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1 Introduction

In this paper we study the existence of infinitely many solutions for the
semilinear elliptic problem

−∆u + u = a(x)f(u) u ∈ H1(RN ) (Pa)

where we assume that a ∈ L∞(RN ), lim inf |x|→∞ a(x) > 0, and

(f1) f ∈ C1(R),

(f2) there exists C > 0 such that |f(t)| ≤ C(1 + |t|p) for any t ∈ R, where
p ∈ (1, N+2

N−2) if N ≥ 3 and p > 1 if N = 1, 2,

(f3) there exists θ > 2 such that 0 < θF (t) ≤ f(t)t for any t 6= 0, where
F (t) =

∫ t
0 f(s) ds,

(f4) f(t)
t < f ′(t) for any t 6= 0.

Note that f(t) = |t|p−1t verifies (f1)–(f4) whenever p ∈ (1, N+2
N−2) if N ≥ 3

or p > 1 if N = 1, 2.
Such kind of problem has been studied in several papers and its main

feature is given by a lack of compactness due to the unboundedness of the
domain. Indeed the imbedding of H1(RN ) in L2(RN ) is not compact and
the Palais Smale condition fails.

The existence of nontrivial solutions of (Pa) strongly depends on the be-
haviour of a. We refer to [18] where it is showed that if a is monotone (non
costant) in one direction then the problem (Pa) has only the trivial solution.

On the other hand, if a is a positive constant or a(x) → a∞ ≥ 0 as
|x| → ∞, the problem has been studied by using concentration-compactness
arguments and several existence results are known. See, e.g., [30], [23], [17],
[31], [7], [8], [11] and [20].

When a is periodic, the invariance under translations permits to prove
existence, [27], and also multiplicity results, as in [6], [15], [1], [24], where
infinitely many solutions (distinct up to translations) are found. In fact, in
this case, the noncompactness of the problem can be exploited to set up a
new minimax argument, in the spirit of the works [14] and [29], and then to
exhibit a rich structure of the set of solutions.

Multiplicity results have been obtained also without periodicity or asymp-
totic assumptions on a, in some “perturbative” settings, where concentra-
tion phenomena occur and a localization procedure can be used to get some
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compactness in the problem. A first result in this direction is the paper [21]
concerning the prescribing scalar curvature problem on S3 and S4. We also
mention [28], [4], [5], [16], [19], [22] and the references therein, for the case
of a nonlinear stationary Schrödinger equation −ε2∆u+V (x)u = f(u) with
ε > 0 small and V ∈ C1(RN ), V (x) ≥ V0 > 0 in RN , having local maxima
or minima or other topologically stable critical points. Similar concentration
phenomena occur also considering the equation −∆u + λu = a(x)f(u) for
λ > 0 large enough (see [13]) or −∆u + u = a(x)|u|p−1u with p = N+2

N−2 − ε,
ε > 0 small, and N ≥ 3, where a blow-up analysis can be done (see [25]).

In this paper, motivated by [3], we adopt a quite different viewpoint from
the ones followed in the above quoted works and we show that the existence
of infinitely many solutions for the problem (Pa) is a generic property with
respect to a ∈ L∞(RN ), with lim inf |x|→∞ a(x) ≥ 0. Precisely we prove

Theorem 1.1 Let f : R → R satisfy (f1)–(f4). Then there exists a set
A open and dense in {a ∈ L∞(RN ) : lim inf |x|→∞ a(x) ≥ 0} such that for
every a ∈ A the problem (Pa) admits infinitely many solutions.

In fact, given any a ∈ L∞(RN ) with lim inf |x|→∞ a(x) > 0, for all ᾱ > 0
we are able to construct a function α ∈ C(RN ), 0 ≤ α(x) ≤ ᾱ in RN , such
that the problem (Pa+α) admits infinitely many solutions. Moreover we show
that this class of solutions is stable with respect to small L∞ perturbations
of the function a + α.

The function α is obtained in a constructive way that can be roughly de-
scribed as follows. First, we introduce the variational setting and we make
a careful analysis of the functionals “at infinity” corresponding to the equa-
tions −∆u+u = b(x)f(u) where b ∈ H∞(a), i.e., the set of the w∗-L∞ limits
of the sequences a(· + xj) with (xj) ⊂ RN , |xj | → ∞. All the functionals
at infinity have a mountain pass geometry and, called c(b) the mountain
pass level associated to the problem (Pb), we can show that there exists
a∞ ∈ H∞(a) such that c(a∞) ≤ c(b) for any b ∈ H∞(a) and the corre-
sponding problem (Pa∞) admits a solution characterized as mountain pass
critical point. Then, following a suitable sequence (xj) ⊂ RN such that
a(· + xj) → a∞ w∗-L∞, we construct α by perturbing a in neighborhoods
of xj in order to get local compactness and local minimax classes for the
perturbed functional which allow us to prove existence of infinitely many
critical points localized around any point xj .

We note that, by a standard argument (taking f̄ instead of f , defined by
f̄(t) = 0 for t ≤ 0 and f̄(t) = f(t) for t > 0), it is possible to show the
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existence of infinitely many positive classical solutions of the problem (Pa)
for any a ∈ A, a smooth.

Finally we want to point out some possible easy extensions of our result.
We observe firstly that with minor change, our argument can be used to
prove an analogous result for the class of the nonlinear Schrödinger equations
−∆u + b(x)u = a(x)f(u) with b ∈ L∞(RN ), b(x) ≥ b0 > 0 for a. e. x ∈ RN ,
and a and f as above. Moreover, we point out that in proving Theorem 1.1 we
never use comparison theorems based on the maximum principle. Then our
argument can be repeated exactly in the same way to study systems of the
form −∆u + u = a(x)∇F (u) where F ∈ C2(RN ,RM ) satisfies properties
analogous to (f2), (f3), (f4). In particular the result can be established
in the framework of the homoclinic problem for second order Hamiltonian
systems in RM (see [3] and the references therein).

Secondly we remark that the solutions we find satisfy suitable stability
properties. These can be used to prove that in fact the perturbed prob-
lem (Pa+α) admits multibump type solutions (see [29]) with bumps located
around the points xj . We refer in particular to [2] for a proof that can be
adapted in this setting.

Finally we mention also the fact that if a is assumed to be positive and
almost periodic (see [10]) then it is not known whether or not the problem
(Pa) admits solutions. Following [3] it is possible to show that in this case
one can construct a perturbation α almost periodic and with L∞ norm small
as we want, in such a way that the problem (Pa+α) admits infinitely many
(actually multibump type) solutions. Then we get a genericity result (with
respect to the property of existence of infinitely many solutions) for the class
of problems (Pa) with a ∈ C(RN ) positive and almost periodic.

Acknowledgement. This work was done while the authors were visiting
CEREMADE. They wish to thank CEREMADE for the kind hospitality.

2 Variational setting and preliminary results

In this section we study the class of problem (Pa) with a ∈ Fm,M = {a ∈
L∞(RN ) : m ≤ a(x) ≤ M a.e. in RN}, 0 < m < M , and f satisfying
(f1)–(f4).

Let X = H1(RN ) be endowed with its standard norm ‖u‖ = (
∫
RN (|∇u|2+
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u2)dx)
1
2 and consider the functional

ϕa(u) = 1
2‖u‖

2 −
∫
RN

a(x)F (u(x)) dx. (2.1)

By (f3) we have F (0) = f(0) = f ′(0) = 0 and then, by (f2),

∀ε > 0, ∃Aε > 0 such that |f(t)| ≤ ε|t|+ Aε|t|p ∀ t ∈ R (2.2)

from which it is standard to derive that ϕa ∈ C1(X,R) for all a ∈ Fm,M

with
ϕ′a(u)v = 〈u, v〉 −

∫
RN

a(x)f(u(x))v(x) dx

where 〈u, v〉 =
∫
RN (∇u∇v+uv) dx. The critical points of ϕa are solutions of

the problem (Pa) and, in the sequel, we will denote Ka = {u ∈ X : ϕ′a(u) =
0}.

