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Abstract

We study uniqueness property for the Cauchy problem x′ ∈ ∂V (x), x(0) = ξ, where
V : Rn → R is a locally Lipschitz continuous, quasiconvex function (i.e. the sublevel
sets {V ≤ c} are convex) and ∂V (x) is the generalized gradient of V at x. We prove
that if 0 6∈ ∂V (x) for V (x) ≥ b, then the set of initial data ξ ∈ {V = b} yielding non
uniqueness of solution in a geometric sense has (n–1)-dimensional Hausdorff measure
zero in {V = b}.

Ref. S.I.S.S.A. 77/95/M (June 1995)

1



1. Introduction and Statement of the Result

In this work we study uniqueness property for Cauchy problems of the type

(Pξ)
{

x′(t) ∈ ∂V (x(t))
x(0) = ξ.

When V : Rn → R is convex and locally Lipschitz continuous, ∂V (x) is the sub-
differential in the sense of convex analysis and the multifunction x 7→ ∂V (x) is a
maximal monotone operator in Rn. This implies that for every ξ ∈ Rn the problem
(Pξ) admits at least a solution, which is unique in the past. Moreover, as proved
by Cellina [C] in a more general setting, for almost every ξ ∈ Rn the problem (Pξ)
admits a unique solution.

The interest in this subject arises from some questions in the calculus of varia-
tions. In this framework V would be a solution to a minimization problem and the
hypothesis of convexity for V seems to be too strong.

It is more natural to consider the case in which V : Rn → R is locally Lipschitz
continuous and its sublevel sets are convex. In this case ∂V (x) is the generalized
gradient, introduced by Clarke [Cl]. Since the multifunction x 7→ ∂V (x) is upper
semicontinuous with compact convex values, for any ξ ∈ Rn the problem (Pξ) admits
at least a local solution.

We point out that in general the operator ∂V (·) is not monotone (actually it
is monotone if and only if V is convex, see [Cl, Proposition 2.2.9]) and therefore
nothing can be said about uniqueness of solutions of (Pξ). Hence it is natural to
consider uniqueness property in a geometrical sense. Precisely, two solutions to (Pξ)
are geometrically distinct in the future if, for positive times they draw two different
curves in Rn.

We prove the following result.

Theorem. Let V : Rn → R and a, b ∈ R, b > a, satisfy:
(V1) V is locally Lipschitz continuous;
(V2) the sets {V ≤ c} are convex for every c ≥ a;
(V3) 0 /∈ ∂V (x) for every x ∈ {V ≥ b}.
Let Ω be the set of the points ξ ∈ Rn such that the problem (Pξ) admits (at least) two
geometrically distinct solutions in the future. Then the (n−1)–dimensional Hausdorff
measure of the set {V = b} ∩ Ω is zero.

As immediate consequence of the theorem we get the following result.

Corollary. Let V : Rn → R be a locally Lipschitz continuous function whose sublevel
sets are convex and 0 6∈ ∂V (x) for V (x) > inf V . Then the n–dimensional Lebesgue
measure of Ω is zero.

Remarks. (i) We point out that, thanks to (V1)–(V3), for any c ≥ b the level set
{V = c} is covered by a countable collection of (n− 1)–dimensional rectifiable sets.
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(ii) When V is convex, the generalized gradient ∂V (x) coincides with the stan-
dard subdifferential in the sense of convex analysis. In addition two different solutions
to (Pξ) are geometrically distinct in the future.

(iii) The hypothesis (V3) cannot be omitted, as we emphasize in the example
below.

2. Notations and Preliminary Results

Let V : Rn → R be a locally Lipschitz continuous function. By Rademacher’s
Theorem, the function V is differentiable almost everywhere (in the sense of Lebesgue
measure) on Rn. Moreover the generalized gradient ∂V (x) can be defined as the set

(2.1) ∂V (x) = co { lim∇V (xi) : (xi) ⊂ D , limxi = x , ∃ lim∇V (xi) }

where D = {x ∈ Rn : ∃∇V (x) }.
A first useful property that we need concerns the relationship between the gen-

eralized gradient ∂V (x) and the cone of normals to {V ≤ V (x)} at the point x.
To state it, we introduce some standard definitions, following [AC] and [Cl].

