e�s(���) � 1
�
�e
�s(���) � 1

z��1e�sz
�

ds (4.40)

= z��1
Z +1

0

�
1� e�s(���)

�
e�sz

�
+1X
m=0

�
�

�
e�s(���)

�m

= z��1
+1X
m=0

�
�

�

�m Z +1

0

�
1� e�s(���)

�
e�sz

�

e�s(���)mds

= z��1
+1X
m=0

�
�

�

�m Z +1

0

e�s(���)m�sz
� � e�s(���)(m+1)�sz�ds

= z��1
+1X
m=0

�
�

�

�m�
1

(�� �)m+ z�
� 1

(�� �) (m+ 1) + z�

�
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= z��1
(

+1X
m=0

�
�

�

�m
1

(�� �)m+ z�
�

+1X
m=1

�
�

�

�m�1
1

(�� �)m+ z�

)

= z��1
(

1

z�
+

+1X
m=1

�
�

�

�m
1

(�� �)m+ z�
� �

�

+1X
m=1

�
�

�

�m
1

(�� �)m+ z�

)

= z��1
(

1

z�
+
h
1� �

�

i +1X
m=1

�
�

�

�m
1

(�� �)m+ z�

)

=
1

z
+
h
1� �

�

i +1X
m=1

�
�

�

�m
z��1

(�� �)m+ z�
:

By inverting (4.40) by means of (4.34) we retrieve formula (4.37).

Remark 4.2.4. When � = 1 from (4.37) we reobtain the extinction probability of the classical

birth-death process (4.38).

p10 (t) = 1�
�
�� �

�

� +1X
m=1

�
�

�

�m
e�(���)mt (4.41)

= 1�
�
�� �

�

� 
1

1� �
�e
�(���)t � 1

!

= 1�
�
�� �

�

�" �
�e
��(���)t

1� �
�e
�(���)t

#

= 1 +

�2

� e
�(���)t � �e�(���)t

�� �2

� e
�(���)t =

�� �e�(���)t

�� �2

� e
�(���)t

=
1� e�(���)t

1� �
�e
�(���)t =

�e�t(���) � �

�e�t(���) � �
:

Remark 4.2.5. Population extinction in the long run is evident from (4.37) as

Pr fN� (t) = 0g t!+1�! 1 (4.42)

due to the death rate exceeding the birth rate for all 0 < � � 1.

In the next theorem we treat the remaining case i.e. when � = �.

Theorem 4.2.4. For the fractional linear birth process, when the rate of birth equals the rate

of death (i.e. when � = �), the extinction probability p�0 (t) reads

p�0 (t) =
�t�

�

Z +1

0

e�wE�;� (�w�t�) dw = 1�
Z +1

0

e�wE�;1 (��t�w) dw (4.43)

with t > 0, 0 < � � 1 and E�;1 (x) is the Mittag{Le�er function (4.12).

Proof. Resorting again to (4.18) we write

p�0 (t) =

Z +1

0

�s

1 + �s
Pr fT2� (t) 2 dsg : (4.44)

We now apply the Laplace transform once again thus obtaining

L�0 (z) =

Z +1

0

�sz��1e�z
�s

�s+ 1
ds (4.45)
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= �z��1
Z +1

0

se�z
�s

Z +1

0

e�w(�s+1)dw ds

= �z��1
Z +1

0

e�w
Z +1

0

se�z
�s�w�sds dw

(y=s(z�+�w))
= �z��1

Z +1

0

e�w
Z +1

0

y

z� + �w
e�y

dy

z� + �w
dw

= �

Z +1

0

e�w
1

z� + �w
� z��1

z� + �w
dw:

By inverting the Laplace transform we obtain the integral form

p�0 (t) = �

Z +1

0

e�w
Z t

0

u��1E�;� (�w�u�)E�;1

��w� (t� u)
��
du dw; (4.46)

which involves convolutions of generalised Mittag{Le�er functions E�;� (t), de�ned, for example

in Podlubny (1999), page 17, equation (1.56). The inner integral in (4.46) can be worked out

explicitly as followsZ t

0

u��1E�;� (�w�u�)E�;1

��w� (t� u)
��
du (4.47)

=

1X
m=0

1X
r=0

(�w�)m
� (�m+ �)

(�w�)r
� (�r + 1)

Z t

0

u��1u�m (t� u)
�r
du

=

1X
m=0

1X
r=0

(�w�)m+r

� (�m+ �) � (�r + 1)
t�+�(m+r)� (�m+ �) � (�r + 1)

� (� (m+ r) + � + 1)

(m+r=n)
=

1X
m=0

1X
n=m

(�w�)n
� (�n+ � + 1)

t�+�n =

1X
n=0

(�w�)n
� (�n+ � + 1)

t�+�n (n+ 1)

=
t�

�

1X
n=0

(�w�t�)n
� (� (n+ 1))

=
t�

�
E�;� (�w�t�) :

The extinction probability now reads

p�0 (t) =
�t�

�

Z 1

0

e�wE�;� (�w�t�) dw: (4.48)

Using the following relation
d

dx
E�;1 (x) =

1

�
E�;� (x) ; (4.49)

the extinction probability (4.48) takes the alternative form (4.43), because

p�0 (t)
(�w�t�=y)

= ��t�

�

Z �1

0

E�;� (y) e
y
�t� dy (4.50)

=
1

�

Z 0

�1
E�;� (y) e

y
�t� dy

(4.49)
=

Z 0

�1
e

y
�t�

d

dy
E�;1 (y) dy

= 1� 1

�t�

Z 0

�1
e

y
�t� E�;1 (y) dy

(w=� y
�t� )

= 1�
Z 1

0

e�wE�;1 (��t�w) dw:

This concludes the proof of (4.43).

Remark 4.2.6. From (4.43), when � = 1, again we retrieve the classical form

p0 (t) =
�t

�t+ 1
; (4.51)

as expected.
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Remark 4.2.7. The limiting extinction probability when � = � is

Pr fN� (t) = 0g t!+1�! 1 (4.52)

for all values of 0 < � � 1.

Remark 4.2.8. The last expression in (4.43) is in some way similar to the Riemann limit

for �! � of (4.30) and (4.37).

Remark 4.2.9. We can rewrite the probabilities (4.11) in an alternative form which permits

us to give an interesting interpretation to their structure.

For the case � > � we can write

p�0 (t) =
�

�

"
1� �

�

�� �

�

1X
m=1

��
�

�m
E�;1 (�t� (�� �)m)

#
(4.53)

=
�

�

"
1�

1X
m=1

Pr fG = m j G � 1gE�;1 (�t� (�� �)m)

#
;

where G is a geometric r.v. with distribution

Pr (G = m j G � 1) =
Pr (G = m)

Pr (G � 1)
=

�� �

�

��
�

�m �

�
; m � 1: (4.54)

The treatment of the opposite case � < � is similar except that a di�erent conditional

geometric r.v. G0 must be introduced, de�ned as

Pr (G0 = m j G0 � 1) =
�

�

�
�

�

�m
�� �

�
; m � 1; (4.55)

and thus

p�0 (t) = 1�
1X

m=1

Pr (G0 = m j G0 � 1)E�;1 (�t� (�� �)m)): (4.56)

A well-known property for a fractional Poisson process n�� (t) ; t > 0, of degree 0 < � � 1

and parameter � > 0 is that (Beghin and Orsingher (2009b))

Pr fN�� (t) = 0g = E�;1 (�t��) = Pr (T� � t) (4.57)

where T� = inf (s : P�
� (s) = 1). This permits us to rewrite the extinction probabilities also in

terms of waiting times of a fractional Poisson process with a random rate �G.
For the case � = � the interpretation is straightforward because the waiting time of the

related fractional Poisson process has a rate �E where E is an exponentially distributed r.v.

with parameter equal to 1.

Remark 4.2.10. In the case � = �, it is well-known that the extinction probability in the

classical birth-death process, p0 (s), s > 0 satis�es the nonlinear Riccati di�erential equation

p00 (s) + 2�p0 (s) = �+ � [p0 (s)]
2
: (4.58)

By using (4.58) we can provide an alternative proof for the subordination relation (4.18)Z 1

0

p00 (s)Pr (T2� (t) 2 ds) + 2�p�0 (t) = �+ �

Z 1

0

[p0 (s)]
2
Pr (T2� (t) 2 ds) (4.59)
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,
Z 1

0

�Pr (T2� (t) 2 ds)

(1 + �s)
2 + 2�p�0 (t) = �+ �

Z 1

0

�2s2

(1 + �s)
2Pr (T2� (t) 2 ds)

,
Z 1

0

�

�
1� �2s2

�
(1 + �s)

2 Pr (T2� (t) 2 ds) = �� 2�p�0 (t)

,
Z 1

0

1� �s

1 + �s
Pr (T2� (t) 2 ds) = 1� 2p�0 (t)

, 2p�0 (t) = 2

Z 1

0

�s

1 + �s
Pr (T2� (t) 2 ds)

, p�0 (t) =

Z 1

0

�s

1 + �s
Pr (T2� (t) 2 ds) : (4.60)

Remark 4.2.11. By exploiting the subordination relation (4.18) and the fact that the extinc-

tion probability in the classical case satis�es the following integral equation

p0 (t) =

Z t

0

e�(�+�)u�du+
Z t

0

�e�(�+�)u [p0 (t� u)]
2
du (4.61)

we can o�er an integral form for p�0 (t) as

p�0 (t) =

Z +1

0

�Z s

0

e�(�+�)u�du+
Z s

0

�e�(�+�)u [p0 (s� u)]
2
du

�
Pr fT2� (t) 2 dsg : (4.62)

We note that the �rst integral of (4.62) can be worked out explicitly as follows

�

Z 1

0

e�zt
�Z 1

0

Z s

0

e�(�+�)uPr fT2� (t) 2 dsg du
�
dt =

�

z

1

�+ �+ z�
: (4.63)

This can be directly inverted so as to obtainZ 1

0

Z s

0

e�(�+�)u�Pr fT2� (t) 2 dsg du = �

Z t

0

w��1E�;� (� (�+ �)w�) dw (4.64)

=
�t�

�

1X
m=0

(� (�+ �) t�)
m

(m+ 1)� (�m+ �)
=

�

�+ �
[1� E�;1 (�(�+ �)t�)] :

4.3 The state probabilities

Here we present three theorems concerning the structure of the state probabilities Pr fN� (t) = kg,
t > 0, with 0 < � � 1. Three cases must be distinguished and treated separately as in section 4.2,

namely � > �, � < � and � = �.

Theorem 4.3.1. For the case � > �, the state probabilities p�k (t), k � 1, t > 0, 0 < � � 1 in

the fractional linear birth-death process N� (t), t > 0, have the following form

p�k (t) (4.65)

=

�
�� �

�

�2 1X
l=0

�
l+ k

l

���
�

�l k�1X
r=0

(�1)r
�
k � 1

r

�
E�;1 (� (l+ r + 1) (�� �) t�) :

Proof. By exploiting the subordination relation (4.18) and by conveniently rewriting the well-

known form of the state probabilities of the classical linear birth-death process, we have that

p�k (t) = (�� �)
2
�k�1

Z 1

0

e�(���)s
�
1� e�(���)s

�k�1�
�� �e�(���)s

�k+1
Pr (T2�(t) 2 ds) : (4.66)



4.3 The state probabilities 68

By applying the Laplace transform we obtain

L�k (z) = (�� �)
2
�k�1

Z 1

0

e�(���)s
�
1� e�(���)s

�k�1�
�� �e�(���)s

�k+1
z��1e�sz

�

ds (4.67)

= (�� �)
2
�k�1

1X
l=0

k�1X
r=0

�� (k + 1)

l

�
(�1)l

��
�

�l
��(k+1)�

�
�
k � 1

r

�
(�1)r z��1

Z 1

0

e�sz
�

e�(���)sle�(���)sre�(���)sds

=

�
�� �

�

�2 1X
l=0

k�1X
r=0

�
l+ k

l

��
k � 1

r

�
(�1)r

��
�

�l
z��1

Z 1

0

e�s(z
�+(���)(l+r+1))ds

=

�
�� �

�

�2 1X
l=0

k�1X
r=0

�
l+ k

l

��
k � 1

r

�
(�1)r

��
�

�l z��1

z� + (�� �) (l+ r + 1)
;

which can be easily inverted by using (4.34), thus obtaining (4.65).

Remark 4.3.1. We check that, for � = 1, formula (4.65) converts into the well-known

distribution of the linear birth-death process, thus being its fractional extension. For � = 1

we get from (4.65) that

p1k (t) =

�
�� �

�

�2 1X
l=0

�
l+ k

l

���
�

�l k�1X
r=0

(�1)r
�
k � 1

r

�
e�(���)t(l+r+1): (4.68)

We now observe that

k�1X
r=0

(�1)r
�
k � 1

r

�
e�t(���)r =

�
1� e�(���)t

�k�1
; (4.69)

1X
l=0

�
l+ k

l

���
�

�l
e�(���)tl =

�
1� �

�
e�(���)t

��(k+1)

; (4.70)

where in (4.70) we applied the binomial expression

1X
l=0

�
a+ l

l

�
bl =

1X
l=0

�� (a+ 1)

l

�
(�b)l = (1� b)

�(a+1)
: (4.71)

This permits us to write

p1k (t) =

�
�� �

�

�2

e�(���)t
�
1� e�(���)t

�k�1�
1� �

�e
�(���)t�k+1

; � < �; (4.72)

which coincides with (4.4).

Remark 4.3.2. In order to prove that
P1

k=0 p
�
k(t) = 1 for � > � (formula (4.65)), we can

resort again to the Laplace transform and prove that
P1

k=0

R1
0

e�ztp�k(t)dt = 1=z. We �rst

calculate

1X
k=1

Z 1

0

e�ztp�k(t)dt (4.73)

=

1X
k=1

�
�� �

�

�2 1X
l=0

k�1X
r=0

�
l+ k

l

��
k � 1

r

�
(�1)r

��
�

�l z��1

z� + (�� �) (l+ r + 1)
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=

1X
k=1

�
�� �

�

�2 1X
l=0

k�1X
r=0

�� (k + 1)

l

�
(�1)l

�
k � 1

r

�
(�1)r

��
�

�l
z��1

�
Z 1

0

e�sz
�

e�ls(���)e�sr(���)e�s(���)ds:

By keeping in mind formulae (4.69) and (4.70), we have that

1X
k=1

Z 1

0

e�ztp�k(t)dt =
1X
k=1

(�� �)2�k�1
Z 1

0

e�s(���)
�
1� e�s(���)

�k�1�
�� �e�s(���)

�k+1
z��1e�sz

�

ds (4.74)

= (�� �) z��1
Z 1

0

e�sz
�

�� �e�s(���)
:

By using the Laplace transform of the extinction probability (second line of formula (4.33))

we �nally obtain

1X
k=0

Z 1

0

e�ztp�k(t)dt (4.75)

= (�� �) z��1
Z 1

0

e�sz
�

�� �e�s(���)
+

Z 1

0

�� �e�s(���)

�� �e�s(���)
z��1e�sz

�

ds

=

Z 1

0

z��1e�sz
�

ds =
1

z
;

as desired.

Remark 4.3.3. The distribution (4.65) can be expressed in terms of the probability law of a

fractional linear birth process with rate �� � which reads

p�k (t) = Pr fN� (t) = k + l j N� (0) = l+ 1g (4.76)

=

�
k + l� 1

k � 1

� k�1X
r=0

(�1)r
�
k � 1

r

�
E�;1 (� (r + 1 + l) (�� �) t�)

where l+1 initial progenitors are assumed (see Orsingher and Polito (2010) formula (3.59)).