We firstly give a result which describes in particular the behavior of any
functional ϕa at 0. For every Ω ⊂ RN , let us denote ‖u‖Ω = (

∫
Ω(|∇u|2 +

|u|2)dx)
1
2 and 〈u, v〉Ω =

∫
Ω(∇u∇v + uv) dx for all u, v ∈ X. Then we have

Lemma 2.1 There exists ρ̄ ∈ (0, 1) such that if sup
y∈RN

‖u‖B1(y) ≤ 2ρ̄ then

∫
RN

F (u) dx ≤ 1
4M ‖u‖2 and

∫
RN

|f(u)v| dx ≤ 1
2M ‖u‖‖v‖

for all u, v ∈ X.

Proof. Let {B1(yi)}i∈N be a family of balls such that each point of RN is
contained in at least one and at most l of such balls.
Let ε = 1

4lM and let A1 > 0 be such that ‖u‖Lp+1(B1(y)) ≤ A1‖u‖B1(y) for all
u ∈ X, y ∈ RN . Then, by (2.2), for any u, v ∈ X and y ∈ RN we have∫

B1(y)
|f(u)v| dx ≤ ε‖u‖B1(y)‖v‖+ Aε‖u‖p

Lp+1(B1(y))‖v‖Lp+1(B1(y))

≤ ( 1
4lM + AεA

p+1
1 ‖u‖p−1

B1(y))‖u‖B1(y)‖v‖.

Let ρ̄ ∈ (0, 1) be such that AεA
p+1
1 (2ρ̄)p−1 ≤ 1

4lM . Then, if sup
y∈RN

‖u‖B1(y) ≤

2ρ̄, by the above estimate, we obtain∫
RN |f(u)v| dx ≤

∑
i∈N

∫
B1(yi)

|f(u)v| dx ≤ 1
2lM

∑
i∈N

‖u‖B1(yi)‖v‖ ≤
1

2M ‖u‖‖v‖.

With analogous computation it can be proved that if sup
y∈RN

‖u‖B1(y) ≤ 2ρ̄

then
∫
RN F (u) dx ≤ 1

4M ‖u‖2.
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Remark 2.1 In particular, we have that if sup
y∈RN

‖u‖B1(y) ≤ 2ρ̄ then

∣∣∣ ∫
RN

a(x)F (u) dx
∣∣∣ ≤ 1

4‖u‖
2 and |

∫
RN

a(x)f(u)v dx| ≤ 1
2‖u‖‖v‖

for all a ∈ Fm,M . Moreover, note that proving Lemma 2.1 we showed that
if y ∈ RN and ‖u‖B1(y) ≤ 2ρ̄ then |

∫
B1(y) a(x)f(u)v dx| ≤ 1

2‖u‖B1(y)‖v‖ and
|
∫
B1(y) a(x)F (u) dx| ≤ 1

4‖u‖
2
B1(u). This can be done independently of y since

the imbedding constant A1 does not depend on y. By the same argument
we can assume that ρ̄ is such that if ‖u‖Ω ≤ 2ρ̄ then∫

Ω
a(x)F (u) dx ≤ 1

4‖u‖
2
Ω and |

∫
Ω

a(x)f(u)v dx| ≤ 1
2‖u‖Ω‖v‖Ω

for all u, v ∈ X and for all a ∈ Fm,M , whenever Ω is an open regular
subset of RN , satisfying the uniform cone property with respect to the cone
C = {x ∈ B1(0) : x · e1 > 1

2 |x|}, where e1 = (1, 0, . . . , 0).

By (f3), F (t) ≥ F ( t
|t|)|t|

θ for |t| ≥ 1 and then for any u ∈ X \ {0} there
exists s(u) = s(u, m) > 0 such that ϕa(s(u)u) < 0 for every a ∈ Fm,M .
Hence, by Lemma 2.1, any functional ϕa with a ∈ Fm,M has the mountain
pass geometry with mountain pass level

c(a) = inf
γ∈Γ

sup
s∈[0,1]

ϕa(γ(s)) (2.3)

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, ϕa(γ(1)) < 0 ∀ a ∈ Fm,M}. By
Lemma 2.1, we have that c(a) ≥ ρ̄2 > 0 for every a ∈ Fm,M and, by
the mountain pass Lemma, there exists a sequence (un) ⊂ X such that
ϕa(un) → c(a) and ϕ′a(un) → 0. We remark that c(M) ≤ c(a) ≤ c(m) for
any a ∈ Fm,M .

Remark 2.2 By (f4) for every u ∈ X \ {0} there exists a unique su > 0
such that d

dsϕa(su)|s=su = 0 and hence ϕa(suu) = maxs≥0 ϕa(su). Moreover,
we have c(a) = inf

‖u‖=1
sup
s≥0

ϕa(su) and inf
Ka\{0}

ϕa ≥ c(a) for any a ∈ Fm,M .

Remark 2.3 The assumption (f3) implies that for every a ∈ Fm,M

(1
2 −

1
θ )‖u‖2 ≤ ϕa(u) + 1

θ‖ϕ
′
a(u)‖ ‖u‖ ∀u ∈ X. (2.4)

In particular (1
2 −

1
θ )‖u‖2 ≤ ϕa(u) for any u ∈ Ka and a ∈ Fm,M .
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Letting λ̄ = (1 − 2
θ )ρ̄2, by Lemma 2.1 and Remark 2.3 we plainly derive

the following compactness property of the functionals ϕa.

Lemma 2.2 Let (an) ⊂ Fm,M and (un) ⊂ X be such that ϕan(un) → l and
ϕ′an

(un) → 0. Then l ≥ 0 and if l < λ̄ or lim sup
n→∞

sup
y∈RN

‖un‖B1(y) ≤ 2ρ̄ then

un → 0.

By the previous lemma we have that for any sequence (un) ⊂ X such that
ϕan(un) → l ≥ λ̄ and ϕ′an

(un) → 0, for some (an) ⊂ Fm,M , there exists a
sequence (yn) ⊂ RN such that lim inf ‖un‖B1(yn) ≥ ρ̄. Moreover, in the next
lemma we will prove that the vanishing case (see [23]) does not occur

Lemma 2.3 There exists r̄ ∈ (0, ρ̄) for which if (un) ⊂ X is such that
ϕan(un) → l ∈ [λ̄, c(m)] and ϕ′an

(un) → 0 for some (an) ⊂ Fm,M then
lim inf
n→∞

sup
y∈RN

‖un‖L2(B1(y)) ≥ r̄.

Proof. By contradiction, using a diagonal procedure, there exists a sequence
(un) such that ϕan(un) → l ∈ [λ̄, c(m)], ϕ′an

(un) → 0, for some sequence
(an) ⊂ Fm,M , and supy∈RN ‖un‖L2(B1(y)) → 0. Let A > 0 be such that
‖u‖Lp+1(RN ) ≤ A‖u‖ for all u ∈ X and let ε = 1

2M . By (2.2), we obtain

‖un‖2 + o(1) =
∫
RN

an(x)f(un)un dx ≤ (1
2 + MA2Aε‖un‖p−1

Lp+1(RN )
)‖un‖2

as n → ∞. Then, since l ≥ λ̄, by Lemma 2.2, for n sufficiently large, we
have ‖un‖ ≥ ρ̄ and so, by the previous estimate, ‖un‖p−1

Lp+1(RN )
≥ 1

4MA2Aε
.

Since supy∈RN ‖un‖L2(B1(y)) → 0 and, by (2.4), (un) is bounded, we have
that un → 0 in Lq(RN ) for all q ∈ (2, 2N

N+2) (see, e.g., [15]), a contradiction.

Now we state a characterization of the sequences (un) ⊂ X such that
ϕan(un) → l and ϕ′an

(un) → 0 for some sequence (an) ⊂ Fm,M .

Lemma 2.4 Let (an) ⊂ Fm,M , (un) ⊂ X and (yn) ⊂ RN be such that
ϕan(un) → l, ϕ′an

(un) → 0 and lim inf ‖un‖B1(yn) ≥ ρ̄. Then there exists
u ∈ X with ‖u‖B1(0) ≥ ρ̄ such that, up to a subsequence,

(i) un(· + yn) → u weakly in X, ϕa(u) ≤ l and ϕ′a(u) = 0, where a =
lim an(·+ yn) in the w∗-L∞ topology,
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(ii) ϕan(un − u(· − yn)) → l − ϕa(u) and ϕ′an
(un − u(· − yn)) → 0.