Given a convex closed nonempty subset C of Rn and a point x ∈ Rn we set dC(x) =
inf { |x− y| : y ∈ C }. It holds that:

(2.2) the function x 7→ dC(x) is convex and |dC(x)−dC(y)| ≤ |x−y| for any x, y ∈ Rn;

(2.3) for any x, v ∈ Rn there exists lim
t→0+

1
t
(dC(x + tv)− dC(x)) = d ′C(x; v).

Then we define the tangent cone to C at x as

(2.4) TC(x) = { v ∈ Rn : d ′C(x; v) = 0 }

and the normal cone to C at x as

(2.5) NC(x) = { y ∈ Rn : 〈y, v〉 ≤ 0 ∀ v ∈ TC(x) }.

The sets TC(x) and NC(x) are closed convex cones in Rn and TC(x) ∩NC(x) = {0}.
In addition, since C is convex, NC(x) coincides with the cone of normals to C at x

in the sense of convex analysis, namely

(2.6) NC(x) = { ξ ∈ Rn : 〈ξ, x− y〉 ≥ 0 ∀y ∈ C }

(see [Cl, proposition 2.4.4]).

Lemma 1. Let V : Rn → R and a ∈ R satisfy (V1) and (V2). Then ∂V (x) ⊂
N{V≤V (x)}(x) for every x ∈ {V > a}.

Proof. Let C = {V ≤ V (x)}. By (2.1), since C is a closed convex subset of Rn, it
is enough to prove that { lim∇V (xi) : (xi) ⊂ D , lim xi = x , ∃ lim∇V (xi) } ⊂
NC(x).
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Arguing by contradiction, let (xi) ⊂ D be such that limxi = x and lim∇V (xi) = ξ

with ξ 6∈ NC(x). Then, by (2.6), there exists y ∈ C such that 〈ξ, y − x〉 > 0. Since
x, y ∈ C and C is convex, dC(x+t(y−x)) = 0 for all 0 ≤ t ≤ 1 and so d ′C(x; y−x) = 0,
that is y − x ∈ TC(x).

Hence, setting v = y − x we have

(2.7) v ∈ TC(x);

(2.8) x + v ∈ C;

(2.9) 〈ξ, v〉 > 0.

Now we build a sequence (vi) ⊂ Rn in the following way: setting Ci = {V ≤ V (xi)},
we define vi = v if v ∈ TCi

(xi). Otherwise we take vi ∈ Rn such that |v − vi| ≤
dCi

(xi + v) + 1
i and xi + vi ∈ Ci. In any case, by the convexity of Ci, we have that

(2.10) vi ∈ TCi(xi).

Noting that dCi
(xi + v) ≤ dCi

(x + v) + |xi − x|, since limxi = x, we can conclude
that

(2.11) lim vi = v

provided that we prove that limdCi(x + v) = 0. But this is true, because otherwise
there is ε > 0 and a sequence (ik) ⊂ N such that B2ε(x + v) ∩ Cik

= ∅ for every
k ∈ N. Without loss of generality, we can also assume that the sequence (V (xik

)) is
monotone, so that {V < V (x)} ⊆

⋃
k≥1

⋂
h≥k Cih

. Hence B2ε(x+v)∩{V < V (x)} = ∅
and consequently Bε(x + v) ∩ C = ∅ in contradiction with (2.8).

Since ∇V (xi) ∈ NCi
(xi), by (2.10) and (2.6) we get 〈∇V (xi), vi〉 ≤ 0 for every i ∈ N.

Passing to the limit i → ∞, by (2.11) we conclude that 〈ξ, v〉 ≤ 0 in contradiction
with (2.9).

Now we discuss some properties about the Cauchy problem (Pξ). First of all we
point out that the mapping x 7→ ∂V (x) is an upper semicontinuous compact convex
multifunction defined on Rn (see [Cl]). This implies that for any ξ ∈ Rn, problem (Pξ)
admits at least a solution, namely a function x(·, ξ) ∈ AC loc(I, Rn), where I is an
interval containing 0, such that x(0, ξ) = ξ and x′(t, ξ) ∈ ∂V (x(t, ξ)) for almost every
t ∈ I. Moreover, maximal solutions are defined on R and the reacheable set at time t,
denoted by R(t, ξ), is connected (see [AC]). In addition the following properties hold.

Proposition 2. Let V : Rn → R and a, b ∈ R, a < b, satisfy (V1)–(V3).