If we write

Pr fG = lg =
�
1� �

�

���
�

�l
; l � 0; (4.77)

then formula (4.65) can be rewritten as

p�k (t) =

�
�� �

�

�2 1X
l=0

l+ k

k

��
�

�l
Pr fN�(t) = k + l j N�(0) = l+ 1g (4.78)

=
�� �

�

1X
l=0

��
1 +

�

k (�� �)

�
Pr (G = l) +

�

k

d

d�
Pr (G = l)

�
� Pr fN� (t) = k + l j N� (0) = l+ 1g ;

because
�

k

d

d�
Pr(G = l) =

l

k

�
1� �

�

���
�

�l
� �

k (�� �)
Pr(G = l): (4.79)

Result (4.78) shows that for large values of k we have the following interesting approximation

p�k (t) �
�� �

�

1X
l=0

Pr (G = l)Pr fN� (t) = k + l j N� (0) = l+ 1g :
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Theorem 4.3.2. For a fractional linear birth-death process N� (t), t > 0, with � > �, the

probabilities p�k (t) = Pr fN� (t) = kg, k � 1, have the following form

p�k (t) =

�
�� �

�

�2�
�

�

�k�1 1X
l=0

�
l+ k

l

��
�

�

�l
(4.80)

�
k�1X
r=0

(�1)r
�
k � 1

r

�
E�;1 (� (l+ r + 1) (�� �) t�) :

Proof. By resorting again to relation (4.18), in virtue of formula (4.4) suitably rearranged, we can

write

p�k (t) =

Z 1

0

(�� �)
2
e�(���)s�k�1

�
e�(���)s � 1

�k�1�
�e�(���)s � �

�k+1
Pr (T2� (t) 2 ds) : (4.81)

By applying the Laplace transform we have (we skip here some steps similar to those of the proof

of the previous theorem)

L�k (z) =

Z 1

0

(�� �)
2
e�(���)s (��)k�1

�
1� e�(���)s

�k�1
(��)k+1

�
1� �

�e
�(���)s

�k+1
z��1e�sz

�

ds (4.82)

=

�
�� �

�

�2�
�

�

�k�1 1X
l=0

�
l+ k

l

��
�

�

�l

�
k�1X
r=0

(�1)r
�
k � 1

r

�
z��1

Z 1

0

e�s(z
�+(���)(l+r+1))ds

=

�
�� �

�

�2�
�

�

�k�1 1X
l=0

�
l+ k

l

��
�

�

�l

�
k�1X
r=0

(�1)r
�
k � 1

r

�
z��1

z� + (�� �) (l+ r + 1)
:

By transforming equation (4.82) we easily arrive at the result (4.80).

Remark 4.3.4. When k = 1 equation (4.65) takes a simple form

p�1 (t) =

�
�� �

�

�2 1X
l=0

(l+ 1)
��
�

�l
E�;1 (� (l+ 1) (�� �) t�) (4.83)

=

�
�� �

�

�2 1X
l=1

l
��
�

�l�1
E�;1 (�l (�� �) t�) :

where � > �. For the case � < � we obtain essentially the same expression with � and �

exchanged.

An interpretation similar to that in (4.78) is valid for the case � > � as well. The following

theorem describes the structure of the state probabilities p�k (t), k � 1 in the case where � = �,

i.e. when the birth rate equals the death rate.

Theorem 4.3.3. In the case � = � the probabilities p�k (t) = Pr fN� (t) = kg of the fractional

linear birth-death process read

Pr fN� (t) = kg = (�1)k�1 �k�1
k!

dk

d�k
[� (1� p�0 (t))] ; (4.84)

with k � 1 and t > 0.
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Proof. The explicit form of the distribution Pr fN� (t) = kg ; k � 1, for the fractional linear birth-

death process, in the case � = �, can be evaluated in the following manner. In light of (4.9) we

have that

Pr fN� (t) = kg =
Z 1

0

Pr fN (s) = kgPr fT2� (t) 2 dsg (4.85)

so that

L�k (z) =

Z 1

0

e�ztPr fN� (t) = kg dt =
Z 1

0

(�s)
k�1

(1 + �s)
k+1

z��1e�sz
�

ds: (4.86)

This is because for the � = � case of the classical birth-death process, we have that (see Bailey

(1964), page 95, formula (8.53))

Pr fN (t) = kg = (�t)
k�1

(1 + �t)
k+1

; k � 1: (4.87)

We note that the extinction probability cannot be extracted from the above formula since it reads

Pr fN (t) = 0g = �t

1 + �t
: (4.88)

This implies that we have a di�erent expression for k � 1 and k = 0 for the fractional linear

birth-death process as well.

Formula (4.86) can be worked out as

L�k (z) =
(�1)k �k�1

k!

dk

d�k

Z 1

0

1

s (1 + �s)
z��1e�sz

�

ds (4.89)

=
(�1)k �k�1

k!

dk

d�k

Z 1

0

�
1

s
� �

1 + �s

�
z��1e�sz

�

ds

=
(�1)k �k�1

k!

dk

d�k

�Z 1

0

Z 1

0

�
e�ws � �e�w(1+�s)

�
z��1e�sz

�

ds dw

�
=

(�1)k �k�1
k!

z��1
dk

d�k

�
�
Z 1

0

�e�w

w�+ z�
dw +

Z 1

0

dw

w + z�

�
:

By inverting the Laplace transform we have that

Pr fN� (t) = kg = (�1)k �k�1
k!

dk

d�k

�Z 1

0

�
E�;1 (�wt�)� �e�wE�;1 (��wt�)

�
dw

�
(4.90)

=
(�1)k�1 �k�1

k!

dk

d�k

�
�

Z 1

0

e�wE�;1 (��wt�) dw
�

=
(�1)k�1 �k�1

k!

dk

d�k
[� (1� p�0 (t))] :

Formula (4.84) is thus proved.

It is important to note how all the state probabilities p�k (t) depend on the extinction probability

p�0 (t).

Remark 4.3.5. For � = 1 we can extract from (4.84) the classical formula (4.87) because

p1k (t) = Pr fN (t) = kg = (�1)k�1 �k�1
k!

dk

d�k

�
�

1 + �t

�
; (4.91)

and by considering that

dk

d�k

�
�

1 + �t

�
=

kX
j=0

�
k

j

�
dj

d�j
�
dk�j

d�k�j

�
1

1 + �t

�
(4.92)
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= �
dk

d�k

�
1

1 + �t

�
+ k

dk�1

d�k�1

�
1

1 + �t

�
= �

(�1)k k!tk
(1 + �t)

k+1
+ k

(�1)k�1 (k � 1)!tk�1

(1 + �t)
k

=
(k � 1)!tk�1

(1 + �t)
k+1

(�1)k�1 [��kt+ (1 + �t) k]

=
k!tk�1

(1 + �t)
k+1

(�1)k�1 :

Remark 4.3.6. From the representation on the last line of (4.90) it is possible to give an

alternative proof of the subordination relation (4.18) when k � 1 as follows

p�k (t) =
(�1)k�1 �k�1

k!

dk

d�k
[� (1� p�0 (t))] (4.93)

=
(�1)k�1 �k�1

k!

dk

d�k

�
��

Z 1

0

�2s

1 + �s
Pr (T2� (t) 2 ds)

�
=

(�1)k�1 �k�1
k!

�Z 1

0

dk

d�k

�
�

1 + �s

�
Pr (T2� (t) 2 ds)

�
: (4.94)

Exploiting (4.92) we readily obtain

p�k (t) =

Z 1

0

(�s)
k�1

(1 + �s)
k+1

Pr (T2� (t) 2 ds) : (4.95)

Remark 4.3.7. Here we present two other interesting relations. The �rst one is simply a

particular case of formula (4.84) when k = 1, i.e. the probability of having one individual in

the process at time t is

Pr fN� (t) = 1g = d

d�
[� (1� p�0 (t))] : (4.96)

The second relation is again a particular case of formula (4.84) with � = 1=2. In that case,

recalling that

E 1
2 ;1

(x) =
2p
�

Z 1

0

e�y
2+2yxdy (4.97)

we obtain

Pr
n
N

1
2 (t) = k

o
=

(�1)k�1 �k�1
k!

dk

d�k

h
�
�
1� p

1
2
0 (t)

�i
(4.98)

=
(�1)k�1 �k�1

k!

dk

d�k

�
�

Z 1

0

e�wE 1
2 ;1

�
��t 12w

�
dw

�
=

(�1)k�1 �k�1
k!

dk

d�k

�
2�p
�

Z 1

0

e�w
Z 1

0

e�y
2�2y�t 12wdw dy

�
=

(�1)k�1 �k�1
k!

dk

d�k

"
2�p
�

Z 1

0

e�y
2

1 + 2�y
p
t
dy

#

=
(�1)k�1 �k�1

k!

dk

d�k

"
2�

Z 1

0

e�
w2

2t

1 + �
p
2w

1p
2�t

dw

#

=
(�1)k�1 �k�1

k!

dk

d�k
E

�
2�

1 + �
p
2B (t)

�
;

where B (t), t > 0, is a standard Brownian motion.
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4.4 Some further properties

The analysis of the moments of the fractional linear birth-death process gives us useful information

on the behaviour of the system. Starting from (4.8) we easily see that

EN� (t) =
@G

@u

����
u=1

; (4.99)

is the solution to 8<:
d�

dt�
EN� = (�� �)EN� ; 0 < � � 1;

EN� (0) = 1:
(4.100)

By resorting again to the Laplace transform we have that the solution to (4.100) is

EN� (t) = E�;1 ((�� �) t�) ; t > 0: (4.101)

In the case � > �, result (4.101) shows that the mean size of the population coincides with that

of a fractional linear pure birth process with rate (� � �) > 0 (see Orsingher and Polito (2010)).

Result (4.101) can also be derived by means of the subordination relation: (4.18)

EN� (t) =

1X
k=0

kPr fN� (t) = kg (4.102)

=

1X
k=0

k

Z 1

0

Pr fN (s) = kgPr fT2� (t) 2 dsg

=

Z 1

0

e(���)sPr fT2� (t) 2 dsg :

The Laplace transform of (4.102) yieldsZ 1

0

e�ztEN� (t) dt =

Z 1

0

e(���)sz��1e�sz
�

ds (4.103)

=
z��1

z� � (�� �)
=

Z 1

0

e�ztE�;1 ((�� �) t�) dt;

and this con�rms (4.101).

By again applying (4.8) it is also possible to derive the variance VarN� (t), t > 0, of the number

of individuals in the population at time t. We start by evaluating the second order factorial

moment �(2) (t) = E [N� (t) (N� (t)� 1)], t > 0. From (4.8), after some straightforward steps, we

see that

�(2) (t) = E [N� (t) (N� (t)� 1)] =
@2G

@u2

����
u=1

(4.104)

is the solution to the following di�erential equation8<:
d�

dt�
�(2) (t) = 2�EN� (t) + 2 (�� �)�(2) (t) ; 0 < � � 1;

�(2) (0) = 0:
(4.105)

In order to solve (4.105) we apply the Laplace transform obtaining, in the case � 6= �,Z 1

0

e�zt�(2) (t) dt = 2�
z��1

z� � (�� �)
� 1

z� � 2 (�� �)
(4.106)

=
2�z��1

�� �

�
1

z� � 2 (�� �)
� 1

z� � (�� �)

�
:
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The Laplace transform (4.106) can be inverted thus leading to the explicit expression of the second

order factorial moment as

�(2) (t) =
2�

�� �
[E�;1 (2 (�� �) t�)� E�;1 ((�� �) t�)] : (4.107)

From the �rst expression of the Laplace transform in (4.106) we also have that

�(2) (t) = 2�

Z t

0

s��1E�;� (2 (�� �) s�)E�;1

�
(�� �) (t� s)

��
ds: (4.108)

By applying similar calculations to those of (4.47) we prove result (4.107).

From (4.107) we can easily write that

VarN� (t) =
2�

�� �
[E�;1 (2 (�� �) t�)� E�;1 ((�� �) t�)] + (4.109)

+ E�;1 ((�� �) t�)� E2
�;1 ((�� �) t�)

=
2�

�� �
E�;1 (2 (�� �) t�)� �+ �

�� �
E�;1 ((�� �) t�)� E2

�;1 ((�� �) t�) :

Remark 4.4.1. When � = 1, from (4.109), we obtain the expression for the variance of the

classical linear birth-death process as follows

VarN (t) =
2�

�� �
e2t(���) � �+ �

�� �
et(���) � e2t(���) (4.110)

=
�+ �

�� �

�
e2t(���) � et(���)

�
=

�+ �

�� �
et(���)

�
et(���) � 1

�
:

Remark 4.4.2. When � = 0, that is in the case of pure linear birth, we obtain from (4.110)

the expression of the variance of the classical linear pure birth process and from (4.109) that

of the fractional linear birth process (see Orsingher and Polito (2010)).

In the case � = �, from (4.105), it is easy to show that

VarN� (t) =
2�t�

� (� + 1)
(4.111)

in accordance with the well-known result of the classical linear birth-death process for � = �,

which reads VarN (t) = 2�t.

Remark 4.4.3. We can directly evaluate the mean value EN (t) for � = � in the following

way:

EN (t) =

1X
k=1

k

 
(�t)

k�1

(1 + �t)
k+1

!
=

1

(1 + �t)
2

1X
k=1

k

�
�t

1 + �t

�k�1
(4.112)

=
1

(1 + �t)
2

d

dz

1X
k=1

zk

�����
z= �t

1+�t

=
1

(1 + �t)
2

d

dz

z

1� z

�����
z= �t

1+�t

=
1

(1 + �t)
2

1

(1� z)
2

�����
z= �t

1+�t

= 1:

The assumption that � = � implies that the mean size of the population EN�(t), t > 0, is

equal to one (number of original progenitors) for all t > 0, and for all 0 < � � 1 (this is

con�rmed also by (4.101) for � = �).



Chapter 5

Simulation and Estimation for the

Fractional Linear Birth Process

Summary

In this chapter, we propose some representations of the generalised linear birth process called

fractional Yule process (fYp). We also derive the probability distributions of the random birth

and sojourn times. The inter-birth time distribution and the representations then yield algorithms

on how to simulate sample paths of a fYp. We also attempt to estimate the model parameters.

The estimation procedure is then tested using simulated data. We also illustrate some major

characteristics of fYp which will be helpful in practice.
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5.1 Introduction

The pure birth process is undoubtedly considered as one of the simplest branching processes. It

has a Markovian structure and has already been extensively studied in the past. When the birth

rate is linear, it is then usually called the pure linear birth or classical Yule or Yule{Furry process

(Yp). The pure linear birth process has been introduced by McKendrick (1914), and has been

widely used to model various stochastic dynamical systems such as cosmic showers, epidemics,

and population growth to name a few. In �nance, a birth process was recently used by Ding et

al. (2009) to study the valuation and risk analysis of multiname credit derivatives. In particular,

a time-changed birth process was introduced to model correlated event timing in portfolios of

credit-sensitive securities such as bonds and loans.

For the sake of completeness, we review some known properties of the classical Yule process

which will be used in the succeeding discussion. Let N(t) be the number of individuals in a Yule

process with a single initial progenitor and birth intensity � > 0. The kth state probability or

the probability of having exactly k individuals pk(t) = Pr fN(t) = k j N(0) = 1g in a growing

population at time t > 0 solves the following Cauchy problem:8>>><>>>:
d
dtpk(t) = ��kpk(t) + �(k � 1)pk�1(t); k � 1;

pk(0) =

8<:1; k = 1;

0; k � 1;

(5.1)

where p0(t) = 0. The explicit solution to (5.1) is

pk(t) = e��t(1� e��t)k�1; t > 0; k � 1; (5.2)

with mean EN(t) = e�t. To make the Yule process more 
exible in taking into account more

complex non-Markovian behaviour, some authors (Cahoy (2007), Orsingher and Polito (2010))

proposed a more general model called the fractional Yule process (fYp). A similar generalisation

of other point processes such as the Poisson process has previously been carried out by Repin and

Saichev (2000), Jumarie (2001), Laskin (2003), Wang and Wen (2003), Mainardi (1996), Wang et

al. (2006), Wang et al. (2007), Mainardi et al. (2005), Cahoy (2007), Uchaikin and Sibatov (2008),

Uchaikin et al. (2008) and Orsingher and Beghin (2004).

The aim of this chapter is twofold: We want to derive related representations of fYp in terms

of some classical or standard processes, and we want to construct algorithms on how to simulate

a fYp and estimate the parameters.

