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1 Introduction

In this paper we study the existence of infinitely many solutions for the
semilinear elliptic problem

~Au+u=a(x)f(u) ueHRY) (Py)
where we assume that a € L®(RY), liminf},_ a(x) > 0, and
(f1) f € CHR),

(f2) there exists C' > 0 such that |f(t)] < C(1 + |¢t|P) for any t € R, where

pe (L, F2)if N>3andp>1if N =1,2,

(f3) there exists 6 > 2 such that 0 < F(t) < f(t)t for any t # 0, where
F(t) = fy f(s)ds,

(f4) @ < f'(¢) for any t # 0.

Note that f(t) = [t[P~1¢ verifies (f1)—(f4) whenever p € (1,32) if N >3
orp>1if N=1,2.

Such kind of problem has been studied in several papers and its main
feature is given by a lack of compactness due to the unboundedness of the
domain. Indeed the imbedding of H*(R") in L?(R") is not compact and
the Palais Smale condition fails.

The existence of nontrivial solutions of (P,) strongly depends on the be-
haviour of a. We refer to [18] where it is showed that if a is monotone (non
costant) in one direction then the problem (P,) has only the trivial solution.

On the other hand, if a is a positive constant or a(x) — asx > 0 as
|z| — oo, the problem has been studied by using concentration-compactness
arguments and several existence results are known. See, e.g., [30], [23], [17],
[31], [7], [8], [11] and [20].

When a is periodic, the invariance under translations permits to prove
existence, [27], and also multiplicity results, as in [6], [15], [1], [24], where
infinitely many solutions (distinct up to translations) are found. In fact, in
this case, the noncompactness of the problem can be exploited to set up a
new minimax argument, in the spirit of the works [14] and [29], and then to
exhibit a rich structure of the set of solutions.

Multiplicity results have been obtained also without periodicity or asymp-
totic assumptions on a, in some “perturbative” settings, where concentra-
tion phenomena occur and a localization procedure can be used to get some



compactness in the problem. A first result in this direction is the paper [21]
concerning the prescribing scalar curvature problem on S? and S*. We also
mention [28], [4], [5], [16], [19], [22] and the references therein, for the case
of a nonlinear stationary Schrédinger equation —e?Au+ V (z)u = f(u) with
e >0small and V € CHRN), V(z) > Vp > 0 in R", having local maxima
or minima or other topologically stable critical points. Similar concentration
phenomena occur also considering the equation —Au + Au = a(z)f(u) for
A > 0 large enough (see [13]) or —Au +u = a(z)[u[P~lu with p = {£2 — ¢,
€ > 0 small, and N > 3, where a blow-up analysis can be done (see [25]).
In this paper, motivated by [3], we adopt a quite different viewpoint from
the ones followed in the above quoted works and we show that the existence
of infinitely many solutions for the problem (P,) is a generic property with
respect to a € L>®°(RY), with lim inf|g| o a(w) > 0. Precisely we prove

Theorem 1.1 Let f : R — R satisfy (f1)—(f4). Then there exists a set
A open and dense in {a € L®(RYN) : liminf),_. a(x) > 0} such that for
every a € A the problem (P,) admits infinitely many solutions.

In fact, given any a € L®°(RY) with lim inf|y) oo a(x) > 0, for all @ > 0
we are able to construct a function o € C(RY), 0 < a(r) < @ in RY, such
that the problem (P,,) admits infinitely many solutions. Moreover we show
that this class of solutions is stable with respect to small L perturbations
of the function a + «.

The function « is obtained in a constructive way that can be roughly de-
scribed as follows. First, we introduce the variational setting and we make
a careful analysis of the functionals “at infinity” corresponding to the equa-
tions —Au+u = b(x) f(u) where b € Hyo(a), i.e., the set of the w*-L limits
of the sequences a(- + ;) with (z;) C RY, |zj| — oo. All the functionals
at infinity have a mountain pass geometry and, called ¢(b) the mountain
pass level associated to the problem (P,), we can show that there exists
(o € Hoo(a) such that c(an) < ¢(b) for any b € Hoo(a) and the corre-
sponding problem (P, ) admits a solution characterized as mountain pass
critical point. Then, following a suitable sequence (z;) € RY such that
a(- + xj) — aoo w*-L>, we construct a by perturbing a in neighborhoods
of x; in order to get local compactness and local minimax classes for the
perturbed functional which allow us to prove existence of infinitely many
critical points localized around any point x;.