(i) If x(·, ξ) ∈ AC loc(R, Rn) is a solution of the problem (Pξ) for ξ ∈ {V ≥ b}, then
x(t, ξ) ∈ {V > b} for every t > 0, the function t 7→ V (x(t, ξ)) is increasing and
d
dtV (x(t, ξ)) > 0 for almost every t ∈ R such that x(t, ξ) ∈ {V ≥ b}.

(ii) If V (ξ1) = V (ξ2) ≥ b and t1, t2 > 0 are such that V (x(t1, ξ1)) = V (x(t2, ξ2))
then |x(t1, ξ1)− x(t2, ξ2)| ≥ |ξ1 − ξ2|.

(iii) For any ξ ∈ {V ≥ b} there is a unique t ≤ 0 such that x(t, ξ) ∈ {V = b}.
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Proof. (i) Let x(·, ξ) ∈ AC loc(R, Rn) be a solution of (Pξ). The function t 7→
V (x(t, ξ)) is locally Lipschitz continuous and then differentiable almost everywhere
on R. First of all we prove that

(2.12) d
dtV (x(t, ξ)) ≥ 0 for almost every t ∈ R such that x(t, ξ) ∈ {V ≥ b}.

Let t ∈ R be such that x(t, ξ) ∈ {V ≥ b}, x(·, ξ) and V (x(·, ξ)) are differentiable at t

and d
dtV (x(t, ξ)) < 0. Then there is δ > 0 such that V (x(t+h, ξ)) < V (x(t, ξ)) for 0 <

h < δ. Hence, setting Ct = {V ≤ V (x(t, ξ))} we have x′(t, ξ) ∈ TCt
(x(t, ξ)) because

the tangent cone is closed. On the other hand, by Lemma 1, x′(t, ξ) ∈ NCt
(x(t, ξ))

and this implies that x′(t, ξ) = 0, in contradiction with (V3). Therefore (2.12) is
proved. Now we check that the function t 7→ V (x(t, ξ)) is strictly increasing. By the
contrary, let us suppose that there exists an interval [t1, t2] in which the function is
constant, let us say equal to c. For any t ∈ [t1, t2] and h such that t + h ∈ [t1, t2],
by a convexity argument we have x(t + h, ξ) − x(t, ξ) ∈ TCt

(x(t, ξ)) and again a
contradiction, as before. Now we prove that x(t, ξ) ∈ {V > b} for every t > 0. By
the upper semicontinuity of ∂V (·), there is ε > 0 and δ > 0 such that |x′(t, ξ)| ≥ δ

for almost any t for which V (ξ) − ε < V (x(t, ξ)) ≤ V (ξ). Using this remark the
conclusion follows arguing as above.

(ii) Let b̄ = V (ξ1) = V (ξ2) and c = V (x(t1, ξ1)) = V (x(t2, ξ2)). We denote by τi the
inverse function of V (x(·, ξi)), defined by V (x(τi(α), ξi)) = α for α ∈ [b̄, c]. It is an
absolutely continuous increasing function and

(2.13)

d

dα

1
2
|x(τ1(α), ξ1)− x(τ2(α), ξ2)|2

= 〈x(τ1(α), ξ1)− x(τ2(α), ξ2) , x′(τ1(α), ξ1) τ ′1(α)− x′(τ2(α), ξ2) τ ′2(α)〉

= 〈x(τ1(α), ξ1)− x(τ2(α), ξ2), x′(τ1(α), ξ1)〉 τ ′1(α)

+ 〈x(τ2(α), ξ2)− x(τ1(α), ξ1), x′(τ2(α), ξ2)〉 τ ′2(α).

Now we remark that τ ′i(α) = ( d
dtV (x(τi(α), ξ)))−1 > 0 for almost every α ∈ [b̄, c]. In

addition, by lemma 1, x′(τi(α), ξi) belongs to the normal cone to {V ≤ V (x(τi(α), ξi)}
at the point x(τi(α), ξi). Then, by (2.6), the last term in (2.13) is non negative and
this proves (ii).

(iii) Arguing by contradiction, let ξ ∈ {V > b} be such that x(t, ξ) ∈ {V > b} for all
t ≤ 0. Then, by the part (i), the function t 7→ V (x(t, ξ)) is strictly increasing on R
and there exists lim

t→−∞
V (x(t, ξ)) = l ∈ [ b, V (ξ) ). Firstly we prove that

(2.14) the set {x(t, ξ) : t ≤ 0 } is bounded.