Proof. By (2.4), the sequence (un) is bounded in X and then there exists
u ∈ X such that, up to a subsequence, un(·+ yn) → u weakly in X.
Moreover, since Fm,M is compact for the w∗-L∞ topology, passing again to
a subsequence, we have that an(·+ yn) → a w∗-L∞ for some a ∈ Fm,M . We
claim that ϕ′a(u) = 0.
Indeed, for every v ∈ C∞

c (RN ), since ān = an(·+ yn) → a w∗-L∞, we have
ϕ′a(u)v − ϕ′ān

(u)v → 0. Moreover, since un(· + yn) → u weakly in X and
‖a‖L∞(RN ) ≤ M , we obtain ϕ′ān

(u)v − ϕ′ān
(un(· + yn))v → 0. Then, since

‖ϕ′ān
(un(· + yn))‖ = ‖ϕ′an

(un)‖ → 0, we conclude that ϕ′a(u)v = 0 for any
v ∈ C∞

c (RN ) and, by density, the claim is proved.
Now, since un(·+ yn) → u weakly in X we have that∫

RN (F (un − u(· − yn))− F (un) + F (u(· − yn))) dx → 0,

sup‖v‖≤1

∫
RN (f(un − u(· − yn))− f(un) + f(u(· − yn)))v dx → 0

and since ‖an‖L∞ ≤ M we derive

ϕan(un − u(· − yn))− ϕan(un) + ϕan(u(· − yn)) → 0 , (2.5)
ϕ′an

(un − u(· − yn))− ϕ′an
(un) + ϕ′an

(u(· − yn)) → 0 . (2.6)

Then, since an(· + yn) → a w∗-L∞, we obtain ϕan(u(· − yn)) → ϕa(u)
and therefore, by (2.5), ϕan(un − u(· − yn)) → l − ϕa(u). Moreover, since
ϕ′a(u) = 0, we have

ϕ′an
(u(· − yn))v =

∫
RN

(a(x)− an(x + yn))f(u)v(·+ yn) dx,

and then
‖ϕ′an

(u(· − yn))‖ → 0

because the set {f(u)v : v ∈ X, ‖v‖ ≤ 1} is compact in L1(RN ). Therefore,
since ϕ′an

(un) → 0, by (2.6), we conclude that

ϕ′an
(un − u(· − yn)) → 0. (2.7)

Finally, to show that ‖u‖B1(0) ≥ ρ̄ we prove that un(·+yn) → u in H1
loc(R

N ).
To this aim for any R > 0 let χR ∈ C∞

c (RN ) be such that χR(x) ≥ 0
for any x ∈ RN , χR(x) = 1 if x ∈ BR(0), suppχR ⊂ B2R(0). Setting
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vn = un(·+ yn)− u, we have ‖vn‖2
BR(0) = 〈vn, χRvn〉 − 〈vn, χRvn〉|x|≥R.

We first observe that 〈vn, χRvn〉 → 0. Indeed we have

〈vn, χRvn〉 = ϕ′an
(vn(·−yn))χR(·−yn)vn(·−yn)+

∫
RN

an(x+yn)f(vn)χRvn dx

and the first term goes to zero by (2.7), while the second one by the Lebesgue
dominated convergence theorem, since suppχR ⊂ B2R(0).
Then, as n →∞, we have

‖vn‖2
BR(0) = o(1)−

∫
|x|≥R

∇χR∇vnvn dx−
∫
|x|≥R

χR(|∇vn|2 + v2
n) dx

≤ o(1) + (
∫

R≤|x|≤2R

|∇χR∇vn|2 dx)
1
2 (

∫
R≤|x|≤2R

v2
n dx)

1
2

= o(1)

since vn → 0 in L2(B2R(0) \BR(0)) and (vn) is bounded in X.

We conclude this section studying the problems “at infinity” associated
to any functional ϕa. Given a ∈ Fm,M , let us denote

H(a) = {b ∈ L∞(RN ) : ∃ (yn) ⊂ RN , a(·+ yn) → b w∗-L∞},

H∞(a) = {b ∈ L∞(RN ) : ∃ (yn) ⊂ RN , |yn| → ∞, a(·+ yn) → b w∗-L∞}.

Then, we have

Lemma 2.5 H∞(a) is sequentially closed with respect to the w∗-L∞ topol-
ogy. In particular, if ā ∈ H∞(a) then H(ā) ⊆ H∞(a).

Proof. Let (bn) ⊂ H∞(a) and b ∈ L∞(RN ) be such that bn → b w∗-L∞. We
prove that b ∈ H∞(a). By definition, for all n ∈ N there exists a sequence
(yn

j )j ⊂ RN such that, as j → +∞, |yn
j | → ∞ and a(· + yn

j ) → bn w∗-
L∞. Let {φl}l∈N ⊂ L1(RN ) be dense in L1(RN ). For all l, n ∈ N we have∫
RN (a(· + yn

j ) − bn)φl dx → 0 as j → +∞. Then, by induction, we can
construct an increasing sequence (jn) ⊂ N such that |yn

jn
| > |yn−1

jn−1
| and∫

RN
(a(·+ yn

jn
)− bn)φl dx < 1

n for any l = 1, . . . , n.

Therefore, setting ȳn = yn
jn

, it holds that |ȳn| → ∞ and for every l ∈ N∫
RN

(a(·+ ȳn)− bn)φl dx → 0 as n → +∞.

9



Then, since {φl}l∈N is dense in L1(RN ), we conclude that a(·+ ȳn)−bn → 0
w∗-L∞. Finally, since bn → b w∗-L∞, we obtain that a(·+ ȳn) → b w∗-L∞,
that is b ∈ H∞(a).

Given a ∈ Fm,M , we have that H∞(a) ⊂ Fm,M and we denote

c∞(a) = inf
b∈H∞(a)

c(b) . (2.8)

Such value turns out to be attained. More precisely

Lemma 2.6 For every a ∈ Fm,M , there exist a∞ ∈ H∞(a) and u∞ ∈
X \ {0} such that ϕa∞(u∞) = c(a∞) = c∞(a) and ϕ′a∞(u∞) = 0.

Proof. Let (bj) ⊂ H∞(a) be such that c(bj) → c∞(a). By the mountain
pass Lemma, for all j ∈ N there exists a sequence (uj

n)n ⊂ X such that
ϕbj

(uj
n) → c(bj) and ϕ′bj

(uj
n) → 0 as n → ∞. By Lemma 2.2, for all j ∈ N

there exists a sequence (yj
n)n ⊂ RN such that lim infn→∞ ‖uj

n‖B1(yj
n)
≥ ρ̄.

Therefore, by Lemma 2.4, for all j ∈ N, there exist uj ∈ X and aj ∈ Fm,M

such that ‖uj‖B1(0) ≥ ρ̄ and, up to a subsequence, uj
n(·+yj

n) → uj weakly in
X, bj(·+yj

n) → aj w∗-L∞, ϕ′aj
(uj) = 0 and ϕaj (uj) ≤ c(bj). By Remark 2.2,

we have ϕaj (uj) ≥ c(aj). Moreover, by Lemma 2.5, aj ∈ H(bj) ⊂ H∞(a) and
therefore, by (2.8), c(aj) ≥ c∞(a). Hence, since c(bj) → c∞(a), we obtain
ϕaj (uj) → c∞(a). Applying Lemma 2.4 to the sequence (uj), we obtain that
there exist u∞ ∈ X and a∞ ∈ Fm,M such that ‖u∞‖B1(0) ≥ ρ̄ and, up to
a subsequence, uj → u weakly in X, aj → a∞ w∗-L∞, ϕ′a∞(u∞) = 0 and
ϕa∞(u∞) ≤ c∞(a). Since, by Lemma 2.5, a∞ ∈ H∞(a) we conclude, by (2.8)
and Remark 2.2, that ϕa∞(u∞) = c(a∞) = c∞(a).

Finally, the following monotonicity property of the mountain pass levels
c∞(a) holds

Lemma 2.7 Let a ∈ Fm,M and µ > 0. Then c∞(a + µ) < c∞(a).