We organize the rest of the chapter as follows: Section 2 shows the fractional generalisation

of the pure linear birth process. Section 3 illustrates that a pure linear birth process can also be

viewed as a classical linear pure birth process with Wright-distributed random rates evaluated on

a stretched time scale, i.e.,

N�(t)
d
= N�(t

�); � 2 (0; 1]; (5.3)

where � is a random variable having the Wright probability density function

W��;1��(��) =
1X
r=0

(��)r
r!(1� �(r + 1))

: (5.4)

Furthermore, a representation in terms of a mixed non-homogeneous Poisson process with

intensity function �(t) = 
��e��t is derived, where 
 is a negative-exponential distributed random
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variable with mean 1. The following equalities in distribution:

N�(t)
d
=M

h


�
e�T2�(t) � 1

�i
; t > 0; � 2 (0; 1]; (5.5a)

M(t)
d
= N�

�
T�
�
1

�
log

�
t



+ 1

���
; t > 0; � 2 (0; 1]; (5.5b)

are also proved, where M(t) is a homogeneous Poisson process with rate 1, and T�(t) is a process

with the following one-dimensional distribution (given in terms of Fox functions):

Pr fT�(t) 2 dsg = t�
1
�H

1;0
1;1

"
t�

1
� s

����� (1� 1=�; 1=�)

(0; 1)

#
ds: (5.6)

Section 4 derives the birth and inter-birth time distributions. The structural representation,

fractional moments of the sojourn and birth times are also shown. The algorithms for generating

sample paths of a fYp are in Section 5. Section 6 proposes an estimation procedure using the

moments of the log-transformed data, and shows some empirical results. Section 7 concludes the

chapter with a discussion on the key points and possible extensions of this study.

5.2 Generalisation of the Yule process

The fractional generalisation of the pure linear birth process was �rst carried out in Cahoy (2007),

Section 8, and is described as follows: The authors de�ned the following di�erence-di�erential

equations governing the state probabilities p�k(t) = Pr fN�(t) = k j N�(0) = 1g:
d�

dt�
pk(t) = �

"
k�1X
l=1

pl(t)pk�l(t)� pk(t)

#
+

t��

�(1� �)
�k;1; � 2 (0; 1]; k � 1; (5.7)

where the initial condition

pk(0) =

8<:1; k = 1;

0; k > 1;
(5.8)

is incorporated into equation (5.7) through the Kronecker delta �k;1. The fractional derivative

appearing in (5.7) is the so-called Riemann{Liouville operator, which is de�ned as8<: d�

dt� pk(t) =
1

�(1��)
d
dt

R t
0

pk(s)
(t�s)� ds; � 2 (0; 1);

p0k(t); � = 1:
(5.9)

Furthermore, the mean number of individuals in the system was found to be

E
�
N�(t)

�
= E�;1(�t

�); t > 0; � 2 (0; 1]; (5.10)

where

E�;�(�� ) =
1X
r=0

(�� )r
�(�r + �)

; �; �; � 2 R+; (5.11)

is the generalised Mittag{Le�er function.

Let N�(t) be the number of individuals in a fractional linear birth process or fractional Yule

(fYp) up to the time t > 0. The state probabilities p�k(t) = Pr fN�(t) = k j N�(0) = 1g solve the
following Cauchy problem:8>>><>>>:

d�

dt� pk(t) = ��kpk(t) + �(k � 1)pk�1(t); k � 1;

pk(0) =

8<:1; k = 1;

0; k � 1;

(5.12)
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which is a fractional generalisation of (5.1). The fractional derivative involved in (5.12) is the

Caputo operator, which is de�ned as8<: d�

dt� f(t) =
1

�(1��)
R t
0

f 0(s)
(t�s)� ds; � 2 (0; 1);

f 0(t); � = 1:
(5.13)

Moreover, the Riemann{Liouville (5.9) and the Caputo (5.13) fractional derivatives are linked

together by the following relation (see Kilbas et al. (2006), page 91):

d�

dt�
f(t) =

d�

dt�
f(t)� f(0)

�(1� �)
t�� ; � 2 (0; 1): (5.14)

From (5.14), it is easy to see that both fractional derivatives coincide when f(0) = 0 for each

k > 1. The solution to the Cauchy problem (5.12) is

p�k(t) =

kX
l=1

�
k � 1

l� 1

�
(�1)l�1E�;1(��lt�); k � 1; � 2 (0; 1]: (5.15)

Note that the mean number of individuals E
�
N�(t)

�
in the fractional Yule process is the same

as (5.10). From here on, we emphasize that the fractional derivative operation is performed in

Caputo's sense.

5.3 Stretched Yule process with random rates and related

representations

In this section, we present some relevant and interesting representations of the fractional Yule

process (fYp). We start by proving a subordination relation that links the fractional Yule process

with its classical counterpart.

Theorem 5.3.1. Let N�(t) be the number of individuals in a fractional Yule process at time

t > 0. Then the following equality in distribution holds:

N�(t)
d
= N(T2�(t)); (5.16)

where N(t) is a classical Yule process, � 2 (0; 1], and T2�(t) is a random time whose distri-

bution coincides with the solution of the following fractional di�usion equation:8>><>>:
@2�

@t2� g(x; t) =
@2

@x2 g(x; t); x > 0;

@
@xg(x; t)

��
x=0

= 0;

g(x; 0) = �(x);

(5.17)

with the initial condition gt(x; 0) = 0, when 1=2 < � � 1.

Proof. Let G�(u; t), t > 0, juj < 1, be the probability generating function of the fractional Yule

process. To prove (5.16), it is su�cient to observe thatZ 1

0

e�ztG�(u; t)dt (5.18)
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=

Z 1

0

e�zt
1X
k=1

ukp�k(t)dt

=

Z 1

0

e�zt
1X
k=1

uk
kX
l=1

�
k � 1

l� 1

�
(�1)l�1E�;1(��lt�)dt

=

1X
k=1

uk
kX
l=1

�
k � 1

l� 1

�
(�1)l�1 z��1

z� + �l

=

1X
k=1

uk
kX
l=1

�
k � 1

l� 1

�
(�1)l�1z��1

Z 1

0

e�s(�l+z
�)ds

=

Z 1

0

1X
k=1

uk
kX
l=1

�
k � 1

l� 1

�
(�1)l�1e�s�lz��1e�sz�ds

=

Z 1

0

uk
kX
l=1

�
k � 1

l� 1

�
(�1)l�1e��ls

Z 1

0

e�ztPr fT2�(t) 2 dsg dt

=

Z 1

0

e�zt
"Z 1

0

1X
k=1

uk
kX
l=1

�
k � 1

l� 1

�
(�1)l�1e��lsPr fT2�(t) 2 dsg

#
dt

=

Z 1

0

e�zt
" 1X
k=1

uk
Z 1

0

Pr fN(s) = kgPr fT2�(t) 2 dsg
#
dt

=

Z 1

0

e�zt
" 1X
k=1

ukPr fN(T2�(t)) = kg
#
dt:

Remark 5.3.1. In the proof of Theorem 5.3.1, we have taken into account the Laplace

transform of Pr fT2�(t) 2 dsg which isZ 1

0

e�ztPr fT2�(t) 2 dsg = z��1e�sz
�

ds; s > 0: (5.19)

In the next Theorem, we derive a random-rate representation of the fractional Yule process

using the preceding subordination relation.

Theorem 5.3.2. (Representation A) Let t > 0 and � 2 (0; 1]. Then the following equality in

distribution holds:

N�(t)
d
= N�(t

�); (5.20)

where N�(t
�) is a classical linear birth process with random rate �� evaluated at t� , � is a

Wright-distributed random variable with probability density function W��;1��(��) in (5.4).

Proof. To prove equation (5.20), we use the subordination relation (5.16) as follows:

Pr fN�(t) = k j N�(0) = 1g (5.21)

=

Z 1

0

Pr fN(s) = k j N(0) = 1gPr fT2�(t) 2 dsg

=

Z 1

0

kX
l=1

�
k � 1

l� 1

�
(�1)l�1e��lst��W��;1��(�t��s)ds

=

Z 1

0

kX
l=1

�
k � 1

l� 1

�
(�1)l�1e��l�t�W��;1��(��)d�
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=

Z 1

0

Pr fN�(t
�) = k j N�(0) = 1gW��;1��(��)d�;

and this leads to (5.20).

Note that in the second step of formula (5.21), we used the explicit form of the solution to the

fractional di�usion equation (5.17) which is (see Podlubny (1999))

Pr fT2�(t) 2 dsg = t��W��;1��(�t��s)ds; s > 0: (5.22)

Remark 5.3.2. As noted above, representation (5.20) holds for the one-dimensional state

probability distribution p�k(t), t > 0, k � 1. This, however is su�cient in the sense that the

process N�(t
�) has distribution that solves (5.1).

We now prove a further interesting representation of the fractional Yule process in terms of a

speci�c mixed non-homogeneous Poisson process.

Starting from the second-to-last step of formula (5.21), we obtain

p�k(t) =

Z 1

0

kX
l=1

�
k � 1

l� 1

�
(�1)l�1e��l�t�W��;1��(��)d� (5.23)

=

Z 1

0

e���t
�
h
1� e���t

�
ik�1

W��;1��(��)d�

=

Z 1

0

1

[e��t� ]
k

h
e��t

� � 1
ik�1

W��;1��(��)d�:

Recalling the identity Z 1

0

e�axxrdx = a�(r+1)r!; r 2 N; R(a) > 0; (5.24)

we get

p�k(t) =

Z 1

0

Z 1

0

e�!e
��t�

!k�1
�
e��t

� � 1
�k�1

(k � 1)!
W��;1��(��)d! d� (5.25)

=

Z 1

0

Z 1

0

e
�!
h
e��t

��1
i
!k�1

�
e��t

� � 1
�k�1

(k � 1)!
e�!W��;1��(��)d! d�

=

Z 1

0

Z 1

0

e�
R
t�

0
!��e��sds

hR t�
0
!��e��sds

ik�1
(k � 1)!

e�!W��;1��(��)d! d�:

Thus, we have obtained a representation in terms of a mixed non-homogeneous Poisson process

with intensity function

�(t) = 
��e��t; t > 0; (5.26)

where the distribution of 
 is negative-exponential with mean equal to 1, and � has probability

density function (5.4). Note that the random variable 
, conditional on � = �, is such that

N�(t
�)

EN�(t�)

a.s.�! 
; (5.27)

as t!1 (see e.g. Keiding (1974), Waugh (1970), Harris (2002)).
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Remark 5.3.3. A simple change of variable also allows us to obtain a representation in

terms of a mixed non-homogeneous Poisson process evaluated at the random time T2�(t),

t > 0. From the second step of formula (5.25), we have

p�k(t) =

Z 1

0

Z 1

0

e
�!
h
e��t

��1
i
!k�1

�
e��t

� � 1
�k�1

(k � 1)!
e�!W��;1��(��)d! d� (5.28)

=

Z 1

0

Z 1

0

e�![e
�s�1]!k�1

�
e�s � 1

�k�1
(k � 1)!

e�!
1

t�
W��;1��

�
� s

t�

�
ds d!:

Consider a non-homogeneous Poisson process N(t) with intensity function �(t) = 
�e�t.

Then the state probabilities of the fractional Yule process can be written as

p�k(t) =

Z 1

0

e�!
Z 1

0

Pr fN(s) = k � 1gPr fT2�(t) 2 dsg d! (5.29)

= E
N(T2�(t)):

In addition, the subordinated non-homogeneous Poisson process N(T2�(t)) conditioned on


 = ! could be interesting as the fractional homogeneous Poisson process admits a similar repre-

sentation (Orsingher and Beghin, 2004).

Let p�k(t) be the state probabilities of N(T2�(t)), i.e.,

p�k(t) = Pr fN(T2�(t)) = k � 1g ; t > 0; k � 1: (5.30)

Then

p�k(t) =

Z 1

0

e�![e
�s�1]!k�1

�
e�s � 1

�k�1
(k � 1)!

Pr fT2�(t) 2 dsg : (5.31)

Applying the Laplace transform to (5.31), we have

Z 1

0

e�ztp�k(t)dt =
Z 1

0

e�![e
�s�1]!k�1

�
e�s � 1

�k�1
(k � 1)!

z��1e�sz
�

ds (5.32)

=

Z 1

0

e!
e�!e

�s

!k�1
�
1� e�s

�k�1
(k � 1)!

(�1)k�1z��1e�sz�ds;

and by taking into account the relations

e�!e
�s

=

1X
l=0

(�!)le�sl
l!

; (5.33)

�
1� e�s

�k�1
=

k�1X
j=0

�
k � 1

j

�
(�1)je�sj ; (5.34)

we arrive at the equalityZ 1

0

e�ztp�k(t)dt (5.35)

=

Z 1

0

e!

(k � 1)!
(�1)k�1!k�1

1X
l=0

k�1X
j=0

(�!)l
l!

e�ls
�
k � 1

j

�
(�1)je�sjz��1e�sz�ds

=
e!

(k � 1)!
(�1)k�1!k�1

1X
l=0

(�!)l
l!

k�1X
j=0

�
k � 1

j

�
(�1)jz��1

Z 1

0

e�s[z
���(l+j)]ds
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=
e!

(k � 1)!
(�!)k�1

1X
l=0

(�!)l
l!

k�1X
j=0

�
k � 1

j

�
(�1)j z��1

z� � � (l+ j)
:

Applying the inverse Laplace transform to equation (5.35), we obtain the explicit expression of

the state probabilities as

p�k(t) =
e!(�!)k�1
(k � 1)!

1X
l=0

(�!)l
l!

kX
j=1

�
k � 1

j � 1

�
(�1)j�1E�;1 [� (l+ j) t� ] ; k � 1: (5.36)

Remark 5.3.4. From equation (5.36), it is straightforward to obtain the classical form of

the state probabilities of the (conditional) non-homogeneous Poisson process (� = 1) with

intensity function �(t) = !�e�t; t > 0.

Theorem 5.3.3. (Representation B) Let N(t) be a homogeneous Poisson process of rate 1.

The time-changed process can be de�ned as

N�(t)
d
= N

�


h
e�T2�(t) � 1

i�
; (5.37)

where t > 0, � 2 (0; 1], 
 is a negative-exponential distributed random variable with parameter

equal to unity, and T2�(t) is a random time whose one-dimensional distribution is a solution

to the fractional di�usion equation (5.17).

Proof. The proof directly follows from (5.29) and Theorem 1 of Kendall (1966).

We introduce a de�nition and a lemma below which will be helpful in transforming fYp into a

non-homogeneous Poisson process with rate 1.

Definition 5.3.1. Let T�(t) be a random time process whose one-dimensional distribution is

given by

Pr fT�(t) 2 dsg = h(t; s)ds = t�
1
�H

1;0
1;1

"
t�

1
� s

����� (1� 1=�; 1=�)

(0; 1)

#
ds; (5.38)

where t > 0, s > 0, � 2 (0; 1], and the function

H
1;0
1;1

"
t�

1
� s

����� (1� 1=�; 1=�)

(0; 1)

#
; (5.39)

is a Fox function. Furthermore, h(t; s) has Mellin transformZ 1

0

s��1h(t; s)ds =
�(�)

�
�
1� 1

� +
1
� �
� t ��1� (5.40)

(see Mathai et al. (2010)).

Lemma 5.3.1. Let N�(t) be a fractional Yule process with rate � > 0 and t > 0. Then the

process N�(T�(t)) is a classical Yule process with rate �.