Indeed, let us take ξ̄ ∈ {V = l}. By the part (i), there exists s̄ > 0 such that l <

V (x(s̄, ξ̄)) ≤ V (ξ). In addition there exists t̄ ≤ 0 such that V (x(t̄, ξ)) = V (x(s̄, ξ̄)).
Moreover, since V (x(t, ξ)) decreases to l as t → −∞, for any t ≤ t̄ there is s ∈ [0, s̄]
such that V (x(t, ξ)) = V (x(s, ξ̄)). Hence, by the part (ii), we get |x(t, ξ)− x(s, ξ̄)| ≤
|x(t̄, ξ) − x(s̄, ξ̄)|. Setting r = |x(t̄, ξ) − x(s̄, ξ̄)| and K = { y ∈ Rn : |y − x(s, ξ̄)| ≤
r , s ∈ [0, s̄] }, it holds that K is compact and x(t, ξ) ∈ K for all t ≤ t̄. Thus (2.14)
is proved.
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By (2.14), we can take a sequence (ti) ⊂ R such that ti → −∞, x(ti, ξ) → ξ̄ and
x(ti + 1, ξ) → ζ for some ξ̄, ζ ∈ {V = l}. Then, setting ξi = x(ti, ξ), it holds
that x(t, ξi) = x(ti + t, ξ) for every t ∈ [0, 1] and, by (2.14), ‖x′(·, ξi)‖L∞(0,1) ≤
const. Therefore, up to a subsequence, x(·, ξi) converges uniformly on [0, 1] to some
y(·) ∈ AC([0, 1], Rn) and x′(·, ξi) → y′(·) in the weak∗ topology of L∞(0, 1). By
[AC, Theorem 1, pag. 104] the function y(·) is a solution to the problem (Pξ̄) on the
interval [0, 1] and y(1) = x(1, ξ̄) = ζ. In addition l ≤ V (y(t)) = limV (x(t + ti, ξ̄)) ≤
limV (x(ti + 1, ξ̄)) = l, that is x(t, ξ̄) ∈ {V = l} for all t ∈ [0, 1], which contradicts
the part (i). Thus we proved that for any ξ ∈ {V ≥ b} there exists at least a value
t ≤ 0 such that x(t, ξ) ∈ {V = b}. The uniqueness of such a value t follows from the
part (i).

We now introduce the notion of geometrically distinct solutions for the Cauchy prob-
lem (Pξ).

Definition. Given ξ ∈ Rn two solutions xi(·, ξ) ∈ AC loc(R, Rn), i = 1, 2 to the
problem (Pξ) are geometrically distinct in the future (respectively in the past) if the
sets {xi(t, ξ) : t ≥ 0} (resp. {xi(t, ξ) : t ≤ 0}) are different. We say that the problem
(Pξ) has uniqueness of solution in the future (resp. in the past) if there do not exist
two solutions geometrically distinct in the future (resp. in the past).

Remark 1. Property (ii) of Proposition 2 implies that, for any ξ ∈ Rn, problem
(Pξ) has uniqueness of solution in the past.

Remark 2. For any c ≥ b we can define a function fc : {V = c} → {V = b} in
the following way: fc(y) = ξ, where ξ is such that there exist a solution x(·, ξ) of
problem (Pξ) and a value t ≥ 0 satisfying x(t, ξ) = y. Property (iii) of Proposition 2
guarantees that this function is well defined and, thanks to (ii), it satisfies the global
Lipschitz condition |fc(x)− fc(y)| ≤ |x− y| for any x, y ∈ {V = c}.

Example. When hypothesis (V3) is not satisfied it may happen that some level set
{V = c} has Hausdorff dimension greater than n− 1. Even assuming that any level
set {V = c} has Hausdorff dimension n− 1, the hypothesis (V3) plays a fundamental
role. Indeed, let us consider the function V : R → R defined by

V (x) =


|x| if |x| ≤ 1
2
3

√
(x− 1)3 if x > 1

2
3

√
(−x− 1)3 if x < −1.

It is easy to check that 0 ∈ ∂V (x) if x ∈ {V = 1}. For any 0 < ξ ≤ 1 we have that

x1(t, ξ) =
{

ξ + t if 0 ≤ t ≤ 1− ξ
1 if t > 1− ξ

and
x2(t, ξ) =

{
ξ + t if 0 ≤ t ≤ 1− ξ
1
4 (t− 1)2 + 1 if t > 1− ξ
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are two geometrically distinct solutions of the problem (Pξ).