Proof. By Lemma 2.6, there exist a∞ ∈ H∞(a) and u∞ ∈ X such that
ϕa∞(u∞) = c∞(a) and ϕ′a∞(u∞) = 0. Moreover there is γ ∈ Γ such that
u∞ = γ(s̄) for some s̄ ∈ (0, 1) and maxs∈[0,1] ϕa∞(γ(s)) = ϕa∞(u∞). Let
(yj) ⊂ RN be such that |yj | → ∞ and a(·+yj) → a∞ w∗-L∞. Let b = a∞+µ
and s0 ∈ [0, 1] be such that ϕb(γ(s0)) = maxs∈[0,1] ϕb(γ(s)). Then γ(s0) 6= 0
and

c∞(a) ≥ ϕa∞(γ(s0)) = ϕb(γ(s0)) + µ

∫
RN

F (γ(s0)) dx > c(b) ≥ c∞(a + µ)

since b ∈ H∞(a + µ).
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3 The perturbed problem

In this section we consider any a ∈ L∞(RN ), a(x) ≥ a0 > 0 a.e. in RN and
f satisfying (f1)–(f4). For all α > 0 we will construct a family of functions
αω ∈ C(RN ) (ω > 0) with ‖αω‖L∞ ≤ α for which the problem (Pa+αω)
admits infinitely many solutions if ω > 0 is small enough.

Let α > 0. By Lemma 2.6, since H∞(a + ᾱ) = H∞(a) + ᾱ, we know that
there exists a∞ ∈ H∞(a) such that c∞(a + ᾱ) = c(a∞ + ᾱ). By definition,
there exists a sequence (xj) ⊂ RN such that a(· + xj) → a∞ w∗-L∞ and
|xj+1| − |xj | ↑ +∞. Then, for ω ∈ (0, 1) we define j(ω) = inf{j ∈ N :
|xj | − |xj−1| ≥ 4

ω} and

αω(x) =
{

ᾱ(1− ω2

4 |x− xj |2) for |x− xj | ≤ 2
ω , j ≥ j(ω)

0 otherwise.
(3.1)

Note that maxx∈RN αω(x) = ᾱ = α(xj) for all j ≥ j(ω) and αω(x) ≤ 15
16 ᾱ if

x ∈ RN \
⋃

j∈N B 1
2ω

(xj).
Let us introduce some notation. For ω ∈ (0, 1), we set

ϕω(u) = 1
2‖u‖

2 −
∫
RN

(a(x) + αω(x))F (u(x)) dx .

Moreover, for any b ∈ H∞(a) and β ∈ L∞(RN ) with 0 ≤ β ≤ ᾱ, let

ϕbβ(u) = 1
2‖u‖

2 −
∫
RN

(b(x) + β(x))F (u(x)) dx .

We point out that for every ω ∈ (0, 1), b and β as before, we have a+αω, b+
β ∈ Fm,M where m = a0

2 and M = 2(‖a‖L∞(RN ) + ᾱ).
We also set Kω = Ka+αω and cbβ = c(b + β), where, according to Section 2,
c(b + β) is the mountain pass levels of the functional ϕbβ. Finally we denote
ϕ∞ = ϕa∞ᾱ and c∞ = c∞(a + ᾱ) = c(a∞ + ᾱ).

Remark 3.1 By construction, following the general results stated in Sec-
tion 2, there exists u∞ ∈ X such that ϕ∞(u∞) = c∞ and ϕ′∞(u∞) = 0.
Moreover, by Remark 2.2, there exists γ∞ ∈ Γ, of the form γ∞(s) = ss∞u∞
for which

(i) maxs∈[0,1] ϕ∞(γ∞(s)) = ϕ∞(u∞),

(ii) for every r > 0 there is hr > 0 such that ϕ∞(u) ≤ c∞ − hr for any
u ∈ range γ∞ with ‖u− u∞‖ ≥ r.
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Remark 3.2 By definition of c∞, if b ∈ H∞(a) and β ∈ L∞(RN ) with
0 ≤ β ≤ ᾱ a.e. in RN , then cbβ ≥ cbᾱ ≥ c∞. Moreover, if β ∈ (0, ᾱ), by
Lemma 2.7, c∞(a + β) > c∞(a + ᾱ) = c∞.

In the following Lemma, using Lemma 2.4 and the definition of c∞, we
give an estimate from below on the level of the sequences (un) ⊂ X such that
ϕ′ωn

(un) → 0 and that “carry mass” at infinity, i.e., for which ‖un‖B1(yn) ≥ ρ̄
for some sequence |yn| → ∞.

Lemma 3.1 Let (ωn) ⊂ (0, 1), (un) ⊂ X and (yn) ⊂ RN be such that
ϕ′ωn

(un) → 0, |yn| → ∞ and ‖un‖B1(yn) ≥ ρ̄ for every n ∈ N. Then c∞ ≤
lim inf ϕωn(un).

Proof. For a subsequence, we have a(· + yn) → b and αωn(· + yn) → β,
w∗-L∞ where b ∈ H∞(a) and β ∈ L∞(RN ) with 0 ≤ β ≤ ᾱ a.e. in RN .
By Lemma 2.4, there exists u ∈ X \ {0} such that, up to a subsequence,
un(·+yn) → u weakly in X, ϕ′bβ(u) = 0 and lim inf ϕωn(un) ≥ ϕbβ(u). Then,
using Remarks 2.2 and 3.2, the Lemma follows.

In particular, as immediate consequence of Lemma 3.1, since j(ω) → ∞
as ω → 0 we get an estimate from below on the level of critical points of
ϕω with a “mass” in B 1

ω
(xj) with j ≥ j(ω) and ω > 0 small enough. More

precisely, we have

Lemma 3.2 For every h > 0 there exists ωh ∈ (0, 1) such that for all
ω ∈ (0, ωh] if u ∈ Kω and ‖u‖B1(y) ≥ ρ̄ for some y ∈ B 1

ω
(xj), with j ≥ j(ω),

then ϕω(u) ≥ c∞ − h.

Now, we can prove a compactness result for the sequences (un) ⊂ X such
that ϕ′ωn

(un) → 0 with a “mass” located in B 1
ωn

(xjn).

Lemma 3.3 There exist h0 > 0 and ω0 ∈ (0, 1) such that if (ωn) ⊂ (0, ω0],
(un) ⊂ X and (yn) ⊂ RN satisfy ϕ′ωn

(un) → 0, ‖un‖B1(yn) ≥ ρ̄, yn ∈
B 1

ωn

(xjn) with jn ≥ j(ωn), and lim supϕωn(un) ≤ c∞+h0, then (un(·+yn))
is precompact in X.

Proof. Let h0 ∈ (0, λ̄
2 ) and ω0 = ωh0 be fixed according to Lemma 3.2. By

Lemma 2.4 there exists u ∈ X such that, up to a subsequence, un(·+yn) → u
weakly in X, ‖u‖B1(0) ≥ ρ̄, ϕ′ωn

(un−u(·−yn)) → 0 and lim supϕωn(un−u(·−
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yn)) ≤ lim supϕωn(un)− lim inf ϕωn(u(·−yn)) ≤ c∞+h0− lim inf ϕωn(u(·−
yn)). By the choice of h0, using Lemma 2.2, to get the thesis it is enough to
check that lim inf ϕωn(u(· − yn)) ≥ c∞ − h0. We distinguish two cases:
(i) |yn| → ∞. In this case, since, up to a subsequence, a(·+yn) → b ∈ H∞(a)
and αωn(·+yn) → β ∈ L∞(RN ) w∗-L∞, β ≤ ᾱ a.e. in RN , we have ϕ′bβ(u) =
0 and then, by Remark 3.2, lim inf ϕωn(u(· − yn)) = ϕbβ(u) ≥ cbβ ≥ c∞.
(ii) (yn) is bounded. Then lim inf ωn > 0 and, up to a subsequence, ωn →
ω ∈ (0, ω0] and yn → y for some y ∈ B 1

ω
(xj) with j ≥ j(ω). Hence, setting

v = u(·−y) we have that ϕ′ω(v) = 0, ‖v‖B1(y) ≥ ρ̄ and lim inf ϕωn(u(·−yn)) =
ϕω(v) ≥ c∞ − h0, by Lemma 3.2.

Now, we have the following concentration result.

Lemma 3.4 For every ρ ∈ (0, ρ̄) there exist νρ ∈ (0, ρ̄
8) and Rρ > 1 such

that for every ω ∈ (0, ω0), if u ∈ X satisfies ‖ϕ′ω(u)‖ ≤ νρ, ϕω(u) ≤ c∞+h0

and ‖u‖B1(y) ≥ ρ̄ for some y ∈ B 1
ω
(xj) with j ≥ j(ω), then

‖u‖RN\BRρ (y) < ρ.