Proof. De�ne G�(u; t) and G(u; t), t > 0, juj � 1 as the probability generating functions of fYp

and the classical Yule process, respectively. ThenZ 1

0

G�(u; s)h(t; s)ds =

Z 1

0

1X
k=1

uk
kX

j=1

�
k � 1

j � 1

�
(�1)j�1E�;1(��js�)h(t; s)ds: (5.41)



83 Simulation and Estimation for the Fractional Linear Birth Process

Using the Mellin{Barnes representation of the Mittag{Le�er function

E�;1(x) =
1

2�i

Z 
+i1


�i1

�(z)�(1� z)

�(1� �z)
x�zdz; (5.42)

we obtain Z 1

0

G�(u; s)h(t; s)ds (5.43)

=

1X
k=1

uk
kX

j=1

�
k � 1

j � 1

�
(�1)j�1
2�i

Z 
+i1


�i1

�(z)�(1� z)

�(1� �z)
(��j)�z

Z 1

0

h(t; s)

s�z
ds dz:

By applying formula (5.40), we can writeZ 1

0

G�(u; s)h(t; s)ds (5.44)

=

1X
k=1

uk
kX

j=1

�
k � 1

j � 1

�
(�1)j�1
2�i

Z 
+i1


�i1

�(z)�(1� z)

�(1� �z)
(��j)�z �(1� �z)

�(1� z)
t�zdz

=

1X
k=1

uk
kX

j=1

�
k � 1

j � 1

�
(�1)j�1
2�i

Z 
+i1


�i1
�(z)(��jt)�zdz

=

1X
k=1

uk
kX

j=1

�
k � 1

j � 1

�
(�1)j�1e��jt

=

1X
k=1

uke��t
�
1� e��t

�k�1
= G(u; t):

Remark 5.3.5. Note that it is straightforward to generalize Lemma 5.3.1 to the more general

(non-linear) case.

Remark 5.3.6. Letting u = 1 in (5.44), we have

1X
k=1

Z 1

0

p�k(s)h(t; s)ds =

1X
k=1

pk(t) (5.45)

,
Z 1

0

h(t; s)ds = 1:

Theorem 5.3.4. Consider a fractional Yule process N�(t) with birth rate � > 0, t > 0, and

� 2 (0; 1]. Then the random time-changed process

N�

�
T�
�
1

�
log

�
t



+ 1

���
(5.46)

has a one-dimensional distribution which coincides with that of a non-homogeneous Poisson

process N(t) with rate 1.

Proof. It readily follows from (5.29), Lemma 5.3.1 and Theorem 1 of Kendall (1966).
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5.4 Wait and sojourn time distributions

We now show that the sojourn or inter-birth time for fYp follows the Mittag{Le�er distribution.

Let T �
i , i � 1, denote the time between the (i � 1)th and ith birth. This means that T �

i is the

time it takes for the population size to grow from i to i+ 1. More speci�cally, we will show that

the sojourn times T �
i 's are independent and T �

i is distributed

fT �
i
(t) = i�t��1E�;�(�i�t�); i � 1: (5.47)

Recall that when � = 1, the inter-birth times Ti's of the Yp are independent and Ti is exponentially

distributed with rate i�, i � 1. Moreover, the waiting or birth time distribution for the pure linear

birth process (� = 1) satis�es the following two equalities:

Pr(Wj = T1 + � � �+ Tj � t) = Pr(N(t) � j + 1
��N(0) = 1) (5.48a)

and

pj(t) = Pr(Wj�1 � t)� Pr(Wj � t): (5.48b)

Let W�
j = T �

1 + T �
2 + � � � + T �

j be the waiting time of the jth birth of the fYp. We now show

that the preceding two equations hold true as well for the fractional or general case (0 < � � 1),

i.e.,

Pr(W�
j � t) = Pr(N�(t) � j + 1

��N�(0) = 1); j � 1; (5.49a)

and

p�j (t) = Pr(W�
j�1 � t)� Pr(W�

j � t): (5.49b)

Using (5.15), we obtain

Pr(N�(t) � j + 1
��N�(0) = 1) =

1X
k=j+1

Pr(N�(t) = k
��N�(0) = 1) (5.50)

= 1�
jX

k=1

Pr(N�(t) = k
��N�(0) = 1)

= 1�
jX

k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1E�;1(��lt�):

This implies that the jth waiting time W�
j has distribution

fW�
j
(t) =

jX
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1(�l)t��1E�;�(��lt�); t > 0; � 2 (0; 1]: (5.51)

Integrating the preceding equation, we get

1Z
0

fW�
j
(t)dt =

jX
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 (5.52)

=

jX
k=1

k�1X
l=0

�
k � 1

l

�
(�1)l =

jX
k=1

(1� 1)k�1 = 1:

The non-negativity of fW�
j
(t) follows from the non-negativity of p�k(t) (see Orsingher and Polito

(2010)), and the last line of (5.50) is a monotone increasing function of t. To see this, we can write

1�
jX

k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1E�;1(��lt�) (5.53)
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= 1�
jX

k=1

p�k(t)

= 1�
jX

k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1Pr(Tl > t)

=

jX
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1Pr(Tl < t):

Indeed, fW�
j
(t) is a probability density function. Note also that fW�

j
(t) has the following integral

representation:

fW�
j
(t) =

1

t

Z 1

0

e��
jX

k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1g(l�t=�)d�; (5.54)

where g(�) = sin(��)=[�(��+���+2 cos(��))] (see Repin and Saichev (2000)). We now show that

if the sojourn times are distributed as in (5.47), the cumulative distribution function Pr(W�
j � t)

of the waiting or birth time equals the right-hand side of (5.49a). When j = 1, we get

Pr(W�
1 � t) = Pr(T �

1 � t) = 1� E�;1(��t�) = 1� p�1(t): (5.55)

In the succeeding calculations, we use the following identities (see page 26 of Podlubny (1999)):Z t

0

E�;1(�j�(t� u)�)u��1E�;�(��lu�)du =
jE�;�+1(�j�t�)� lE�;�+1(�l�t�)

j � l
t� (5.56)

and

E�;�+1(�) =
E�;1(�)� 1

�
; l � j: (5.57)

Now,

Pr(W�
2 � t) =

Z t

0

PrfT �
1 + T �

2 � t
��T �

1 = ugdFT �
1
(u) (5.58)

=

Z t

0

[1� E�;1(�2�(t� u)�)]�u��1E�;�(��u�)du

= 1� E�;1(��t�)� [2�t�E�;�+1(�2�t�)� t�E�;�+1(��t�)]
= 1� E�;1(��t�)� [E�;1(��t�)� E�;1(�2�t�)]
= 1� 2E�;1(��t�) + E�;1(�2�t�)

= 1�
2X

k=1

p�k(t);

Pr(W�
3 � t) (5.59)

=

Z t

0

PrfT �
1 + T �

2 + T �
3 � t

��T �
1 + T �

2 = ugdFT �
1 +T

�
2
(u)

=

Z t

0

[1� E�;1(�3�(t� u)�)][2�u��1fE�;�(��u�)� E�;�(�2�u�)g]du

= 2[1� E�;1(��t�))]� [1� E�;1(�2�t�)]

�
Z t

0

E�;1(�3�(t� u)�)2�u��1E�;�(��u�)du

+

Z t

0

E�;1(�3�(t� u)�)2�u��1E�;�(�2�u�)du
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= 2[1� E�;1(��t�)]� [1� E�;1(�2�t�)]
� [3�t�E�;�+1(�3�t�)� �t�E�;�+1(��t�)]
+ [3�t�E�;�+1(�3�t�)� 2�t�E�;�+1(�2�t�)]

= 2[1� E�;1(��t�)]� [1� E�;1(�2�t�)]� [E�;1(��t�)� E�;1(�3�t�)]
+ 2[E�;1(�2�t�)� E�;1(�3�t�)]

= 1� 3E�;1(��t�) + 3E�;1(�2�t�)� E�;1(�3�t�)

= 1�
3X

k=1

p�k(t);

and in general, we can show by induction that

Pr(W�
j � t) (5.60)

=

Z t

0

PrfW�
j � t

��W�
j�1 = ugdFW�

j�1
(u)

=

Z t

0

[1� E�;1(�j�(t� u)�)]fW�
j�1

(u)du

=

Z t

0

[1� E�;1(�j�(t� u)�)]

j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1(�l)u��1E�;�(��lu�)du

=

j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1[1� E�;1(��lt�)]

�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1�l

Z t

0

E�;1(�j�(t� u)�)u��1E�;�(��lu�)du

=

j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1[1� E�;1(��lt�)]

�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 l

j � l
[E�;1(��lt�)� E�;1(��jt�)]

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1

�
j

j � l
E�;1(��lt�)� l

j � l
E�;1(��jt�)

�

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 j

j � l
E�;1(��lt�)

+

j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 l

j � l
E�;1(��jt�):

Using the formulas on page 3 of Gradshteyn and Ryzhik (1980), we have

j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 l

j � l
=

j�1X
l=1

(�1)l�1 l

j � l

j�1X
k=l

�
k � 1

l� 1

�
(5.61)

=

j�1X
l=1

(�1)l�1 l

j � l

j�1�lX
k=0

�
k + l� 1

l� 1

�

=

j�1X
l=1

(�1)l�1 l

j � l

�
j � 1

l

�
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=

j�1X
l=1

(�1)l�1 l

j � l

(j � 1)!

l!(j � l� 1)!

=

j�1X
l=1

(j � 1)!

(l� 1)!(j � l)!

=

j�2X
l=0

(�1)l
�
j � 1

l

�
= (�1)j�2

�
j � 2

j � 2

�
= (�1)j�2:

Hence,

Pr(W�
j � t) (5.62)

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 j

j � l
E�;1(��lt�)� (�1)j�1E�;1(��jt�)

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 j

j � l
E�;1(��lt�)

�
 

jX
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)�

j�1X
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)

!

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 j

j � l
E�;1(��lt�)

�
 

jX
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)�

j�1X
l=1

�
j � 1

l

�
(�1)l�1 l

j � l
E�;1(��lt�)

!

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 j

j � l
E�;1(��lt�)

�
 

jX
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)�

j�1X
l=1

(�1)l�1 l

j � l
E�;1(��lt�)

j�1X
k=l

�
k � 1

l� 1

�!

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 j

j � l
E�;1(��lt�)

�
 

jX
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)�

j�1X
l=1

j�1X
k=l

(�1)l�1 l

j � l

�
k � 1

l� 1

�
E�;1(��lt�)

!

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 j

j � l
E�;1(��lt�)

�
 

jX
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)�

j�1X
l=1

j�1X
k=l

(�1)l�1 l

j � l

�
k � 1

l� 1

�
E�;1(��lt�)

!

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 j

j � l
E�;1(��lt�)

�
 

jX
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)�

j�1X
l=k

kX
l=1

�
k � 1

l� 1

�
(�1)l�1 l

j � l
E�;1(��lt�)

!

= 1�
j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1E�;1(��lt�)�

jX
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)
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= 1�
jX

k=1

p�k(t); 1 � k < j:

That is, equality (5.49a) is attained. Notice that when � = 1, we get Pr(Wj � t) = (1 � e��t)j

which corresponds to the birth time distribution of the classical Yule process. Moreover, equality

(5.49b) can be straightforwardly evaluated as

Pr(W�
j�1 � t)� Pr(W�

j � t) =

 
1�

j�1X
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1E�;1(��lt�)

!
(5.63)

�
 
1�

jX
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1E�;1(��lt�)

!

=

jX
l=1

�
j � 1

l� 1

�
(�1)l�1E�;1(��lt�)

= p�j (t):

In addition, the Laplace transform of the probability density fT �
i
(t) isZ 1

0

e�ztfT �
i
(t)dt =

i�

i�+ z�
: (5.64)

This suggests that the distribution (eqn (5.47)) leads to the following known mixture or structural

representation (see Cahoy et al. (2010)) of the inter-birth times as

T �
i

d
= V

1=�
i S� ; (5.65)

where Vi has the exponential distribution with parameter i�, i.e.,

fVi(v) = i�e�i�v; v > 0; (5.66)

and is independent of the positive L�evy or �-stable distributed random variable S� having the

Laplace transform of the density function e�z
�

. This also suggests that the qth fractional moment

of the ith inter-birth time is given by

E [T �
i ]

q
=

��(1 + q)

(i�)q�(q=�) sin(�q=�)�(1� q)
; 0 < q < �; (5.67)

which further implies that the qth fractional moment of the jth wait or birth time is

E
�
W�

j

�q
=

��(1 + q)

�q�(q=�) sin(�q=�)�(1� q)

jX
k=1

kX
l=1

�
k � 1

l� 1

�
(�1)l�1

�
1

lq

�
; (5.68)

where 0 < q < �.

5.5 Sample paths of fYp

From Sections 2 and 3, it is now straightforward to simulate a trajectory of a fYp. However, we

only propose the two simplest algorithms on how to generate a sample path of the fYp as the

others follow. In particular, the random-rate representation (Representation A, Theorem 5.3.2)

yields the algorithm below.

ALGORITHM 1:
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i) Generate � from the Wright distribution W��;1��(��), and obtain �.

ii) Simulate a classical Yule process with birth rate ��.

iii) Stretch the time scale to t� .

A simpler way to generate a realisation of fYp with n births is to directly exploit the known

birth and/or sojourn time distributions as follows: Generate Vi from the exponential distribution

in (5.66) with parameter i�, and S� from the strictly positive stable distribution with parameter

�.

ALGORITHM 2:

i) Let i = 1 and N�(0) = 1.

ii) Simulate T �
i = V

1=�
i S� , and let W�

i = T �
1 + T �

2 + � � �+ T �
i .

iii) N�(W�
i ) = i+ 1, and i = i+ 1.

iv) Repeat ii-iii for i = 2; : : : ; n� 1.

We now use the algorithms above to highlight some unique properties of the fractional Yule

process that are related to its true mean given in (5.10). Figure 5.1 below shows both Yp and fYp

as jump processes of size 1 in the time interval (0; 5) with � = 0:5, and � = 1. Using the same

set of parameters, Figure 5.2 displays sample trajectories of a di�erent/independent fYp and Yp

which model a binary-split growth process. An important attribute that can be directly observed

from these two graphs is that on the average, fYp grows more rapidly than the classical Yp shortly

after it starts.
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Figure 5.1: Sample trajectories of the standard Yule process (top) and the fractional Yule

process (bottom) in the interval (0; 5) with parameters (�; �) = (0:5; 1).

In addition, another characteristic of fYp is illustrated in Figure 5.3. The particular realisation

of fYp below used the parameter values � = 0:25, � = 1, and is observed in the time interval (0; 5)

. It clearly suggests that fYp is more explosive than Yp when � ! 0. In general, the plots strongly

validate the plausibility of fYp to model exploding and strictly growing processes. Note also that

Representation A implies that the interaction between the random rate and time stretching of the

classical Yule process can rapidly speed up or slow down fYp at any given time instance.



5.5 Sample paths of fYp 90

303136372829580816667569091103104111112719293888911765113114352496141142121122123146134344384950466272734817183334192021910868725124125108133134130221232117118143144137138265512612763641061071311321161157677578485515295139140947475424510110215161191201281291056061991008283536869235413513670474897984041232758591091107879391



t

Figure 5.2: Sample paths of the pure linear birth process (top) and the fractional Yule process

(bottom) in the interval (0; 5) with parameters (�; �) = (0:5; 1):
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Figure 5.3: Sample paths of the classical Yule process (top) and the fractional Yule process

(bottom) in the interval (0; 5) with parameters (�; �) = (0:25; 1).
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5.6 Method-of-Moments (MoM) estimation

We now propose a method-of-moments estimation procedure for the parameters � and � to make

fYp usable in practice. In this procedure, we assume that a particular realisation or complete

history of the process is observed until the population is n, i.e., there are n births. We then

attempt to use all the available data from the observed sample path of the fractional Yule process.

In particular, we use all the available inter-birth or sojourn times of the observed sample tra-

jectory of the fractional Yule process. A direct way of estimating the parameters is to use the

fractional moment estimators as follows: Choose constants qm < �;m = 1; 2, and solve for the

estimates �̂ and �̂ using the equationsPn
i=1 [T

�
i ]

qm

n
=

��(1 + qm)

�̂qm�(qm=�̂) sin(�qm=�̂)�(1� qm)

Pn
i=1 1=i

qm

n
; m = 1; 2: (5.69)

Another approach is to use the �rst two integer-order moments of the log-transformed sojourn

times (see Cahoy et al. (2010)) which are

E ln [T �
i ] =

� ln(i�)

�
� C; (5.70)

and

E ln [T �
i ]

2
= �2

�
1

3�2
� 1

6

�
+

�
ln(i�)

�
+ C

�2

: (5.71)

This further suggests that the parameter estimates can be computed using the two equations:Pn
i=1 ln [T

�
i ]

n
=
�Pn

i=1 ln(i�)

�n
� C; (5.72)

and Pn
i=1 (ln [T

�
i ])

2

n
= �2

�
1

3�2
� 1

6

�
+

1

n

nX
i=1

�
ln(i�)

�
+ C

�2

; (5.73)

where C = 0:577215664901532 is the Euler{Mascheroni constant. A major advantage of this

procedure over the fractional moment technique is that it does not require selection of constants a

priori which will be dangerous in practice. Note also that the maximum likelihood estimators are

more challenging to compute due to the required evaluation of the Mittag{Le�er function.