3. Proof of the Theorem

Let Ω be the set of initial data such that the Cauchy problem (Pξ) has at least
two solutions geometrically distinct in the future. We denote by Hs the s–dimensional
Hausdorff measure and by Ln the Lebesgue measure in Rn.

We want to prove that Hn−1(Ω∩{V = b}) = 0. For ξ ∈ {V = b} and c ≥ b we denote
Rc(ξ) = { y ∈ {V = c} : fc(y) = ξ } where fc is given as in Remark 2. We devide
the proof in the following steps.

Step 1. For every ξ ∈ Ω ∩ {V = b} there is c > b, c ∈ Q such that H0(Rc(ξ)) = ∞.

Let (Cj) be a countable collection of compact sets that cover Rn.

Step 2. For every ξ ∈ Ω ∩ {V = b} there exists c > b, c ∈ Q and j̄ ∈ N such that
H0(Rc(ξ) ∩ Cj̄) = ∞.

Step 3. Application of the coarea formula.

Step 1. Let ξ ∈ {V = b} be such that there exist two solutions xi(·, ξ) (i = 1, 2) of the
problem (Pξ) geometrically distinct in the future. We can say that there are a rational
c > b and t1, t2 > 0 such that xi(ti, ξ) ∈ {V = c} (i = 1, 2) and x1(t1, ξ) 6= x2(t2, ξ).
We define

γi = {xi(t, ξ) : t ≥ 0},

t̄2 = sup{t ∈ [0, t2] : d(x2(t, ξ), γ1) = 0}

ξ1 = x2(t̄2, ξ).

We remark that ξ1 ∈ γ1 ∩ γ2, there exists t̄1 such that ξ1 = x1(t̄1, ξ) and xi(t− t̄i, ξ)
are solutions of problem (Pξ1). Moreover, if y(·, ξ1) is a solution of (Pξ1) in [0,+∞),
then

x(t) =
{

xi(t, ξ) for t ∈ [0, t̄i]
y(t− t̄i, ξ1) for t > t̄i

is a solution of (Pξ). Then R(t, ξ1) ⊂ R(t + t̄i, ξ) for any t > 0 and, by Proposition
2, part (i), R(t, ξ1) ⊂ {V > V (ξ1)} for any t > 0. We have also R(t, ξ1) ∩ γi 6= ∅
and R(t, ξ1) ∩ γ1 ∩ γ2 = ∅. We can suppose that R(t, ξ1) ⊂ {V (ξ1) < V ≤ c} if t is
sufficiently small. In fact, if it is not the case we can substitute x2(·, ξ) with an other
solution, denoted again by x2(·, ξ), in such a way the above inclusion holds. We state
the following

Claim: there is a solution x3(·, ξ) of the problem (Pξ) and a value t3 > 0 such that

x3(t3, ξ) ∈ {V = c} and x3(t3, ξ) 6= xi(ti, ξ) for i = 1, 2.

Indeed for any α ∈ {V (y) : y ∈ R(t, ξ1)} and i = 1, 2 there is a unique zi
α ∈ γi∩{V =

α} and z1
α 6= z2

α. Moreover there exists α ∈ {V (y) : y ∈ R(t, ξ1)} for which the set
{V = α} ∩R(t, ξ1) contains a third point z3

α 6= zi
α, i = 1, 2. Let y3(·, ξ) be a solution

to the problem (Pξ) such that, for a suitable t, it is y3(t, ξ) = z3
α.
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If limt→+∞ V (y3(t, ξ)) > c then there exists t3 > 0 such that V (y3(t3, ξ)) = c and
y3(t3, ξ) 6= xi(ti, ξ) for i = 1, 2. In this case we put x3(·, ξ) = y3(·, ξ).
If limt→+∞ V (y3(t, ξ)) ≤ c, by Proposition 2, part (i) V (y3(t, ξ)) < c for any t > 0.
Considering the problem (Px1(t1,ξ)), we have that for any t > 0 {V > c}∩R(t+t1, ξ) ⊃
R(t, x1(t1, ξ)) 6= ∅. Moreover R(t + t1, ξ) ∩ {V < c} 6= ∅. Then for any t > 0 there
exists z ∈ R(t+ t1, ξ)∩{V = c}. We want to prove that z 6= xi(ti, ξ). Let us suppose
that z = x1(t1, ξ). Then x1(t1, ξ) ∈ R(t + t1, ξ) for any t > 0. In other words, for any
t > 0 we can find a solution y(·) to the problem (Pξ) such that y(t+t1) = x1(t1, ξ) and
for any τ ∈ [0, t + t1] there exists s ∈ [0, t1] such that y(τ) = x1(s, ξ). For s ∈ [0, t1]
the curve described by x1(s, ξ) (the same described by y(τ) for τ ∈ [0, t + t1]) is
contained in a compact set K ⊂ {b ≤ V ≤ c}, so there exist two positive constants
m,M such that for any v ∈ ∂V (x), x ∈ K it is m ≤ |v| ≤ M . Computing the lenght
of this curve we have