Proof. By contradiction, there exist ρ ∈ (0, ρ̄), Rn ⊂ (1,+∞), (ωn) ⊂
(0, ω0) and (un) ⊂ X such that Rn → +∞, ϕ′ωn

(un) → 0 and, for every
n ∈ N, ϕωn(un) ≤ c∞ + h0, ‖un‖B1(yn) ≥ ρ̄ for some yn ∈ B 1

ωn

(xjn) with

jn ≥ j(ωn) and ‖un‖RN\BRn (yn) ≥ ρ. This contradicts the fact that, by
Lemma 3.3, the sequence (un(·+ yn)) is precompact in X.

Using Remark 3.2 and Lemma 3.4, we will select infinitely many disjoint
regions in X in which the Palais Smale condition holds. Precisely, for every
ω ∈ (0, 1), h > 0, ν > 0 and j ≥ j(ω), we consider the set

Aj(ω, h, ν) = {u ∈ X : ϕω(u) ≤ c∞ + h, ‖ϕ′ω(u)‖ ≤ ν

and sup
y∈B 1

ω
(xj)

‖u‖B1(y) ≥ ρ̄}.

Setting ρ0 = ρ̄
8 , let ν0 = ν2ρ0 and R0 = R2ρ0 be given by Lemma 3.4.

Then, by the previous result, we obtain that the elements of Aj(ω, h, ν)
concentrate in B 1

2ω
(xj) for ω, h, ν small enough.

Lemma 3.5 There exist ω̄ ∈ (0, ω0), h̄ ∈ (0, h0) and ν̄ ∈ (0, ν0) such that
if u ∈ Aj(ω, h̄, ν̄) for some ω ∈ (0, ω̄) and j ≥ j(ω), then

‖u‖RN\B 1
2ω−1

(xj)
< 2ρ0.
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Proof. Arguing by contradiction, we have that there exist (ωn) ⊂ (0, ω0) and
(un) ⊂ X such that ωn → 0, ϕωn(un) → l ≤ c∞, ϕ′ωn

(un) → 0, ‖un‖B1(yn) ≥
ρ̄ for some yn ∈ B 1

ωn

(xjn) and ‖un‖RN\B 1
2ωn

−1
(xjn ) ≥ 2ρ0, with jn ≥ j(ωn).

By Lemma 3.4 we have that ‖un‖RN\BR0
(yn) < 2ρ0. Therefore 1

2ωn
−1−R0 ≤

|yn − xjn | ≤ 1
ωn

and then α(·+ yn) → β ∈ (0, α) in L∞loc. By Lemma 2.4, up
to a subsequence, we have un(· + yn) → u 6= 0 weakly in X, a(· + yn) →
b ∈ H∞(a) w∗-L∞, ϕ′bβ(u) = 0 and l ≥ ϕbβ(u). By Remarks 2.2 and 3.2,
ϕbβ(u) ≥ c∞(a + β) > c∞(a + α) = c∞, contrary to l ≤ c∞.

¿From now on, we will denote Aj(ω) = Aj(ω, h̄, ν̄) and Bρ(Aj(ω)) = {u ∈
X : infv∈Aj(ω) ‖u− v‖ < ρ} for any ρ > 0. Then we have

Lemma 3.6 Let ω ∈ (0, ω̄) and j ≥ j(ω).
(i) If u ∈ B4ρ0(Aj(ω)), then ‖u‖RN\B 1

2ω−1
(xj)

< ρ̄.

(ii) If u ∈ (B4ρ0(Aj(ω)) \ Aj(ω)) ∩ {ϕω ≤ c∞ + h̄}, then ‖ϕ′ω(u)‖ > ν̄.

Proof. (i) By Lemma 3.5, if u ∈ B4ρ0(Aj(ω)), then

‖u‖RN\B 1
2ω−1

(xj)
≤ 2ρ0 + 4ρ0 < ρ̄ . (3.2)

(ii) If supy∈B 1
ω

(xj)
‖u‖B1(y) ≥ ρ̄, since u 6∈ Aj(ω), by definition of Aj(ω),

we obtain ‖ϕ′ω(u)‖ > ν̄. On the other hand, if supy∈B 1
ω

(xj)
‖u‖B1(y) < ρ̄,

by (3.2), we obtain supy∈RN ‖u‖B1(y) < ρ̄. Therefore, by Lemma 2.1, we
get ‖ϕ′ω(u)‖ ≥ 1

2‖u‖ and since infv∈Aj(ω) ‖v‖ ≥ ρ̄ and ν̄ < ρ̄
8 , we obtain

‖ϕ′ω(u)‖ ≥ 1
2(ρ̄− 4ρ0) > ν̄.

Remark 3.3 By Lemma 3.3, for all ω ∈ (0, ω̄) and j ≥ j(ω), the Palais
Smale condition holds in Aj(ω) and then, by Lemma 3.6, in B4ρ0(Aj(ω)) ∩
{ϕω ≤ c∞ + h̄}.

Now, we will prove the existence of infinitely many critical points of the
functional ϕω provided ω > 0 is sufficientely small. More precisely, by the
above stated properties of the sets Aj(ω), we are able to show the existence
of a pseudogradient flow which leaves invariant suitable localized minimax
classes. This allows us to show the existence of critical points of ϕω in Aj(ω)
whenever ω is small enough.
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First, by Lemma 3.6 and Remark 3.3, we prove the existence of a pseu-
dogradient vector field acting in Aj(ω). We set µ̄ = 1

32 min{ν̄,
ρ2
0

16} and
ε̄ = 1

2 min{h̄, ρ0

4 , ν̄
2}.

Lemma 3.7 For any ε ∈ (0, ε̄) there exists ωε ∈ (0, ω̄) for which if Aj(ω)∩
Kω = ∅ for some ω ∈ (0, ωε) and j ≥ j(ω), then there exist µjω > 0 and a
locally Lipschitz continuous function Vjω : X → X verifying:

(i) ‖Vjω(u)‖ ≤ 1, ϕ′ω(u)Vjω(u) ≥ 0 for all u ∈ X and Vjω(u) = 0 for all
u ∈ X \B4ρ0(Aj(ω)),

(ii) ϕ′ω(u)Vjω(u) ≥ µjω if u ∈ Bρ0(Aj(ω)) ∩ {ϕω ≤ c∞ + h̄
2},

(iii) ϕ′ω(u)Vjω(u) ≥ µ̄ if u ∈ (B2ρ0(Aj(ω)) \Bρ0(Aj(ω))) ∩ {ϕω ≤ c∞ + h̄
2},

(iv) 〈u, Vjω(u)〉RN\B 1
ω

(xj)
≥ 0 if ‖u‖RN\B 1

ω
(xj)

≥ ε.

Proof. By Lemma 3.6 (i), we know that ‖u‖RN\B 1
2ω−1

(xj)
< ρ̄ for every

u ∈ B4ρ0(Aj(ω)) with ω ∈ (0, ω̄) and j ≥ j(ω). Therefore, given ε ∈ (0, ε̄)
there exists ωε ∈ (0, ω̄) such that if ω ∈ (0, ωε) and j ≥ j(ω) then for all
u ∈ B4ρ0(Aj(ω)) there exists iu ∈ {[ 1

2ω ], . . . , [ 1
ω ]−1} (where [r] is the integer

part of r ∈ R) for which

‖u‖Biu+1(xj)\Biu (xj) ≤
ε
4 . (3.3)

Let ω ∈ (0, ωε) and j ≥ j(ω). For all u ∈ B4ρ0(Aj(ω)) we denote Ẽu =
RN \Biu(xj) and Eu = RN \Biu+1(xj) and we define

βu(x) =

 1 if x ∈ RN \ Ẽu,
iu + 1− |x− xj | if x ∈ Ẽu \ Eu,
0 if x ∈ Eu.