In addition, we tested our parameter estimation procedure. In doing so, we generated 10 random

samples of inter-birth times of size 10000 each for � = 0:1+0:1m, m = 0; : : : ; 9 and � = 0:2; 10. For

each simulated data set, we computed the estimates using the �rst n observations in the set with

n = 100; 1000, and 10000. The tables below show the simulation results for a single run, which

further indicate that the proposed procedure performs relatively well. Note that these estimates

could also serve as good starting values of an iterative estimation procedure.

5.7 Concluding remarks

We have derived one-dimensional representations of the fractional Yule process, which led to

algorithms for simulating its sample paths. These representations are also deemed necessary in

understanding the properties of fYp further. We have derived the birth and inter-birth or sojourn

time distributions, which are of Mittag{Le�er type. The structural representation of the random

sojourn time also led to an algorithm for simulating sample trajectories of fYp. We have also
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Table 5.1: Parameter estimates (b�; b�) for fYp with � = 0:1(0:1)1 and � = 0:2.

n = 100 n = 1000 n = 10000

(� = 0:1; � = 0:2) (0.095, 0.198) (0.096, 0.185) (0.100, 0.205)

(� = 0:2; � = 0:2) (0.228, 0.249) (0.193, 0.189) (0.199, 0.193)

(� = 0:3; � = 0:2) (0.283, 0.185) (0.292, 0.193) (0.303, 0.228)

(� = 0:4; � = 0:2) (0.381, 0.178) (0.407, 0.218) (0.402, 0.209)

(� = 0:5; � = 0:2) (0.481, 0.212) (0.501, 0.197) (0.500, 0.197)

(� = 0:6; � = 0:2) (0.599, 0.211) (0.602, 0.186) (0.595, 0.186)

(� = 0:7; � = 0:2) (0.759, 0.257) (0.728, 0.250) (0.700, 0.198)

(� = 0:8; � = 0:2) (0.818, 0.220) (0.819, 0.229) (0.803, 0.204)

(� = 0:9; � = 0:2) (0.850, 0.193) (0.899, 0.211) (0.907, 0.215)

(� = 1:0; � = 0:2) (0.977, 0.183) (0.991, 0.199) (0.999, 0.202)

Table 5.2: Parameter estimates (b�; b�) for fYp with � = 0:1(0:1)1 and � = 10.

n = 100 n = 1000 n = 10000

(� = 0:1; � = 10) (0.107, 13.067) (0.101, 10.599) (0.101, 10.730)

(� = 0:2; � = 10) (0.203, 10.737) (0.206, 12.384) (0.201, 10.555)

(� = 0:3; � = 10) (0.299, 11.027) (0.297, 9.359) (0.295, 8.593)

(� = 0:4; � = 10) (0.391, 7.598) (0.396, 8.899) (0.397, 9.086)

(� = 0:5; � = 10) (0.517, 10.939) (0.509, 11.428) (0.501, 10.269)

(� = 0:6; � = 10) (0.630, 11.379) (0.586, 8.308) (0.597, 9.162)

(� = 0:7; � = 10) (0.716, 12.413) (0.699, 10.634) (0.710, 11.679)

(� = 0:8; � = 10) (0.782, 8.713) (0.786, 8.186) (0.804, 10.498)

(� = 0:9; � = 10) (0.919, 11.429) (0.899, 9.043) (0.897, 9.684)

(� = 1:0; � = 10) (0.969, 8.712) (1.000, 10.427) (1.001, 10.434)
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proposed an estimation procedure using the moments of the log-transformed inter-birth times,

which performed quite satisfactorily especially for larger populations.

Although some properties of fYp have already been studied, there are still a lot of open problems

that need to be �gured out. For instance, understanding fYp in more depth and the construction

of more e�cient estimators like the maximum likelihood would be worth pursuing in the future.

Also, the application of fYp in �nance is still in progress.





Chapter 6

Randomly Stopped Nonlinear

Fractional Birth Processes

Summary

We present and analyse the nonlinear classical pure birth process N (t), t > 0, and the fractional

pure birth process N �(t), t > 0, subordinated to various random times, namely the �rst-passage

time Tt of the standard Brownian motion B(t), t > 0, the �-stable subordinator S�(t), � 2 (0; 1),

and others. For all of them we derive the state probability distribution p̂k(t), k � 1 and, in some

cases, we also present the corresponding governing di�erential equation.

We also highlight interesting interpretations for both the subordinated classical birth process

N̂ (t), t > 0, and its fractional counterpart N̂ �(t), t > 0 in terms of classical birth processes with

random rates evaluated on a stretched or squashed time scale.

Various types of compositions of the fractional pure birth process N �(t) have been examined

in the last part of the chapter. In particular, the processes N �(Tt), N �(S�(t)), N �(T2�(t)), have

been analysed, where T2�(t), t > 0, is a process related to fractional di�usion equations. Also the

related process N (S�(T2�(t))) is investigated and compared with N (T2�(S�(t))) = N �(S�(t)). As
a byproduct of our analysis, some formulae relating Mittag{Le�er functions are obtained
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6.1 Introduction

We here consider the pure birth process N (t), t > 0, (linear and nonlinear) composed with di�erent

processes like the �rst-passage time of Brownian motion Tt (possibly iterated n-times), the sojourn

time of Brownian motion �t and bridge Gt, and �-stable processes S�(t).

The subordination of processes (�rst introduced by Bochner (1955)) has been studied by several

authors, over the years, in connection, for example, to modelling the wear of instruments during

the real working time, or security trading which takes into account 
uctuations of the economic

activity during the time elapse t (see Lee and Whitmore (1993))).

The second part of the chapter concerns the subordination of the fractional pure birth process

N �(t), t > 0, 0 < � � 1, with the processes S�(t) and T2�(t), establishes that N �(S�(t)) =

N (T2�(S�(t))), and discuss its connection with N (S�(T2�(t))).

Subordinated processes connected with fractional and higher order partial di�erential equations

are treated in numerous recent papers. Most of them concern compositions of time-continuous

processes (see for example Baeumer et al. (2009)), but also point processes (Laskin (2003), Mainardi

and Goren
o (2004), Uchaikin et al. (2008), Beghin and Orsingher (2009b), Meerschaert et al.

(2010)).

Birth processes stopped at di�erent random times can be useful to model branching processes

under laboratory conditions. For diseases started o� arti�cially, the spread of the infected pop-

ulation can be stopped when the experiment leads to convincing conclusions. The cost of the

investigation can play a certain role in stopping the arti�cially constructed experiment. The 
uc-

tuations of the temperature during the e�ective time t can in
uence the growth rapidity of cells or

of bacteria and thus the population size can be thought as a function of the temperature modelled

as a random time process. The same reasoning underlies experiments in physical studies on chain

reactions. In the case of N (�t), where �t is the sojourn time of a Brownian motion on the positive

half-line, the experiment can be interrupted immediately (if it proves useless), or at the end of the

time interval [0; t] (in the case that no evidence can be attained in a short time).

We recall that the distribution of the nonlinear fractional birth process (with one progenitor)

reads

Pr fN �(t) = k j N �(0) = 1g =
8<:
Qk�1

j=1 �j
Pk

m=1
E�;1(��mt�)Q
k
l=1;l 6=m(�l��m)

; k > 1;

E�;1(��1t�); k = 1;
(6.1)

where

E�;
 (x) =

1X
h=0

xh

� (�h+ 
)
; (6.2)

is the Mittag{Le�er function and �k, k � 1, are the birth rates (see Orsingher and Polito (2010)).

For �k = � � k (fractional linear birth process), formula (6.1) takes the simple form

Pr fN�(t) = k j N�(0) = 1g =
kX

m=1

�
k � 1

m� 1

�
(�1)m�1E�;1(��mt�); k � 1; t > 0: (6.3)

For � = 1, we retrieve from (6.1) and (6.3) the classical distributions of nonlinear and linear

pure birth process, by taking into account that E1;1(x) = ex.

The simplest subordinator considered is the �rst-passage time

Tt = inf fs : B(s) = tg ; (6.4)
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where B is a standard Brownian motion, independent of the birth process considered. For us it is

relevant that the probability density of (6.4)

q(t; s)ds = Pr fTt 2 dsg ; (6.5)

satis�es the following equation

@2

@t2
q(t; s) = 2

@

@s
q(t; s); t > 0; s > 0; (6.6)

as a direct check shows.

In view of (6.6) we can establish the following relation between the state probabilities

p̂�k(t) = Pr fN �(Tt) = kg (6.7)

and (6.1):
d2

dt2
p̂�k(t) = �2

Z 1

0

q(t; s)
d

ds
Pr fN �(t) = kg ds: (6.8)

For � = 1, equation (6.8) becomes the second-order di�erence-di�erential equation

d2

dt2
p̂�k(t) = 2

�
�kp̂�k(t)� �k�1p̂�k�1(t)

�
; k � 1: (6.9)

Furthermore, for � = 1, the probability distribution (6.7) can be worked out explicitely and

becomes

p̂k(t) =

8<:
Qk�1

j=1 �j
Pk

m=1
e�t

p
2�mQ

k
l=1;l 6=m(�l��m)

; k > 1; t > 0;

e�t
p
2�1 ; k = 1; t > 0:

(6.10)

For 0 < � < 1, in light of the well-known integral representation of the Mittag{Le�er function

E�;1(��t�) = sin ��

�

Z 1

0

r��1e�r�
1
� t

r2� + 2r� cos �� + 1
dr; � 2 (0; 1); (6.11)

we obtain several di�erent representations of the distributions of the subordinated processes.

For � = 1=2, we have the following result

p̂
1
2

k (t) =

p
2

�

Z 1

0

1�
w2

2 + 1
�Pr fNw(t) = k j Nw(0) = 1g dw; (6.12)

which shows that N 1=2(Tt) is equivalent in distribution to a fractional pure birth process (denoted

by NW (t)) with rates �k �W , where W is a folded Cauchy distribution with scale parameter equal

to
p
2.

We have also that

p̂
1
2

k (t) =

Z 1

0

Pr fN (s) = kgPr
n��C(p2t)�� 2 ds

o
: (6.13)

In other words, N 1=2(Tt) is also equivalent in distribution to N (jC(p2t)j), C being a Cauchy

process.

We generalise the previous framework by considering the iterated process

~N �(t) = N �

�
T 1
T 2
::Tn

t

�
; t > 0; (6.14)
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where T 1
t ; : : : ; T

n
t , are independent �rst-passage times and

T
j
T j+1
::Tn

t

= inf

(
s : Bj(s) = T

j+1
T j+2
::Tn

t

)
; j = 1; : : : ; (n� 1); (6.15)

where Bj(t), t > 0, 1 � j � n, are independent Brownian motions. In particular, for � = 1 we

show that the state probabilities

Pr
n
~N 1(t) = k

o
= ~p1k(t); (6.16)

satisfy the 2nth order equations

d2
n

dt2n
~p1k(t) = 22

n�1 ��k~p1k(t)� �k�1~p1k�1(t)
	
: (6.17)

The distribution ~N 1(t) = ~N (t) (for short) is directly derived and reads

~pk(t) =

8><>:
Qk�1

j=1 �j
Pk

m=1
e�t�

1
2n
m 2

(1� 1
2n )Q

k
l=1;l 6=m(�l��m)

; k > 1;

e�t�
1
2n
1 2(1�

1
2n )

; k = 1:

(6.18)

For n!1, we obtain from (6.18) that

lim
n!1

~pk(t) =

8<:e�2t; k = 1;

0; k > 1:
(6.19)

In the last part of the chapter we examine di�erent types of compositions of the fractional pure

birth process with positively skewed stable processes S�(t), t > 0, 0 < � � 1. For � = �, we show

that

N �(S�(t)) i.d.
= N (tW�); 0 < � < 1: (6.20)

For the stable random variables S�1 , S�2 , it is well-known that the ratio

W� =

�
S�1
S�2

��
(6.21)

(sometimes called Lamperti law), has probability density equal to

fW�
(r) =

sin ��

��

r
�
��1

r2
�
� + 2r

�
� cos �� + 1

; r > 0: (6.22)

Furthermore, we show that N �(S�(t)) = N (T2�(S�(t)))
i.d.

6= N (S�(T2�(t))). We are also able to

prove that

N �(T2�(t)) = N (T2�(T2�(t)))
i.d.
= N (T2��(t)) = N ��(t): (6.23)

As a byproduct of our analysis we obtain the following integral relation between Mittag{Le�er

functions of di�erent indices:

E��;1(��mt��) = sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
E�;1

�
�r�

1
�
mt

�
�
dr (6.24)

=
sin��

�

Z 1

0

r��1

r2� + 2r� cos�� + 1
E�;1

�
�r�

1
�
mt

�
�
dr; 0 < �; � � 1:
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6.2 Subordinated nonlinear birth processes

In this section we study in detail the nonlinear pure birth process stopped at Tt and we derive

the state probabilities p̂ = Pr fN (Tt) = k j N (0) = 1g, k � 1, and the corresponding governing

di�erential equations.

We give some information about the process N (t), t > 0, evaluate explicitly its mean value

EN (t), and discuss also the linear birth process (sometimes referred as Yule{Furry process).

6.2.1 Preliminaries

The state probabilities pk(t) = Pr fN (t) = k j N (0) = 1g read (see e.g. Gikhman and Skorokhod

(1996), page 322)

pk(t) =

8<:
Qk�1

j=1 �j
Pk

m=1
e��mtQ

k
l=1;l 6=m(�l��m)

; k > 1; t > 0;

e��1t; k = 1; t > 0:
(6.25)

For the case of n0 progenitors (see Chiang (1968), page 51), formula (6.25) must be replaced by

pk(t) =

8<:
Qk�1

j=n0
�j
Pk

m=n0
e��mtQ

k
l=n0;l 6=m

(�l��m)
; k > n0; t > 0;

e��n0 t; k = n0; t > 0:
(6.26)

We assume that
P

k 1=�k =1 in such a way that the process is non-exploding (see Feller (1968),

page 452). For a discussion on this point, consult Grimmett and Stirzaker (2001), page 252. The

probabilities (6.25) satisfy the following di�erence-di�erential equations:

d

dt
pk(t) = ��kpk(t) + �k�1pk�1(t); k � 1: (6.27)

We have our �rst result in the next theorem.

Theorem 6.2.1. The mean value of the nonlinear birth process is

EN (t) = 1 +

1X
k=1

8<:1�
kX

m=1

kY
l=1;l 6=m

�l
�l � �m

e��mt

9=; : (6.28)

Proof. From equation (6.27), we have that

1X
k=1

k
d

dt
pk(t) = �

1X
k=1

k�kpk(t) +
1X
k=2

k�k�1pk�1 (6.29)

=

1X
k=1

�kpk(t):

By integrating both members in (0; t), we obtain

1X
k=1

kpk(t)� 1 =

1X
k=1

�k

Z t

0

pk(s)ds (6.30)

= �1

Z t

0

p1(s)ds+
1X
k=2

�k

8<:
Z t

0

k�1Y
j=1

�j

kX
m=1

e��msQk
l=1;l 6=m (�l � �m)

ds

9=;
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= 1� e��1t +
1X
k=2

0@k�1Y
j=1

�j

kX
m=1

�
1� e��mt

�
�m
Qk

l=1;l 6=m (�l � �m)

1A
= 1� e��1t +

1X
k=2

kX
m=1

kY
l=1;l 6=m

�l
�l � �m

�
1� e��mt

�

= 1� e��1t +
1X
k=2

8<:1�
kX

m=1

kY
l=1;l 6=m

�l
�l � �m

e��mt

9=;
=

1X
k=1

8<:1�
kX

m=1

kY
l=1;l 6=m

�l
�l � �m

e��mt

9=; ;

so that formula (6.28) emerges. In the second-to-last step of (6.30), we applied formula (3.12) of

Orsingher et al. (2010) and, in the last step, we considered that, for k = 1, the set of numbers

f1 � l � 1, l 6= m = 1g, is empty and the

kY
l=1;l 6=m

�l
�l � �m

; (6.31)

is taken equal to 1 by convention.