~ We note that, by a standard argument (taking f instead of f, defined by
f(t) =0 fort <0 and f(t) = f(¢t) for t > 0), it is possible to show the



existence of infinitely many positive classical solutions of the problem (P,)
for any a € A, a smooth.

Finally we want to point out some possible easy extensions of our result.
We observe firstly that with minor change, our argument can be used to
prove an analogous result for the class of the nonlinear Schréodinger equations
—Au+b(z)u = a(x) f(u) with b € L¥(RN), b(x) > by > 0 for a. e. 7 € RV,
and a and f as above. Moreover, we point out that in proving Theorem 1.1 we
never use comparison theorems based on the maximum principle. Then our
argument can be repeated exactly in the same way to study systems of the
form —Au +u = a(x)VF(u) where F € C?(RN, RM) satisfies properties
analogous to (f2), (f3), (f4). In particular the result can be established
in the framework of the homoclinic problem for second order Hamiltonian
systems in RM (see [3] and the references therein).

Secondly we remark that the solutions we find satisfy suitable stability
properties. These can be used to prove that in fact the perturbed prob-
lem (Pa+q) admits multibump type solutions (see [29]) with bumps located
around the points ;. We refer in particular to [2] for a proof that can be
adapted in this setting.

Finally we mention also the fact that if a is assumed to be positive and
almost periodic (see [10]) then it is not known whether or not the problem
(P,) admits solutions. Following [3] it is possible to show that in this case
one can construct a perturbation a almost periodic and with L norm small
as we want, in such a way that the problem (P,,) admits infinitely many
(actually multibump type) solutions. Then we get a genericity result (with
respect to the property of existence of infinitely many solutions) for the class
of problems (P,) with a € C(R) positive and almost periodic.

Acknowledgement. This work was done while the authors were visiting
CEREMADE. They wish to thank CEREMADE for the kind hospitality.

2 Variational setting and preliminary results

In this section we study the class of problem (F,) with a € Fp, pr = {a €
L¥RN) : m < a(z) < M ae.in RV}, 0 < m < M, and f satisfying
(F1)-(£4).

Let X = H'(RY) be endowed with its standard norm |ju|| = (g~ (|Vul?+



u2)dx)% and consider the functional

¢a(u) = gllull® — /RN a(x)F(u(z)) dx. (2.1)
y (f3) we have F(0) = f(0) = f'(0) = 0 and then, by (f2),

Ve > 0, JA. > 0 such that |f(¢)| < e|t| + AJt|P Vi€ R (2.2)
from which it is standard to derive that ¢, € C*(X,R) for all a € Fo,m
with

palw = (o) = [ @) (@)@ da

where (u,v) = [y (VuVv+uv) dz. The critical points of ¢, are solutions of
the problem (P,) and, in the sequel, we will denote K, = {u € X : ¢, (u) =

0}.

We firstly give a result which describes in particular the behavior of any
functional ¢, at 0. For every Q C R¥, let us denote ||ulq = (Jo(|Vul? +
\u|2)dx)% and (u,v)q = [o(VuVv + uv) dz for all u,v € X. Then we have

Lemma 2.1 There exists p € (0,1) such that if sup. ull B, (y) < 2P then
yeRN

/ F(u)dz < 1 |lul®*  and / Yol de < gz llul[[o]
for all u,v e X.

Proof. Let {B1(y;)}ien be a family of balls such that each point of RY is
contained in at least one and at most [ of such balls.