Note that βu ∈ X, 0 ≤ βu(x) ≤ 1 and |∇βu(x)| ≤ 1 for a.e. x ∈ RN .
Moreover, if β ∈ {βu, 1−βu}, by (f4), we have |f(βu)| ≤ |f(u)| and F (βu) ≤
F (u). Therefore, since ‖u‖Ẽu

< ρ̄, by Remark 2.1, if E ∈ {Ẽu \ Eu, Eu},
β1, β2 ∈ {1, βu, 1− βu} and v ∈ X, then∫

E
F (β1u) dx ≤ 1

4M ‖u‖2
E and

∫
E
|f(β1u)β2v| dx ≤ 1

2M ‖u‖E‖v‖E . (3.4)

Using (3.3) and (3.4), by direct estimates, for all u ∈ B4ρ0(Aj(ω)) and v ∈ X
with ‖v‖ ≤ 1 we obtain
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(1) ϕ′ω(u)(1−βu)u ≥ 1
2‖u‖

2
Eu

+〈u, (1−βu)u〉Ẽu\Eu
− 1

2‖u‖
2
Ẽu\Eu

≥ 1
2(‖u‖2

Eu
−

ε2

8 ),

(2) ϕω(βuu) ≤ 1
2‖u‖

2
RN\Ẽu

−
∫
RN\Ẽu

(a(x) + αω(x))F (u) dx + ‖u‖2
Ẽu\Eu

≤

ϕω(u) + ε2

16 ,

(3) |ϕ′ω(βuu)v − ϕ′ω(u)βuv| ≤
∫
Ẽu\Eu

|∇βu||u∇v − v∇u| dx + ‖u‖Ẽu\Eu
≤

2‖u‖Ẽu\Eu
≤ ε

2 .

Let us consider u ∈ Bρ0(Aj(ω)) ∩ {ϕω ≤ c∞ + h̄
2} or u ∈ (B4ρ0(Aj(ω)) \

B2ρ0(Aj(ω))) ∩ {ϕω ≤ c∞ + h̄
2}. We distinguish the two alternative cases:

‖u‖Eu ≥ ε
2 or ‖u‖Eu < ε

2 . In the first case setting Vu = (1− βu)u, we obtain
‖Vu‖ ≤ 1, 〈u, Vu〉RN\B 1

ω
(xj)

= ‖u‖2
RN\B 1

ω
(xj)

and, by (1),

ϕ′ω(u)Vu ≥ 1
2( ε2

4 − ε2

8 ) = ε2

16 .

In the second case, since Aj(ω)∩Kω = ∅, by Remark 3.3, there exists µjω ∈
(0, ε2

32) such that ‖ϕ′ω(u)‖ ≥ 4µjω for all u ∈ B4ρ0(Aj(ω)) ∩ {ϕω ≤ c∞ + h̄
2}.

Then, there exists Vu ∈ X with ‖Vu‖ ≤ 1 such that ϕ′ω(u)Vu ≥ 2µjω.
Now, let u ∈ (B2ρ0(Aj(ω))\Bρ0(Aj(ω)))∩{ϕω ≤ c∞+ h̄

2}. We distinguish
the cases: ‖u‖Eu ≥

ρ0

4 or ‖u‖Eu < ρ0

4 . In the first case we set Vu = (1−βu)u.
Then, we obtain ‖Vu‖ ≤ 1, 〈u, Vu〉RN\B 1

ω
(xj)

= ‖u‖2
RN\B 1

ω
(xj)

and, since

ε̄ < ρ0

8 , by (1), we get

ϕ′ω(u)Vu ≥ 1
2(ρ2

0
16 −

ε2

8 ) ≥ ρ2
0

64 .

In the second case, note that since ε̄ < h̄, by (2), we have ϕω(βuu) ≤ ϕω(u)+
ε2

16 ≤ c∞ + h̄. Moreover, since ‖(1 − βu)u‖2 = ‖u‖2
Eu

+ ‖(1 − βu)u‖2
Ẽu\Eu

≤
ρ2
0

16 + ε2

8 ≤ ρ2
0
4 , we have

inf
v∈Aj(ω)

‖βuu− v‖ ≤ inf
v∈Aj(ω)

‖u− v‖+ ‖(1− βu)u‖ ≤ 2ρ0 + ρ0

2 < 4ρ0,

inf
v∈Aj(ω)

‖βuu− v‖ ≥ inf
v∈Aj(ω)

‖u− v‖ − ‖(1− βu)u‖ ≥ ρ0 − ρ0

2 > 0.

Then βuu ∈ B4ρ0(Aj(ω)) \ Aj(ω) and ϕω(βuu) ≤ c∞ + h̄. By Lemma 3.6
(ii), there exists Wu ∈ X with ‖Wu‖ ≤ 1 such that ϕ′ω(βuu)Wu ≥ ν̄

2 . By (3),
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since ε̄ < ν̄
4 , we have ϕ′ω(u)βuWu ≥ ν̄

4 and setting Vu = 1
2(βuWu +(1−βu)u)

we have ‖Vu‖ ≤ 1, 〈u, Vu〉RN\B 1
ω

(xj)
= ‖u‖2

RN\B 1
ω

(xj)
and, by (1),

ϕ′ω(u)Vu ≥
ν̄

8
− ε2

32
≥ ν̄

16
.

In conclusion, for all u ∈ B4ρ0(Aj(ω))∩ {ϕω ≤ c∞ + h̄
2} we have shown that

there exists Vu ∈ X which verifies the following properties:

(i) ‖Vu‖ ≤ 1,

(ii) ϕ′ω(u)Vu ≥ 2µjω if u ∈ B4ρ0(Aj(ω)) ∩ {ϕω ≤ c∞ + h̄
2},

(iii) ϕ′ω(u)Vu ≥ 2µ̄ = 1
16 min{ν̄,

ρ2
0

16} if u ∈ (B2ρ0(Aj(ω)) \ Bρ0(Aj(ω))) ∩
{ϕω ≤ c∞ + h̄

2},

(iv) 〈u, Vu〉RN\B 1
ω

(xj)
= ‖u‖2

RN\B 1
ω

(xj)
if ‖u‖RN\B 1

ω
(xj)

≥ ε
2 .

Then the lemma follows by the use of a suitable partition of the unity and
a suitable cut-off function as in the classical pseudogradient construction.

By the previous Lemma, considering the Cauchy problem{
dη(s,u)

ds = −Vjω(η(s, u)) s ≥ 0
η(0, u) = u u ∈ X

and setting Ej(ω) = {u ∈ X : ‖u‖RN\B 1
ω

(xj)
≤ ε}, one can easily obtain the

following deformation result:

Lemma 3.8 For all ε ∈ (0, ε̄) there exists ωε ∈ (0, ω̄) such that if Aj(ω) ∩
Kω = ∅ for some ω ∈ (0, ωε) and j ≥ j(ω), then there exists a continuous
function ηjω : X → X which verifies:

(i) ηjω(u) = u for all u ∈ X \B4ρ0(Aj(ω)),

(ii) ϕω(ηjω(u)) ≤ ϕω(u) for all u ∈ X,

(iii) ϕω(ηjω(u)) ≤ ϕω(u)− µ̄ρ0 if u ∈ Bρ0(Aj(ω)) ∩ {ϕω ≤ c∞ + h̄
2},

(iv) ηjω(Ej(ω)) ⊂ Ej(ω).
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By Remark 2.4 there exists N > 0 such that supu∈B4ρ0 (Aj(ω)) ‖u‖ ≤ N

for all ω ∈ (0, ω̄), j ≥ j(ω). Considered the path γ∞ defined in Remark 3.1
we can choose N > 0 so large that maxs∈[0,1] ‖γ∞(s)‖ ≤ N . Let ε̂ > 0 be
such that ε̂ < 1

8 min{ε̄, hρ0 , µ̄ρ0} where hρ0 is defined in Remark 3.1 (ii) and
µ̄ and ε̄ in Lemma 3.7. We define a family (Γj(ω)) of local mountain pass
classes by setting

Γj(ω) = {γ ∈ Γ : ‖γ(s)‖ ≤ N and ‖γ(s)‖RN\B 1
ω

(xj)
≤ ε̂ ∀ s ∈ [0, 1]}.

We have the following properties:

Lemma 3.9 There exists ω̂ ∈ (0, ωε̂) such that for all ω ∈ (0, ω̂) and j ≥
j(ω), setting γj(s) = γ∞(s)(· − xj) for all s ∈ [0, 1], there results:

(i) γj ∈ Γj(ω),

(ii) maxs∈[0,1] ϕω(γj(s)) ≤ c∞ + ε̂,

(iii) if γj(s) 6∈ Bρ0(Aj(ω)) then ϕω(γj(s)) ≤ c∞ − 1
2hρ0.

Proof. Since γ∞([0, 1]) is compact in X, for ω small enough we have that
‖γ∞(s)‖RN\B 1

ω
(0) < ε̂ for all s ∈ [0, 1] and (i) follows.