Remark 6.2.1. As a check we can extract, from (6.28), the mean value in the linear case

�m = m � �. Since
kX

m=1

kY
l=1;l 6=m

�l

�l� �m
e��mt (6.32)

=

kX
m=1

1 : : : (m� 1)(m+ 1) : : : k

(m� 1)(m� 2) : : : 1 � (�1)m�1 � 1 : : : (k �m)
e��mt

= �
kX

m=1

k!

m!(k �m)!
(�1)me��mt

= �
kX

m=1

�
k

m

�
(�1)me��mt

= � �(1� e��t)k � 1
�
;

we have that

1�
kX

m=1

kY
l=1;l 6=m

�l

�l� �m
e��mt = (1� e��t)k: (6.33)

From this we readily have that

EN(t) = 1 +

1X
k=1

(1� e��t)k (6.34)

= 1 +
1

1� (1� e��t)
� 1 = e�t:

The aim of this section is to compose the growth process N (t) with the �rst-passage time

Tt = inf(s : B(s) = t), where B is a Brownian motion independent of N (t).

Remark 6.2.2. The probability density of Tt = inf fs : B(s) = tg, t > 0, where B(t) is a

standard Brownian motion, namely

Pr fTt 2 dsg =ds = q(t; s) = t
e�

t2

2sp
2�s3

; (6.35)
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is the solution to the Cauchy problem8<: @2

@t2 q(t; s) = 2 @
@sq(t; s); t > 0; s > 0;

q(0; s) = �(s);
(6.36)

as a simple check shows.

6.2.2 Pure birth process stopped at Tt

Theorem 6.2.2. Let N (t), t > 0 be a classical nonlinear pure birth process and let q(t; s),

s > 0, t > 0, the law of Tt. The process N̂ (t) = N (Tt), t > 0, has the following distribution

p̂k(t) =

8<:
Qk�1

j=1 �j
Pk

m=1
e�t

p
2�mQ

k
l=1;l 6=m(�l��m)

; k > 1; t > 0;

e�t
p
2�1 ; k = 1; t > 0;

(6.37)

and mean value equal to

EN (Tt) = 1 +

1X
k=1

0@1� kX
m=1

kY
l=1;l 6=m

�l
�l � �m

e�t
p
2�m

1A : (6.38)

The distribution (6.37) is non-exploding under the condition that
P

k 1=�k =1.

Proof. The state probabilities are derived by straight calculations and by resorting to the Laplace

transform of q(t; s) which readsZ 1

0

e�
sq(t; s)ds =
Z 1

0

e�
s
te�

t2

2sp
2�s3

ds = e�t
p
2
 : (6.39)

We treat the case k > 1 as follows. The case k = 1 is analogous.

p̂k(t) = Pr fN (Tt) = k j N (0) = 1g =
Z 1

0

pk(s)q(t; s)ds (6.40)

=

Z 1

0

k�1Y
j=1

�j

kX
m=1

e��msQk
l=1;l 6=m (�l � �m)

te�
t2

2sp
2�s3

ds

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

e�t
p
2�m :

In view of Theorem 6.2.1, we can evaluate the mean value

EN (Tt) =

Z 1

0

EN (s)
te�

t2

2sp
2�s3

ds (6.41)

= 1 +

1X
k=1

0@1� kX
m=1

kY
l=1;l 6=m

�l
�l � �m

e�t
p
2�m

1A :

In the linear case (6.38) can be written as

EN (Tt) =

1X
k=0

1X
m=0

(�1)me�t
p
2�m: (6.42)
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On the other side, this sum diverges because

EN (Tt) =

Z 1

0

e�sPr fTt 2 dsg =1: (6.43)

Remark 6.2.3. Note that 8 t, p̂k(t), k � 1 is a proper probability distribution because of the

composition N̂ (t) = N (Tt). The process can be appropriately interpreted by rewriting (6.40)

as follows

p̂k(t) =
k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��ms te
� t2

2sp
2�s3

ds (6.44)

=

Z 1

0

k�1Y
j=1

#�j

kX
m=1

1Qk
l=1;l 6=m (#�l � #�m)

e��m#t2 e�
1
2#p

2�#3
d#:

The process N̂ (t), t > 0 can be viewed as a classical nonlinear pure birth process evaluated at

time t2 with random birth rates ��k, k � 1, where � is an inverse Gaussian random variable

with p.d.f.

f�(#) =
e�

1
2#p

2�#3
; # 2 R+: (6.45)

The composition of N (t), t > 0, with Tt leads to a second-order time derivative in the governing

equations, as shown in the next theorem.

Theorem 6.2.3. Let p̂k(t), t > 0, k � 1, be the distribution of the process N̂ (t) = N (Tt),

t > 0, where Tt is the �rst-passage time process of the standard Brownian motion, having

transition density q(t; s), s > 0, t > 0. The state probabilities p̂k(t), t > 0, k � 1, satisfy the

following di�erence-di�erential equations

d2

dt2
p̂k(t) = 2

�
�kp̂k(t)� �k�1p̂k�1(t)

�
; k � 1; (6.46)

where �k, k � 1 are the birth rates of the nonlinear classical birth process N (t), t > 0.

Proof. Since

p̂k(t) =
Z 1

0

pk(s)q(t; s)ds; (6.47)

by taking the second-order derivative w.r.t. t, in view of Remark 6.2.2, we have that

d2

dt2
p̂k(t) = 2

Z 1

0

pk(s)
@

@s
q(t; s)ds (6.48)

= 2q(t; s)pk(s)
��s=1
s=0

� 2

Z 1

0

d

ds
pk(s)q(t; s)ds

= �2
Z 1

0

q(t; s)
���kpk(s) + �k�1pk�1(s)

�
ds

= 2
�
�kp̂k(t)� �k�1p̂k�1(t)

�
ds:

In (6.48), we considered that pk(0) = 0, for k > 1.

Remark 6.2.4. In the linear case, some calculations su�ce to show that

p̂k(t) = Pr fN(Tt) = kg =
kX

m=1

�
k � 1

m� 1

�
(�1)m�1e�t

p
2�m; k � 1; t > 0; (6.49)

and the state probabilities satisfy the equation

d2

dt2
p̂k(t) = 2�p̂k(t)� 2�(k � 1)p̂k�1(t); k � 1: (6.50)
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Iterated compositions

Theorem 6.2.4. Let N (t), t > 0, be a classical nonlinear birth process. Let T 1
t , T

2
t ; : : : ; T

n
t ,

n 2 N, be �rst-passage times of n independent standard Brownian motions. The process

~N (t) = N
�
T 1
T 2
::Tn

t

�
; t > 0; (6.51)

has the following distribution

~pk(t) =

8><>:
Qk�1

j=1 �j
Pk

m=1
e�t�

1
2n
m 2

(1� 1
2n )Q

k
l=1;l 6=m(�l��m)

; k > 1; t > 0;

e�t�
1
2n
1 2(1�

1
2n )

; k = 1; t > 0:

(6.52)

Proof. We start by proving the case n = 2 since the case n = 1 is already proved in Theorem

6.2.2. We omit the details for the case k = 1 and directly treat the case k � 2. We have thatZ 1

0

p̂k(t)q(t; s)ds =
Z 1

0

k�1Y
j=1

�j

kX
m=1

e�s
p
2�mQk

l=1;l 6=m (�l � �m)

te�
t2

2sp
2�s3

ds (6.53)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e�s
p
2�m

te�
t2

2sp
2�s3

ds

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

e�t
p

2
p
2�m :

It is now straightforward to generalise formula (6.53) for n compositions, as follows

~pk(t) =
k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

e�t�
1
2n
m 2

P
n
i=1

1
2i (6.54)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

e�t�
1
2n
m 2(1�

1
2n )

:

When n!1, equation (6.52) becomes

lim
n!1

~pk(t) =

8<:e
�2tQk�1

j=1 �j
Pk

m=1
1Q

k
l=1;l 6=m(�l��m)

= 0; k > 1;

e�2t; k = 1;
(6.55)

because of formula (3.4), page 51 of Chiang (1968). Therefore, the process (6.51) can either assume

the state k = 1 with probability e�2t, or explode with probability 1� e�2t.

Theorem 6.2.5. Let ~pk(t), t > 0, k � 1, be the distribution of the process

~N (t) = N
�
T 1
T 2
::Tn

t

�
; t > 0: (6.56)

The state probabilities ~pk(t), t > 0, k � 1, satisfy the following di�erence-di�erential equa-

tions
d2

n

dt2n
~pk(t) = 22

n�1 ��k~pk(t)� �k�1~pk�1(t)
	
; (6.57)

where �k, k � 1, are the birth rates of the nonlinear classical birth process N (t), t > 0.
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Proof. For n = 1, equations (6.57) reduce to equations (6.46). For n = 2 we have that

d4

dt4
~pk(t) =

Z 1

0

Z 1

0

p̂k(w1)q(w2; w1)
@4

@t4
q(t; w2)dw1 dw2 (6.58)

= 22
Z 1

0

Z 1

0

p̂k(w1)
@2

@w2
2

q(w2; w1)q(t; w2)dw1 dw2

= 22
Z 1

0

Z 1

0

p̂k(w1)
@2

@w2
2

q(w2; w1)q(t; w2)dw1 dw2

= 23
Z 1

0

Z 1

0

p̂k(w1)
@

@w1
q(w2; w1)q(t; w2)dw1 dw2

= �23
Z 1

0

Z 1

0

d

dw1
p̂k(w1)q(w2; w1)q(t; w2)dw1 dw2

= 23
�
�k~pk(t)� �k�1~pk�1(t)

	
:

The above reasoning can be generalised, thus arriving at equation (6.57).

6.2.3 Other compositions

In this part we present the distributions of the classical nonlinear birth process N (t), t > 0, stopped

at various random time processes, namely the sojourn time �t of a standard Brownian motion,

the sojourn time Gt of a standard Brownian bridge and the stable subordinator S�(t) of order
� 2 (0; 1].

We start �rst by considering the nonlinear birth process at time �t =
R t
0
I[0;1)(B(s))ds =

meas fs < t : B(s) > 0g. The process N (�t), is a slowed down birth process. In the next theorem

we provide its distribution.

Theorem 6.2.6. We have that

Pr fN (�t) = kg =
8<:
Qk�1

j=1 �j
Pk

m=1

e�
t
2
�mI0( t2�m)Q

k
l=1;l 6=m(�l��m)

; k > 1; t > 0;

e�
t
2�1I0

�
t
2�1
�
; k = 1; t > 0;

(6.59)

where

I0(z) =

1X
k=0

�z
2

�2k 1

(k!)2
; (6.60)

is the zero-order Bessel function with imaginary argument.

Proof. The derivation of (6.59) is based on the evaluation of the following integral:Z t

0

e�s�m
ds

�
p
s (t� s)

= e�
t
2�mI0

�
t

2
�m

�
: (6.61)

Remark 6.2.5. In view of the integral representation of the Bessel function

I0(z) =
1

2�

Z 2�

0

ez cos#d#; (6.62)

we can give the following alternative, interesting representation of (6.59).

Pr fN (�t) = kg = 1

2�

Z 2�

0

Pr

�
N
�
t sin2

#

2

�
= k

�
d#: (6.63)
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In other words,

N (�t)
i.d.
= N

�
t sin2

�

2

�
; (6.64)

where � is a random variable uniform in [0; 2�].

Theorem 6.2.7. For the nonlinear birth process stopped at

Gt =

Z t

0

I[0;1)( �B(s))ds; (6.65)

�B(s), s > 0, being a Brownian bridge, we have that

Pr fN (Gt) = kg =
8<:

1
�kt

n
1�Pk

m=1

Qk
l=1;l 6=m

�
�l

�l��m

�
e��mt

o
; k > 1;

1�e��1t
�1t

; k = 1:
(6.66)

Proof. The calculation

Pr fN (Gt) = kg =
k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z t

0

e��msPr fGt 2 dsg ; (6.67)

is su�cient to arrive at result (6.66), once the well-known fact that (6.65) is uniformly distributed

in [0; t] is considered.

Remark 6.2.6. For the the linear birth process, the distribution (6.66) takes a very simple

form as the calculations below show. Since for �k = � � k, � > 0, we have that

kY
l=1;l 6=m

�l
�l � �m

=

�
k

m

�
(�1)m�1; (6.68)

we can write that

Pr fN(Gt) = kg = 1

�kt

 
1�

kX
m=1

�
k

m

�
(�1)m�1e��mt

!
(6.69)

=
1

�kt

kX
m=0

�
k

m

�
(�1)me��mt

=

�
1� e��t

�k
�kt

; k � 1:

The distribution (6.69) is logarithmic with parameter 1�e��t. In the logarithmic distribution

with parameter 0 < q < 1, we have that

EL = � q

(1� q) log(1� q)
; (6.70)

VarL = � q

(1� q)2 log(1� q)

�
1 +

q

log (1� q)

�
: (6.71)

In our case q = 1� e��t so that

EN(Gt) =
e�t � 1

�t
; (6.72)

VarN(Gt) =
e�t(e�t � 1)

�t

�
1� 1� e��t

�t

�
: (6.73)
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For large values of t we have that

EN(Gt) � e�t

�t
=
EN(t)

�t
; (6.74)

VarN(Gt) � e�t(e�t � 1)

�t
=
VarN(t)

�t
: (6.75)

Theorem 6.2.8. For the nonlinear birth process stopped at an �-stable time S�(t) with dis-

tribution q�(t; s) and Laplace transform
R1
0

e��sq�(t; s)ds = e�t�
�

, we have that

Pr fN (S�(t)) = kg =
8<:
Qk�1

j=1 �j
Pk

m=1
e�t�

�
mQ

k
l=1;l 6=m(�l��m)

; k > 1;

e�t�
�
1 ; k = 1:

(6.76)

Proof. The following calculation is su�cient to prove result (6.76):

Pr fN (S�(t)) = kg =
k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��msq�(t; s)ds: (6.77)

Remark 6.2.7. Formula (6.76) can be further worked out as follows.

Pr fN (S�(t)) = kg =
k�1Y
j=1

�j

kX
m=1

e�t�
�
mQk

l=1;l 6=m (�l � �m)
(6.78)

by exploiting the self-similarity of S�(t)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��mst�
1
� q�(1; t

� 1
� s)ds

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��mt
1
� �q�(1; �)d�:

The last result implies the following representation:

N (S�(t)) i.d.
= N

�
t
1
�Z
�
; (6.79)

where Z has distribution q�(1; �), � > 0.