m (t + t1) ≤
∫ t+t1

0

|y′(τ)| dτ =
∫ t1

0

|x′1(s, ξ)|ds ≤ Mt1

and we get that t ≤ t1
(

M
m − 1

)
, contradicting the fact that t is an arbitrary positive

value. Then repeating the same argument for x2(t2, ξ), and choosing t sufficiently
large, we can denote by x3(·, ξ) a solution to the problem (Pξ) for which there exists
t3 such that x3(t3, ξ) = z. Hence the claim is proved.

Let now γ3 = {x3(t, ξ) : t ≥ 0 }. We can suppose without restriction that γ1 ∩ γ3 ⊂
γ2 ∩ γ3. Let t̄3 = sup{t ∈ [0, t3] : d(x3(t, ξ), γ2) = 0} and ξ2 = x3(t̄3, ξ). Now, we
can repeat the same argument to construct a sequence (xi(·, ξ)) of solutions of the
problem (Pξ) and a corresponding sequence (ti) ⊂ R+ such that xi(ti, ξ) ∈ {V = c}
and xi(ti, ξ) 6= xj(tj , ξ) for i 6= j. Hence we have that xi(ti, ξ) ∈ Rc(ξ) for any i ∈ N
and then H0(Rc(ξ)) = ∞, being H0 the counting measure.

Step 2. Arguing by contradiction, let us suppose that for any ε > 0 and k > 0 there
exists iε,k ∈ N such that for any i > iε,k it is |x1(t1(b + ε), ξ) − xi(ti(b + ε), ξ)| > k.
Hence limε→0+ |x1(t1(b+ε), ξ)−xi(ti(b+ε), ξ)| ≥ k and this contradicts the fact that
for any i ∈ N limε→0+ xi(ti(b + ε)) = ξ.

Step 3. By the step 2, we have

{V = b} ∩ Ω =
⋃
j∈N

⋃
c∈Q,c>b

{
ξ : H0(Rc(ξ) ∩ Cj) = ∞

}
.

We now apply the coarea formula (see [M, Theorem 3.13])∫
{V =c}∩Cj

Jfc(x) dHn−1(x) =
∫
{V =b}

H0(Rc(ξ) ∩ Cj) dHn−1(ξ).

The left hand side is finite because fc is Lipschitzean and Hn−1({V = c} ∩Cj) < ∞.
Then for any c ∈ Q, c > b and for any j ∈ N

Hn−1
(
{V = b} ∩

{
ξ : H0(Rc(ξ) ∩ Cj) = ∞

})
= 0.
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We conclude this section proving the Corollary.

Proof of the Corollary. We can apply the Theorem with a = inf V . Then Hn−1({V =
b} ∩ Ω) = 0 for any b > a and using again the coarea formula, we get∫

Ω∩Cj

JV (x) dHn(x) =
∫

R
Hn−1({V = b} ∩ Ω ∩ Cj) dH1(b) = 0

where (Cj) is a covering of Rn of compact sets. By (V3), JV (x) > 0 for Hn–almost
every x ∈ Rn \ {V = a}. Moreover, if {V = a} 6= ∅, the set Ω ∩ {V = a} is contained
in the boundary of the convex set {V = a} in Rn, denoted ∂{V = a}. Indeed if
ξ ∈ Rn is an interior point of {V = a} then the only solution to (Pξ) is the constant
function x(t, ξ) = ξ. Since the Hausdorff dimension of ∂{V = a} is strictly less
that n, JV (x) > 0 for Hn–almost every x ∈ Ω. Therefore Hn(Ω ∩ Cj) = 0 for any
j ∈ N. Since Hn coincides with the Lebesgue measure Ln, we have that Ω is Lebesgue
measurable and Ln(Ω) = 0.
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