Moreover, since a(·+xj)+αω(·+xj) → a∞+α w∗-L∞ as ω → 0, j ≥ j(ω),
we have

sup
j≥j(ω)

max
s∈[0,1]

|ϕω(γj(s))− ϕ∞(γ∞(s))| → 0 (3.5)

as ω → 0. Then (ii) follows by Remark 3.1 (i). Finally, note that u∞(·−xj) ∈
Aj(ω) for ω > 0 small enough, then, by (3.5) and Remark 3.1 (ii), we derive
(iii).

In particular it follows that for all ω ∈ (0, ω̂) and j ≥ j(ω), Γj(ω) 6= ∅ and
therefore

cj(ω) = inf
γ∈Γj(ω)

max
s∈[0,1]

ϕω(γ(s)) ∈ R.

We have that these mountain pass levels are close to the mountain pass level
c∞ in the following sense

Lemma 3.10 For all ω ∈ (0, ω̂) there exists ̂(ω) ≥ j(ω) such that |cj(ω)−
c∞| ≤ ε̂ for all j ≥ ̂(ω).
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Proof. By the previous Lemma we already know that cj(ω) ≤ c∞+ ε̂ for all
ω ∈ (0, ω̂) and j ≥ j(ω). To prove that cj(ω) ≥ c∞ − ε̂ for j large enough,
consider any path γ ∈ Γj(ω). By definition of Γj(ω), using Remark 2.1, for
all s ∈ [0, 1] we have

ϕ∞(γ(s)(·+ xj))− ϕω(γ(s)) =

=
∫
RN

(a(x + xj) + αω(x + xj)− a∞(x)− α)F (γ(s)(·+ xj)) dx

≤
∫

B 1
ω

(0)
(a(x + xj)− a∞(x))F (γ(s)(·+ xj)) dx +

+
∫
RN\B 1

ω
(0)

(a(x + xj)− a∞(x))F (γ(s)(·+ xj)) dx

≤ sup
‖u‖≤N

∫
B 1

ω
(0)

(a(x + xj)− a∞(x))F (u) dx + 1
4‖γ(s)‖2

RN\B 1
ω

(xj)

≤ sup
‖u‖≤N

∫
B 1

ω
(0)

(a(x + xj)− a∞(x))F (u) dx + ε̂2

4 .

Hence

inf
γ∈Γj(ω)

max
s∈[0,1]

ϕ∞(γ(s)(·+ xj))

≤ cj(ω) + sup
‖u‖≤N

∫
B 1

ω
(0)

(a(x + xj)− a∞(x))F (u) dx + ε̂2

4 .

Since ϕ∞(γ(s)(· + xj)) = ϕbα(γ(s)) with h = a∞(· − xj) ∈ H∞(a) and
Γj(ω) ⊂ Γ, by definition of c∞, we obtain

c∞ ≤ cj(ω) + sup
‖u‖≤N

∫
B 1

ω
(0)

(a(x + xj)− a∞(x))F (u) dx + ε̂2

4 .

Finally, since {χB 1
ω

(0)F (u) : ‖u‖ ≤ N} is precompact in L1(RN ) and a(·+

xj) → a∞ w∗-L∞ as j → ∞, we have that for all ω ∈ (0, ω̂) there exists
̂(ω) ≥ j(ω) such that for all j ≥ ̂(ω)

sup
‖u‖≤N

∫
B 1

ω
(0)

(a(x + xj)− a∞(x))F (u) dx ≤ ε̂2

2

and therefore c∞ ≤ cj(ω) + ε̂.
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Now, using Lemmas 3.8, 3.9 and 3.10, we can prove the existence of in-
finitely many solutions of the perturbed problem (Pa+αω) provided ω > 0 is
sufficiently small.

Theorem 3.1 If ω ∈ (0, ω̂) then Aj(ω) ∩ Kω 6= ∅ for every j ≥ ̂(ω).

Proof. Arguing by contradiction, suppose that there exist ω ∈ (0, ω̂) and
j ≥ ̂(ω) such that Aj(ω) ∩ Kω = ∅. Let ηjω:X → X be the function
given by Lemma 3.8 and γj ∈ Γj(ω) defined as in Lemma 3.9. Let γ̂j(s) =
ηjω(γj(s)) for all s ∈ [0, 1]. By Lemma 3.8 (i) and (iv), the class Γj(ω) is
invariant under the deformation ηjω and then γ̂j ∈ Γj(ω). We claim that
maxs∈[0,1] ϕω(γ̂j(s)) ≤ cj(ω) − ε̂ and therefore we get a contradiction with
the definition of cj(ω). Indeed, if γj(s) 6∈ Bρ0(Aj(ω)), by Lemma 3.9 (iii),
we have ϕω(γj(s)) ≤ c∞− 1

2hρ0 ≤ c∞−2ε̂, since ε̂ < 1
4hρ0 . Then, by Lemma

3.8 (ii), ϕω(γ̂j(s)) ≤ ϕω(γj(s)) ≤ c∞ − 2ε̂. On the other hand, if γj(s) ∈
Bρ0(Aj(ω)), by Lemma 3.8 (iii) and Lemma 3.9 (ii) , we have ϕω(γ̂j(s)) ≤
ϕω(γj(s)) − µ̄ρ0 ≤ c∞ + ε̂ − µ̄ρ0 ≤ c∞ − 2ε̂, since ε̂ ≤ µ̄ρ0

9 . Therefore, by
Lemma 3.10, for all s ∈ [0, 1] we conclude ϕω(γ̂j(s)) ≤ c∞ − 2ε̂ ≤ cj(ω)− ε̂.

4 Proof of the main Theorem

In this section we consider an arbitrary a ∈L∞(RN ) with lim inf |x|→∞a(x) =
a0 > 0. Given ᾱ > 0 let α̃ = 1

2 min{a0, ᾱ} and ã(x) = max{a(x), α̃}. Since
the results proved in the previous section can be applied to ã, defining αω

according to (3.1), by Theorem 3.1, there is ω̂ > 0 such that the prob-
lem (Pã+αω) admits infinitely many solutions whenever ω ∈ (0, ω̂). More
precisely, denoting by

ϕω(u) = 1
2‖u‖

2 −
∫
RN

(ã(x) + αω(x))F (u) dx

and by Aj(ω) the set constructed in section 3 corresponding to ã, if ω ∈
(0, ω̂) then Aj(ω) ∩ Kω 6= ∅ for every j ≥ ̂(ω), where Kω is the critical set
of ϕω. We point out that ̂(ω) can be choosen large enough in order that
{x : αω(x) 6= 0} ⊂ {x : a(x) = ã(x)}. Hence αω is in fact a perturbation of
a.

Next goal is to prove that the critical points of ϕω are “stable” under
perturbations which are “small at infinity”. In particular we can take as
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admissible perturbation the function a− ã, so that we obtain the existence
of infinitely many solutions for the perturbed problem (Pa+αω).

Given any β ∈ L∞(RN ), let us introduce the functionals

ϕωβ(u) = ϕω(u)−
∫
RN

β(x)F (u) dx

and let us denote by Kβ the corresponding critical sets.
First, we state a local compactness property satisfied by ϕωβ. Let us fix

M = 2(‖a‖L∞ + ᾱ).

Lemma 4.1 If β ∈ L∞(RN ) is such that ‖β‖L∞ ≤ M
2 , then ϕωβ satisfies

the Palais Smale condition in B4ρ0(Aj(ω)) for every j ≥ ̂(ω) and ω ∈ (0, ω̂).

Proof. Let (un) ⊂ B4ρ0(Aj(ω)) be a PS sequence for ϕωβ. Since B4ρ0(Aj(ω))
is bounded, there exists u ∈ X such that, up to a subsequence, un → u
weakly in X. Moreover, arguing as in the proof of Lemma 2.4, one can
check that ϕ′ωβ(u) = 0, (un − u) is again a PS sequence for ϕωβ and
un → u strongly in H1

loc(R
N ). Since (un) ⊂ B4ρ0(Aj(ω)), by Lemma 3.6

(i), ‖un‖RN\B 1
2ω−1

(xj)
< ρ̄ for every n ∈ N and then, ‖u‖RN\B 1

2ω−1
(xj)

≤ ρ̄,

too, being ρ̄ given by Lemma 2.1. Hence lim sup ‖un−u‖ ≤
√

2ρ̄. Therefore,
since ‖a + αω + β‖L∞ ≤ M , Lemma 2.1 yields ‖un − u‖2 ≤ ‖ϕ′ωβ(un −
u)‖ ‖un − u‖+ 1

2‖un − u‖2 and then ‖un − u‖ → 0.