Remark 6.2.8. If we assume � = 1=2n in the �rst line of (6.78), and s = t21�
1
2n in (6.52),

the distribution (6.78) suggests the following unexpected relation:

Pr
n

N
�

S
1
2n (t)

�
= k

o
= Pr

�
N
�
T 1
T 2
::Tns

�
= k

�
; k � 1: (6.80)

Remark 6.2.9. Many other compositions can be envisaged and in some cases they provide

curious results. For example, we consider the standard Cauchy process C(t), with law h(t; s),

t > 0, s 2 R, satisfying the Laplace equation
@2h

@t2
+
@2h

@s2
= 0: (6.81)

We can show that N (jC(t)j), t > 0, is a birth process whose state probabilities p�k(t), t > 0,

satisfy the di�erence-di�erential equations

d2

dt2
p�k(t) = ��2kp�k(t) + �k�1 (�k + �k�1) p�k�1(t)� �k�1�k�2p�k�2(t): (6.82)
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6.3 Subordinated fractional birth processes

In a previous work of us (see Orsingher and Polito (2010)) we constructed and analysed a fractional

(possibly nonlinear) pure birth process N �(t), t > 0, � 2 (0; 1] by exchanging the integer-order time

derivative with the Dzhrbashyan{Caputo fractional derivative in the di�erence-di�erential equation

(6.27) governing the state probabilities. We recall that the Dzhrbashyan{Caputo derivative has

the form, for 0 < � � 1

d�

dt�
f(t) =

8<: 1
�(1��)

R t
0

f 0(s)
(t�s)� ds; 0 < � < 1;

f 0(t); � = 1:
(6.83)

In this section we examine properties of the subordinated processes N �(Tt), t > 0, N �(T2�(t)),

and N �(S�(t)), t > 0, �; �; � 2 (0; 1], bringing to the fore some interesting relations and discussing

the interpretation for the results obtained.

6.3.1 Preliminaries

The state probabilities p�k(t) = Pr fN �(t) = kg, k � 1 of the fractional pure birth process have the

following form

p�k(t) =

8<:
Qk�1

j=1 �j
Pk

m=1
E�;1(��mt�)Q
k
l=1;l 6=m(�l��m)

; k > 1; t > 0;

E�;1(��1t�); k = 1; t > 0;
(6.84)

where E�;1(��t�) is the Mittag{Le�er function de�ned as

E�;1 (��t�) =
1X
h=0

(��t�)h
� (�h+ 1)

; � 2 R; � > 0; (6.85)

and with Laplace transformZ 1

0

e�ztE�;1 (��t�) dt = z��1

z� + �
; � > 0: (6.86)

A useful integral representation for E�;1(��t�) reads

E�;1(��t�) = sin ��

�

Z 1

0

r��1e�r�
1
� t

r2� + 2r� cos �� + 1
dr; � 2 (0; 1): (6.87)

In a previous work (see Orsingher and Polito (2010)) we proved a useful subordination rep-

resentation for the fractional pure birth process (6.84). This can be viewed as a classical birth

process stopped at a random time T2�(t) possessing density function coinciding with the folded

solution to the fractional di�usion equation8<:
@2�g
@t2� = @2g

@x2 ; 0 < � � 1;

g (x; 0) = � (x) ;
(6.88)

with the additional condition gt (x; 0) = 0 for 1=2 < � � 1. In other words N �(t) = N (T2�(t)),

t > 0. It can be shown that fT2� (s; t) = Pr fT2�(t) 2 dsg is also a solution to

@�f

@t�
= �@f

@s
(6.89)

(see Orsingher et al. (2010)).
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Theorem 6.3.1. The fractional nonlinear pure birth process is a renewal process with inter-

mediate waiting times T �
k with law

Pr fT �
k 2 dsg = �ks

��1E�;�(��ks�)ds; k � 1; s > 0; (6.90)

where T �
k is the random time separating the kth and (k + 1)th birth.

Proof. We prove this result by induction. Denoting Z�
k = T �

1 + � � � + T �
k , we can certainly write

that

Pr fT �
1 + � � �+ T �

k 2 dtg =
Z t

0

Pr fT �
k 2 d(t� s)gPr�T �

1 + � � �+ T �
k�1 2 ds

	
; (6.91)

where Pr
�
T �
1 + � � �+ T �

k�1 2 ds
	
=ds = d

dsPr fN �(t) � kg. By resorting to Laplace transforms,

from (6.91), we obtain thatZ 1

0

e��tPr fT �
1 + � � �+ T �

k 2 dtg (6.92)

=

Z 1

0

e��tdt
Z t

0

Pr fT �
k 2 d(t� s)gPr�T �

1 + � � �+ T �
k�1 2 ds

	
=

Z 1

0

Pr
�
T �
1 + � � �+ T �

k�1 2 ds
	Z 1

s

e��tPr fT �
k 2 d(t� s)g

=

Z 1

0

e��sPr
�
T �
1 + � � �+ T �

k�1 2 ds
	Z 1

0

e��yPr fT �
k 2 dyg

=

kY
j=1

Z 1

0

e��sPr
�
T �
j 2 ds

	
=

kY
j=1

�j
�� + �j

:

We observe that

Pr fT1 2 dsg =ds = d

ds
Pr fN �(s) � 2g (6.93)

= � d

ds
E�;1(��1s�)

= �1s
��1E�;�(��1s�);

and that

Pr fT �
1 + T �

2 2 dsg (6.94)

=
d

ds
[1� Pr fN �(s) = 1g � Pr fN �(s) = 2g]

= �1s
��1E�;�(��1s�) + �1

�
�1

E�;�(��1s�)
�2 � �1

+ �2
E�;�(��2s�)
�1 � �2

�
s��1

=
�1�2

�2 � �1
s��1

�
E�;�(��1s�)� E�;�(��2s�)

�
:

For k = 2, relation (6.92) simpli�es toZ 1

0

e��tPr fT �
1 + T �

2 2 dtg = �1
�� + �1

�2
�� + �2

; (6.95)

and this coincides with the Laplace transform of (6.94).

Theorem 6.3.2. The mean value EN �(t), for the fractional nonlinear pure birth process has

the form:

EN �(t) = 1 +

1X
k=1

8<:1�
kX

m=1

kY
l=1;l 6=m

�l
�l � �m

E�;1(��mt�)
9=; : (6.96)
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Proof. In light of the subordination relation N �(t) = N (T2�(t)), and of result (6.28), we can write

that

EN �(t) =

Z 1

0

EN (s)Pr fT2�(t) 2 dsg (6.97)

= 1 +

1X
k=1

8<:1�
kX

m=1

kY
l=1;l 6=m

�l
�l � �m

Z 1

0

e��msPr fT2�(t) 2 dsg
9=;

= 1 +

1X
k=1

8<:1�
kX

m�1

kY
l=1;l 6=m

�l
�l � �m

E�;1(��mt�)
9=; :

In the previous steps we assumed thatZ 1

0

e��msfT2� (t; s)ds =

Z 1

0

e��msPr fT2�(t) 2 dsg = E�;1(��mt�): (6.98)

We give here some details of this result. The density fT2� (z; s), z > 0, s > 0, is obtained by folding

the solution of the fractional di�usion equation

@2�u

@z2�
=

@2u

@s2
; (6.99)

which reads

u(z; s) =
1

z�
W��;1��

�
� s

z�

�
; s > 0; z > 0: (6.100)

Therefore

1

z�

Z 1

0

e��msW��;1��
�
� s

z�

�
ds =

1

z�

Z 1

0

e��ms
1X
k=0

�
� s

z�

�k 1

k!�(��k + 1� �)
ds (6.101)

=
1

z�

1X
k=0

(�1)k
�k+1
m �(��k + 1� �)

1

(z�)k

=
1

�mz�
E��;1��

�
� 1

�mz�

�
(by formula (5.1) page 1825, Beghin and Orsingher (2009b))

= E�;1(��mz�):

Remark 6.3.1. We can extract, from (6.96), the mean value of the fractional linear birth

process obtained in Orsingher and Polito (2010), formula (3.42), as follows. By considering

that �m = � �m, formula (6.96) becomes

EN� = 1 +

1X
k=1

(
1�

kX
m=1

(�1)m�1 k!

m!(k �m)!
E�;1(��mt�)

)
(6.102)

= 1 +

1X
k=1

(
1 +

kX
m=1

(�1)m
�
k

m

�
E�;1(��mt�)

)

= 1 +

1X
k=1

kX
m=0

�
k

m

�
(�1)mE�;1(��mt�)

=

1X
k=0

kX
m=0

�
k

m

�
(�1)mE�;1(��mt�):
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In order to obtain the desired result we pass to Laplace transforms and extract from (6.102)

that Z 1

0

e��tEN�(t)dt =

1X
k=0

kX
m=0

�
k

m

�
(�1)k

Z 1

0

e��tE�;1(��mt�)dt (6.103)

=

1X
k=0

kX
m=0

�
k

m

�
(�1)k ���1

�� + �m

= ���1
Z 1

0

1X
k=0

kX
m=0

�
k

m

�
(�1)ke�w��e�w�mdw

= ���1
Z 1

0

1X
k=0

e�w�
� �
1� e�w�

�k
dw

= ���1
Z 1

0

e�w�
�

1� (1� e�w�)
dw

= ���1
Z 1

0

e�w�
�+w�dw

=
���1

�� � �
:

By inverting the Laplace transform above, we can conclude that

EN�(t) = E�;1(�t
�); (6.104)

thus con�rming our previous result.

Here we remark that another interpretation in terms of random birth rates can be highlighted.

If we write

p�k(t) = Pr fN �(t) = k j N �(0) = 1g =
Z 1

0

pk(s)Pr fT2�(t) 2 dsg (6.105)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��msPr fT2�(t) 2 dsg

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��ms 1

t�
W��;1��

�
� s

t�

�
ds

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��m�t�W��;1��(��)d�

=

Z 1

0

W��;1��(��)Pr fN�(t
�) = k j N�(0) = 1g d�;

we have that a fractional nonlinear pure birth process can be considered as a classical nonlinear

pure birth process evaluated at a rescaled time t� and with random rates �k�, k � 1, where � is

a random variable with density function

f�(�) =W��;1��(��); � 2 R+ (6.106)

and where W��;1��(��) is a Wright function de�ned as

W��;1��(��) =
1X
r=0

(��)r
r!� (1� �(r + 1))

: (6.107)
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From (6.105), the following interpretation also holds:

N �(t)
i.d.
= N (�t�): (6.108)

Note also that, from (6.87) and (6.105), we have that

E�;1(�zt�) =
Z 1

0

e�rzt
�

W��;1��(�r)dr = sin ��

�

Z 1

0

e�rz
1
� t r��1

r2� + 2r� cos �� + 1
dr; (6.109)

which illustrates an interesting relation between the Wright function and the law ofW1 (see (6.21)).

Equation (6.109) can be derived directly as follows.Z 1

0

e�
x
1

�t�
W��;1��

�
� x

�t�

�
dx (6.110)

=
1

�t�

1X
m=0

(�1)m
m!�

�� �
m + 1� �

� 1

(�t�)
m

Z 1

0

e�
xxmdx

=
1

�t�

1X
m=0

(�1)m
�
�� �

m + 1� �
� 1


 (
�t�)
m

=
1


�t�
E��;1��

�
� 1


�t�

�
(by formula (5.1), page 1825, Beghin and Orsingher (2009b))

= E�;1(�
�t�)

=
sin ��

�

Z 1

0

e�(
�)
1
� trr��1

(r� + cos ��)
2
+ sin2 ��

dr:

This yields (6.109) for z = 
�.

For further details on fractional pure birth process the reader can refer to Orsingher and Polito

(2010) while Mittag{Le�er functions are extensively analysed in Kilbas et al. (2006).

6.3.2 Fractional pure birth process stopped at Tt

We consider here the composition of a fractional nonlinear pure birth process, denoted as N �(t),

t > 0, � 2 (0; 1] with the �rst-passage time Tt of a standard Brownian motion. In the following

theorem we derive an interesting integral representation for the state probabilities p̂�k(t), t > 0,

k � 1, of N̂ �(t) = N �(Tt), t > 0, � 2 (0; 1).

Theorem 6.3.3. Let N �(t), t > 0, � 2 (0; 1), be a fractional nonlinear pure birth process and

Tt be the �rst-passage time process of the standard Brownian motion with distribution q(t; s).

The state probabilities p̂�k(t) = Pr fN �(Tt) = k j N �(0) = 1g possess the following integral form

p̂�k(t) =

8>><>>:
Qk�1

j=1 �j
Pk

m=1
1Q

k
l=1;l 6=m(�l��m)

1
i�

R1
0

E2�;1(�x2�ei��)�E2�;1(�x2�e�i��)

x+t

q
2�

1
�
m

dx; k > 1;

1
i�

R1
0

E2�;1(�x2�ei��)�E2�;1(�x2�e�i��)

x+t

r
2�

1
�
1

dx; k = 1:

(6.111)

Proof. It is su�cient to prove (6.111) in the case k > 1, since the case k = 1 is analogous. We

have

p̂�k(t) =
Z 1

0

p�k(s)q(t; s)ds (6.112)
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=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

E�;1(��ms�) te
� t2

2sp
2�s3

ds:

In order to prove (6.111), by taking into consideration formula (6.87), we do the following calcu-

lationsZ 1

0

E�;1(��ms�) te
� t2

2sp
2�s3

ds =

Z 1

0

te�
t2

2sp
2�s3

Z 1

0

sin ��

�

r��1e�r�
1
�
ms

r2� + 2r� cos �� + 1
dr ds (6.113)

=
sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1

Z 1

0

e�r�
1
�
ms te

� t2

2sp
2�s3

ds dr

=
sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
e�t

q
2r�

1
�
mdr

=
sin ��

�

Z 1

0

r��1e�t
q
2r�

1
�
m

(r� + ei��) (r� + e�i��)
dr

=
1

2i�

Z 1

0

�
1

r� + ei��
� 1

r� + e�i��

�
r��1e�t

q
2r�

1
�
mdr

=
1

i�

Z 1

0

�
1

w2� + ei��
� 1

w2� + e�i��

�
w2��1e�tw

q
2�

1
�
mdw

=
1

i�

Z 1

0

�
w2��1

w2� + ei��
� w2��1

w2� + e�i��

�
e�tw

q
2�

1
�
mdw:

By using the Laplace transform (6.86) we obtainZ 1

0

E�;1(��ms�) te
� t2

2sp
2�s3

ds (6.114)

=
1

i�

Z 1

0

�Z 1

0

e�wxE2�;1(�x2�ei��)dx�
Z 1

0

e�wxE2�;1(�x2�e�i��)dx
�
e�tw

q
2�

1
�
mdw

=
1

i�

Z 1

0

E2�;1

��x2�ei���� E2�;1

�
x2�e�i��

�
x+ t

q
2�

1
�
m

dx:

Formula (6.111) is then proved by combining (6.112) and (6.114).

Remark 6.3.2. If �k = k�, k � 1, the state probabilities p̂�k(t) = Pr fN�(Tt) = k j N�(0) = 1g
of a fractional linear pure birth process stopped at Tt read

p̂�k(t) =

8><>:
Pk�1

m=0

�
k�1
m�1

�
(�1)m�1 1

i�

R1
0

E2�;1(�x2�ei��)�E2�;1(�x2�e�i��)
x+t

p
2�

1
� m

dx; k > 1;

1
i�

R1
0

E2�;1(�x2�ei��)�E2�;1(�x2�e�i��)
x+t

p
2�

1
�

dx; k = 1:
(6.115)

This result can be obtained by means of methods similar to those of Theorem 6.3.3.

Remark 6.3.3. By considering formula (6.112) and the representation (6.87) we can give

an interesting interpretation of the process N̂ 1=2(t) = N 1=2(Tt), t > 0, as follows (again, we

treat the case k � 1 since the case k = 1 is analogous)

p̂�k(t) =
Z 1

0

p�k(s)q(t; s)ds (6.116)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

E�;1(��ms�) te
� t2

2sp
2�s3

ds

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
e�t

q
2r�

1
�
mdr
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=
sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

e�t
q
2r�

1
�
mdr:

If � = 1=2 we obtain the following expression

p̂
1
2

k (t) =
1

�

Z 1

0

1p
r (r + 1)

k�1Y
j=1

(
p
2r�j)

kX
m=1

1Qk
l=1;l 6=m

�p
2r�l �

p
2r�m

�e�tp2r�mdr (6.117)

=

p
2

�

Z 1

0

1�
w2

2 + 1
�Pr fNw(t) = k j Nw(0) = 1g dw

where NW (t), t > 0, is a classical nonlinear birth process (6.25) with random birth rates

(W�k), k � 1 where W is a folded Cauchy r.v. with p.d.f.

fW (w) =

p
2

�
�
w2

2 + 1
� ; w 2 R+: (6.118)

It is possible to highlight a further interpretation by rewriting formula (6.117) in the following

way

p̂
1
2

k (t) =

p
2

�

Z 1

0

1

t
�
s2

2t2 + 1
� k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

e�s�mds (6.119)

=

Z 1

0

Pr fN (s) = kgPr
n���C(p2t)��� 2 ds

o
where C(

p
2t), t > 0 is a Cauchy process with rescaled time, possessing transition density

fC(t; s) =
1

�

p
2t

s2 +
�p

2t
�2 ; t > 0; s 2 R: (6.120)

The process N̂ 1=2(t) = N 1=2(Tt) can thus be written as N̂ 1=2(t) = N (
��C(p2t)��).

Iterated compositions

In the next theorem we present the explicit form of the state probabilities ~p�k(t), t > 0, k � 1, for

the process

~N �(t) = N �

�
T 1
T 2
::Tn

t

�
; t > 0; � 2 (0; 1]: (6.121)

and in the following remark an interesting interpretation for that process when � = 1=2n, n 2 N,
is given.

Theorem 6.3.4. Let N �(t), t > 0, � 2 (0; 1], be a fractional nonlinear pure birth process and

let T 1
t , T

2
t , : : : T

n, n 2 N, be n independent �rst-passage time processes at t of the standard

Brownian motion. The process

~N �(t) = N �

�
T 1
T 2
::Tn

t

�
; t > 0; � 2 (0; 1]: (6.122)

has the following distribution

~p�k(t) =

8>><>>:
Qk�1

j=1 �j
Pk

m=1
1Q

k
l=1;l 6=m(�l��m)

sin ��
�

R1
0

r��1e�tr
1
2n �

1
�2n
m 2

(1� 1
2n )

r2�+2r� cos ��+1 dr; k > 1; t > 0;

sin ��
�

R1
0

r��1e�t�
1
2n
1

2
(1� 1

2n )

r2�+2r� cos ��+1 dr; k = 1; t > 0:

(6.123)
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Proof. We start by proving the case n = 2 since the case n = 1 is already proved in Theorem

6.3.3. We omit the details for the case k = 1 and directly treat the case k � 2. We haveZ 1

0

p̂�k(t)q(t; s)ds (6.124)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1

Z 1

0

e�s(2r)
1
2 �

1
2�
m

te�
t2

2sp
2�s3

ds dr

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
e�t

r
2

q
2r�

1
�
mdr:

It is now straightforward to generalise formula (6.124) for n compositions, as follows

~p�k(t) =
k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
e�tr

1
2n �

1
�2n
m 2

P
n
i=1

1
2i dr

(6.125)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
e�tr

1
2n �

1
�2n
m 2(1�

1
2n )

dr:

Remark 6.3.4. Analogously to Remark 6.3.3, for � = 1=2n, n 2 N, it is possible to interpret

formula (6.123) as follows

~p
1
2n

k (t) (6.126)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin �
2n

�

Z 1

0

r
1
2n
�1

r
1

2n�1 + 2r
1
2n cos �

2n + 1
e�tr

1
2n 2(1�

1
2n )�mdr

�
r = y2

n
�

=
sin �

2n
�
2n

Z 1

0

dr

r2 + 2r cos �
2n + 1

Pr
n

N
�
tr21�

1
2n

�
= k

o
:

Therefore, the following representation holds

N
1
2n

�
T 1
T 2
::Tn

t

�
= N

�
t
21�

1
2n

�
; (6.127)

where 
 is a random variable with density

f
(r) =
sin �

2n
�
2n

1

r2 + 2r cos �
2n + 1

; r 2 R+: (6.128)

The density is a unimodal law which, for n!1, becomes

f(r) =
1

(1 + r)2
; r 2 R+: (6.129)

6.3.3 Fractional pure birth process stopped at Sα(t)

We consider the fractional nonlinear pure birth process stopped at a stable time S�(t) of order
0 < � � 1 with Laplace transform

Ee�zS�(t) =

Z 1

0

e�zsq�(t; s)ds = e�tz
�

; (6.130)
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where q�(t; s), s > 0, is the density of the stable process S�(t), t > 0.

We have that the probabilities

�p�k(t) = Pr fN �(S�(t)) = k j N �(0) = 1g (6.131)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

E�;1(��ms�)q�(t; s)ds

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1

Z 1

0

e�r�
1
�
msq�(t; s)ds dr

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
e�t�

�
�
m r�dr

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

��

Z 1

0

w
�
��1

w2 �
� + 2w

�
� cos �� + 1

e�t�
�
�
mwdw

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Ee�t�
�
�
mW� ;

where W� is a random variable with density

fW�
(w) =

sin ��

��

w
�
��1

w2 �
� + 2w

�
� cos �� + 1

; w > 0; 0 < � < 1; (6.132)

(�rst obtained by Lamperti (1958)). The density (6.132) coincides with the probability distribution

of

W� =

�
S�1
S�2

��
; (6.133)

where S�1 , S
�
2 , are independent stable random variables with Laplace transform

Ee�zS
�

= e�z
�

; z > 0; 0 < � < 1: (6.134)

If � = 1, Ee�t�
1
�
mW� = E�;1(��mt�) and (6.131) are the state probabilities of a fractional pure

birth process, while for � = �, Ee�t�mW� are the state probabilities of a pure birth process at time

tW� or, equivalently, a pure birth process at time t with rates �kW� .

If we compare (6.131) with (6.78), we can conclude that the process

N �(S�(t)) = N (T2�(S�(t))); (6.135)

can be represented as

N
�

S�=� (tW�)
�
; (6.136)

if 0 < � < � < 1.

Remark 6.3.5. From formula (6.131), when � takes the form � = �=2n, n 2 N, we have

�p�k(t) =
sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1

k�1Y
j=1

�j

kX
m=1

e�t�
1
2n
m r

�
2nQk

l=1;l 6=m (�l � �m)
dr: (6.137)

For n ! 1, we obtain that �p�k(t) ! 0, k > 1, and �p�1 (t) ! e�t. This shows that for n ! 1,

either the population istantaneously explodes or does not produce o�springs with exponential

probability.
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An alternative way of presenting the state probabilities (6.131) is based on the Mellin{Barnes

representation of the Mittag{Le�er function

E�;�(x) =
1

2�i

Z 
+i1


�i1

�(z)�(1� z)

�(�� �z)
x�zdz; (6.138)

with � > 0, x 2 C, jarg(�x)j < � (see Kilbas et al. (2006), page 44, formula (1.8.32)).

In view of (6.138), we can write (6.131) as follows

�p�k(t) =
k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

1

2�i

Z 
+i1


�i1

�(z)�(1� z)

�(1� �z)
(�ms

�)�zdz q�(t; s)ds

(6.139)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

1

2�i

Z 
+i1


�i1

�(z)�(1� z)

�(1� �z)
��zm

Z 1

0

s��zq�(t; s)ds dz;

where in the last member of (6.139) the Mellin transform of q�(t; s) appears.

The Mellin transform of the stable subordinator S�(t), with Laplace transform

Ee�zS�(t) = e�tz
�

; (6.140)

reads

E(S�(t))��1 =
Z 1

0

s��1q�(t; s)ds (6.141)

=
1

�
�

�
1� �

�

�
1

�(1� �)
t
��1
� :

By inserting (6.141) into (6.139), we arrive at

�p�k(t) =
k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

��1

2�i

Z 
+i1


�i1

�(z)�(1� z)�
�
�
�z
�

�(�z)�(1� �z)

�
�mt

�
�

��z
dz (6.142)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

��1H2;1
2;3

"
�mt

�
�

����� (0; 1); (0; �)

(0; 1); (0; �=�); (0; �)

#
:

We examine now in detail the case � = � in the next theorem.

Theorem 6.3.5. We have the following distributions:

1. Pr fN �(S�(t)) = kg = Pr fN (T2�(S�(t))) = kg = Pr fN (tW�) = kg,

2. Pr fN (S�(T2�(t))) = kg = Pr fN (tW1) = kg,

for k � 1, t > 0, where

W� =

�
S�1
S�2

��
; (6.143)

and has distribution (6.132).

Proof. For k > 1 we can write that

Pr fN (T2�(S�(t))) = kg (6.144)
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=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��msPr fT2�(S�(t)) 2 dsg

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��ms

Z 1

0

fT2� (z; s)q�(t; z)dz ds

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

E�;1(��mz�)q�(t; z)dz

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

dr

Z 1

0

r��1e��
1=�
m zr

r2� + 2r� cos �� + 1
q�(t; z)dz

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

Z 1

0

r��1e�t(r�
1=�
m )�

r2� + 2r� cos �� + 1
dr

=

Z 1

0

Pr fN (tr�) = kg sin ��
�

r��1

r2� + 2r� cos �� + 1
dr

= Pr fN (tW�
1 ) = kg = Pr fN (tW�) = kg :

This concludes the proof of the �rst result. In order to prove the second result we write

Pr fN (S�(T2�(t))) = kg (6.145)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

Z 1

0

e��msq�(z; s)fT2� (z; t)dz ds

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

e��
�
mzfT2� (z; t)dz

by(6.98)
=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

E�;1(���mt�)

=

Z 1

0

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

sin ��

�

r��1e��mtr

r2� + 2r� cos �� + 1
dr

=

Z 1

0

Pr fN (tr) = kg sin ��
�

r��1

r2� + 2r� cos �� + 1
dr

= Pr fN (tW1) = kg :

Remark 6.3.6. By slightly changing the above calculations, we arrive at the following result

(compare with (6.131)):

Pr fN (S�(T2�(t))) = kg =
k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Ee�t�
�
�
mW1 : (6.146)

Remark 6.3.7. An alternative form of the distribution (6.131), for � = �, can be given as

follows.

Pr fN �(S�(t)) = kg (6.147)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

1

2i��

Z 1

0

�
1

w + e�i��
� 1

w + ei��

�
e�t�mwdw

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

1

2i��

h
et�me�i��E1

�
t�me

�i���� et�mei��E1

�
t�me

i��
�i
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=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

e�mt cos ��

2i��

�
et�m sin ��E1

�
t�me

�i���� et�m sin ��E1

�
t�me

i��
��
;

where the function E1(z) =
R1
z

e�t

t dt, j arg z < �j, is the exponential integral.

6.3.4 Fractional pure birth process stopped at T2α(t)

In this section we consider the process N �(T2�(t)), t > 0 (see the discussion related to formula

(6.88). As we did before, here we treat the case k � 2. The state probabilities can be written as

follows.

p�;�k (t) = Pr fN �(T2�(t)) = k j N �(0) = 1g (6.148)

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

E�;1(��ms�)Pr fT2�(t) 2 dsg :

The integral in (6.148) can be further worked out by means of the Laplace transform:Z 1

0

E�;1(��ms�)
Z 1

0

e�ztPr fT2�(t) 2 dsg dt (6.149)

=

Z 1

0

E�;1(��ms�)z��1e�sz
�

ds

= z��1
(z�)��1

z�� + �m
=

z���1

z�� + �m
:

By taking the inverse Laplace transform of the above formula, we immediately obtain thatZ 1

0

E�;1(��ms�)Pr fT2�(t) 2 dsg (6.150)

=

Z 1

0

E�;1(��ms�)t��W��;1��(�t��s)ds

= E��;1(��mt��):

Therefore, the state probabilities for the process N �(T2�(t)), t > 0, result in the following form:

p�;�k (t) =

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

E��;1(��mt��) = p��k (t); k � 2: (6.151)

Note that the case k = 1 can be treated in the same manner. We thus obtain the following

equalities in distribution:

N �(T2�(t)) = N fT2�(T2�(t))g = N (T2��(t)) = N ��(t); t > 0: (6.152)

Let now �n =
Qn

i=1 �i, where n 2 N, and �i are n indices such that �i 2 (0; 1] for 1 � i � n.

Formula (6.152) can be generalised as

N fT2�1(T2�2(: : : T2�n(t) : : : ))g = N (T2�n(t)) = N �n(t); t > 0 (6.153)

where N �n(t) is a nonlinear fractional birth process.

Formula (6.148) can also be worked out in an alternative way. In the following calculations we

will make use of the integral representation (6.87).

p�;�k (t) = Pr fN �(T2�(t)) = k j N �(0) = 1g (6.154)



119 Randomly Stopped Nonlinear Fractional Birth Processes

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

E�;1 (��ms�) Pr fT2�(t) 2 dsg

=

Z 1

0

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

�
Z 1

0

sin ��

�

r��1

r2� + 2r� cos �� + 1
e�r�

1
�
msPr fT2�(t) 2 dsg dr

=

k�1Y
j=1

�j

kX
m=1

1Qk
l=1;l 6=m (�l � �m)

Z 1

0

sin ��

�

r��1

r2� + 2r� cos �� + 1
E�;1

�
�r�

1
�
mt

�
�
:

Remark 6.3.8. By comparing formulae (6.151) and (6.154), it is clear that the following

expansion holds:

E��;1(��mt��) = sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
E�;1

�
�r�

1
�
mt

�
�
dr; � 2 (0; 1]; � 2 (0; 1]:

(6.155)

We give a direct proof of (6.155) by applying the Laplace transform to both members. Of

course Z 1

0

e��tE��;1(��mt��)dt = ����1

��� + �m
: (6.156)

Then, we must calculate the twofold integral

sin ��

�

Z 1

0

e��t
Z 1

0

r��1

r2� + 2r� cos �� + 1
E�;1

�
�r�

1
�
mt

�
�
dt dr (6.157)

=
sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1

���1

�� + r�
1
�
m

dr

=
sin ��

�

Z 1

0

Z 1

0

���1r��1e
�w

�
��+r�

1
�
m

�

r2� + 2r� cos �� + 1
dr dw

by (6.87)
=

Z 1

0

���1e��
�wE�;1(��mw�)dw

=
(��)��1���1

(��)� + �m
=

����1

��� + �m
:

Remark 6.3.9. A number of interesting relations follow from formula (6.155).

The following integral relation holds:

sin ��

�

Z 1

0

1

r2 + 2r cos �� + 1
E�;1

�
�r 1

� �
1
�
mt

�
�
dr (6.158)

=
sin ���

��

Z 1

0

1

r2 + 2r cos ��� + 1
e�r

1
�� �

1
��
m tdr:

A sort of commutativity is valid for (6.155):

E��;1(��mt��) = sin��

�

Z 1

0

r��1

r2� + 2r� cos�� + 1
E�;1

�
�r�

1
�
mt

�
�
; � 2 (0; 1]; � 2 (0; 1]:

(6.159)

For � = 1 we recover, from (6.155), the integral representation of Mittag-Le�er functions.

By considering that

f�(r) =
r��1

r2� + 2r� cos �� + 1
; (6.160)

for � = 1, becomes a delta function with pole at r = 1, we extract, from (6.155), an identity.
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Furthermore, it is worth noticing that formulae similar to (6.155) can be derived by re-

peated applications of the same formula. For example we have:

E���;1

���mt���� = sin ��

�

Z 1

0

r��1

r2� + 2r� cos �� + 1
E��;1

�
�r�

1
�
mt

��
�
dr (6.161)

=
sin �� sin��

�2

Z 1

0

Z 1

0

r��1w��1E�;1(�wr 1
��

1
��
m t�)

(r2� + 2r� cos �� + 1)(w2� + 2w� cos�� + 1)
dw dr:

Let �i, 1 � i � n be n indices such that for all 1 � i � n, �i 2 (0; 1], and let us denote

�n =
Qn

i=1 �i. In general, for n � 2, we obtain that

E�n;1 (��mt�n) (6.162)

=

Z 1

0

: : :

Z 1

0

n�1Y
j=1

 
r
�j�1
j

r
2�j
j + 2r

�j
j cos �j + 1

!
E�n;1

�
�r1r

1
�1
2 r

1
�1�2
3 : : : r

1
�n�2

n�1 �
1

�n�1
m t�n

� n�1Y
j=1

drj

= E

�
E�n;1

�
�(1)W1

(2)W
1
�1
1

(3)W
1

�1�2
1 : : : (n�1)W

1
�n�2

1 �
1

�n�1
m t�n

��
;

where (j)W1, 1 � j � n�1, are independent random variables, each with distribution (6.132),

with � = 1 and � = �j.
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