Now the existence of infinitely many critical points for ϕωβ with β ∈
L∞(RN ) “small at infinity” can be stated in the following way.

Lemma 4.2 There exists β̂ > 0 such that for all ω ∈ (0, ω̂) and β ∈
L∞(RN ) with ‖β‖L∞(RN ) ≤ M

2 and lim sup|x|→∞ |β(x)| ≤ β̂, there exists
̂β(ω) ≥ ̂(ω) such that Kβ ∩ Aj(ω) 6= ∅ for every j ≥ ̂β(ω).

Proof. Letting N be the constant fixed after Lemma 3.8, there exists C =
C(N) > 0 such that for any R > 0 we have

sup
‖u‖≤N

|
∫
RN\BR(0) β(x)F (u) dx| ≤ C‖β‖L∞(RN\BR(0)) , (4.1)

sup
‖u‖≤N, ‖v‖≤1

|
∫
RN\BR(0) β(x)f(u)v dx| ≤ C‖β‖L∞(RN\BR(0)) . (4.2)

Let β̂ ≤ 1
4 min{ᾱ, ε̂

C }, being ε̂ > 0 fixed after Lemma 3.8. Since lim sup
|x|→∞

|β(x)|

≤ β̂, there exists R > 0 such that ‖β‖L∞(RN\BR(0)) ≤ 2β̂. Moreover, let
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us fix ̂β(ω) ≥ ̂(ω) such that B 1
ω
(xj) ⊂ RN \ BR(0) for all j ≥ ̂β(ω). By

contradiction, assume thatKβ∩Aj(ω) = ∅ for some ω ∈ (0, ω̂) and j ≥ ̂β(ω).
We firstly note that, since Aj(ω) ⊂ BN (0), using (4.1) and Lemma 4.1,

(1) there exists νj > 0 such that ‖ϕ′ωβ(u)‖ ≥ νj for all u ∈ Aj(ω) ∩ {ϕω ≤
c∞ + h̄}.

Now, using (1) and Lemma 2.1 (note that ‖ã + αω + β‖L∞ ≤ M), we can
repeat the argument of the proof of Lemma 3.7 to construct a pseudogradient
vector field for ϕωβ acting on the set Aj(ω). Precisely, we have that there
exist µj > 0 and a locally Lipschitz continuous function Ṽj :X → X verifying:

(i) ‖Ṽj(u)‖ ≤ 1, ϕ′ωβ(u)Ṽj(u) ≥ 0 for all u ∈ X and Ṽj(u) = 0 for all
u ∈ X \B4ρ0(Aj(ω)),

(ii) ϕ′ωβ(u)Ṽj(u) ≥ µj if u ∈ Bρ0(Aj(ω)) ∩ {ϕω ≤ c∞ + h̄
2},

(iii) ϕ′ωβ(u)Ṽj(u) ≥ µ̄
2 if u ∈ (B2ρ0(Aj(ω)) \Bρ0(Aj(ω))) ∩ {ϕω ≤ c∞ + h̄

2},

(iv) 〈u, Ṽj(u)〉RN\B 1
ω

(xj)
≥ 0 if ‖u‖RN\B 1

ω
(xj)

≥ ε̂.

Let us remark that the only difference with respect to the proof of Lemma 3.7
concerns the case u ∈ (B4ρ0(Aj(ω))\Bρ0(Aj(ω)))∩{ϕω ≤ c∞+ h̄

2}, because
now we cannot use directly Lemma 3.6 (ii). In this case, using the same
notation of the proof of Lemma 3.7, βuu ∈ (B4ρ0(Aj(ω)) \ Bρ0(Aj(ω))) ∩
{ϕω ≤ c∞ + h̄

2} always holds. Moreover we can obtain again

‖ϕ′ωβ(βuu)‖ ≥ ‖ϕ′ω(βuu)‖ − ‖ϕ′ω(βuu)− ϕ′ωβ(βuu)‖ ≥ ν̄ − ε̄
4 ≥

2
3 ν̄

because supp βuu ⊂ RN \BR(0) and we can use (4.2) and Lemma 3.6 (ii).
Considering the flow associated to the field Ṽj , we obtain the existence of a
continuous function ηj : X → X which verifies:

(i)′ ηj(u) = u for all u ∈ X \B4ρ0(Aj(ω)),

(ii)′ ϕωβ(ηj(u)) ≤ ϕωβ(u) for all u ∈ X,

(iii)′ ϕωβ(ηj(u)) ≤ ϕωβ(u)− µ̄ρ0

2 if u ∈ Bρ0(Aj(ω)) ∩ {ϕω ≤ c∞ + h̄
2},

(iv)′ ηj(Ej(ω)) ⊂ Ej(ω).
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Then, considering the path γ̃j = ηj(γj), where γj is given by Lemma 3.9, by
(i)′ and (iv)′, we obtain γ̃j ∈ Γj(ω). Furthermore, for every u ∈ range γj ∪
range γ̃j we have

|ϕω(u)− ϕωβ(u)| ≤
∣∣∣ ∫

RN\BR(0)
β(x)F (u) dx

∣∣∣ +
∣∣∣ ∫

BR(0)
β(x)F (u) dx

∣∣∣
with ∣∣∣ ∫

RN\BR(0)
β(x)F (u) dx

∣∣∣ ≤ 2Cβ̂ ≤ ε̂
2 ,

because of (4.1) and the choice of β̂, and∣∣∣ ∫
BR(0)

β(x)F (u) dx
∣∣∣ ≤ 1

4‖u‖
2
BR(0) ≤

1
4‖u‖

2
RN\B 1

ω
(xj)

≤ ε̂2

4

because of Remark 2.1 and the definition of Γj(ω) (in fact ‖u‖BR(0) ≤ 1
64 ρ̄).

Hence

maxs∈[0,1] ϕω(γ̃j(s)) ≤ maxs∈[0,1] ϕωβ(γ̃j(s)) + ε̂
2 + ε̂2

4 , (4.3)

maxs∈[0,1] ϕωβ(γj(s)) ≤ maxs∈[0,1] ϕω(γj(s)) + ε̂
2 + ε̂2

4 . (4.4)

Finally, by (4.3), (4.4), (ii)′ and (iii)′, since ε̂ < 1
8 min{hρ0 , µ̄ρ0}, using

Lemma 3.10, we have

maxs∈[0,1] ϕω(γ̃j(s)) ≤ max
s∈[0,1]

ϕωβ(γ̃j(s)) + ε̂
2 + ε̂2

4

≤ max{c∞ − 1
2hρ0 + ε̂ + ε̂2

2 , c∞ − 1
2 µ̄ρ0 + 2ε̂ + ε̂2

2 } < cj(ω),

a contradiction with the definition of cj(ω).

Lastly, the following result completes the proof of Theorem 1.1.

Theorem 4.1 If ω ∈ (0, ω̂) then the problem (Pa+αω) admits infinitely
many solutions. In addition, there exists β0 > 0 such that for all ω ∈ (0, ω̂)
and β ∈ L∞(RN ) with ‖β‖L∞(RN ) ≤ β0, also the problem (Pa+αω+β) admits
infinitely many solutions.

Proof. The first part follows by Lemma 4.2, taking β = a− ã. Indeed in this
case β(x) = 0 for |x| large enough, and ‖β‖L∞ ≤ ‖a‖L∞ + α̃ ≤ M

2 since α̃ <
ᾱ. The second part is again a consequence of Lemma 4.2. Indeed, fixed β0 =
min{ᾱ − α̃, β̂}, where β̂ is given by Lemma 4.2, for any β ∈ L∞(RN ) with
‖β‖L∞ ≤ β0, we can write a+αω+β = ã+αω+β̃ where β̃ = a−ã+β satisfies
the assumptions of Lemma 4.2. Indeed ‖β̃‖L∞ ≤ ‖a‖L∞ + α̃ + ‖β‖L∞ ≤ M

2 ,
since ‖β‖L∞(RN ) ≤ ᾱ − α̃, and lim sup|x|→∞ |β̃(x)| = lim sup|x|→∞ |β(x)| ≤
β0 ≤ β̂.
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