Let & = ;47 and let A; > 0 be such that 1wl Lot1 By @) < Arllull B, (y) for all
u € X,y € RN. Then, by (2.2), for any u,v € X and y € R we have

Jy o Vvl da < el o]+ Aclelen s g 01001 5,00
1y

< wM+AA“WH&@WW& Il

_ 1 \Np—
Let p € (0,1) be such that A, APT1(2p)P~ < i+ Then, if sup ull B, ()
yER
2p, by the above estimate, we obtain

Jen|f(wvlde < 37 [, 01 F(@vldo < gz >l gy 10l < gy llulllv])-
iEN iEN

With analogous computation it can be proved that if sup ||lulp, ) < 2p
yeRN
then [pv F(u)dz < 0| ul?. O



Remark 2.1 In particular, we have that if sup |[lul|p, ) < 2p then
yeRN

1 2 1
[ e@F@da] < 3l and | [ (@) fde] < ]

for all a € Fy, ar. Moreover, note that proving Lemma 2.1 we showed that
if y € RY and [lull, ) < 25 then | [, ) a(2)f(w)vda] < ullp, o] and
| [, () (@) F(u) dz| < i||uH2B1 (u)- This can be done independently of y since
the imbedding constant A; does not depend on y. By the same argument
we can assume that p is such that if ||ul|q < 2p then

[ e@F@de < 3l and | [ a(@)f(vds| < 3ulalela
Q Q

for all u,v € X and for all a € F,, p, whenever € is an open regular
subset of RV, satisfying the uniform cone property with respect to the cone
C={z € Bi1(0): z-e1 > &[]}, where 1 = (1,0,...,0).

By (f3), F(t) > F(ﬁ)]t!e for [t| > 1 and then for any u € X \ {0} there
exists s(u) = s(u,m) > 0 such that p,(s(u)u) < 0 for every a € Fp -
Hence, by Lemma 2.1, any functional ¢, with a € F,, ps has the mountain
pass geometry with mountain pass level

c(a) = inf sup @a(y(s)) (2.3)
7€l 5¢(0,1)
where I' = {y € C([0,1],X) : v(0) = 0, ¢a(7y(1)) < 0Va € Fpym}. By
Lemma 2.1, we have that c(a) > p? > 0 for every a € F,m and, by
the mountain pass Lemma, there exists a sequence (u,) C X such that
©a(un) — c(a) and @} (u,) — 0. We remark that ¢(M) < c¢(a) < ¢(m) for
any a € F M-

Remark 2.2 By (f4) for every u € X \ {0} there exists a unique s, > 0
such that d%SDa(SU)’s:su = 0 and hence ¢, (s,u) = maxs>g @q(su). Moreover,

we have c(a) = inf supp,(su) and inf ¢4 > c(a) for any a € Fpy, 1.
lull=1 s>0 Ka\{0}

Remark 2.3 The assumption (f3) implies that for every a € Fp, i
(3 = Pllull® < walw) + llea @] lull VueX. (2.4)

In particular (3 — )[ul* < @a(u) for any u € K, and a € Fpn pr.
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Letting A = (1 — %)ﬁ2, by Lemma 2.1 and Remark 2.3 we plainly derive
the following compactness property of the functionals ¢,.

Lemma 2.2 Let (an) C Fnm and (un) C X be such that ¢, (un) — 1 and
@ (un) — 0. Then 1 >0 and if | < X orlimsup sup |un|p, ) < 2p then

n—00 yeRN
Uy — 0.

By the previous lemma we have that for any sequence (u,) C X such that
Ya, () — 1 > X and ¢, (u,) — 0, for some (an) C Fpu, there exists a
sequence (y,) C RN such that liminf ||uy||,(y,) = 7. Moreover, in the next
lemma we will prove that the vanishing case (see [23]) does not occur

Lemma 2.3 There exists T € (0,p) for which if (un,) C X is such that
Qa, (un) — 1 € [N c(m)] and ¢}, (up) — 0 for some (an) C Fpm then

. . > 7r
lim inf yselgv [tnll 2B, (y)) = T

Proof. By contradiction, using a diagonal procedure, there exists a sequence
(un) such that @q, (un) — 1 € [A,c(m)], ¢ (un) — 0, for some sequence
(an) C Fmm, and supyern [[unllr2(p, ) — 0. Let A > 0 be such that
ull Lot1ravy < Allul| for all uw € X and let € = 717 By (2.2), we obtain

Junl?+ (1) = [ an(@)f(wn)uendo < (5 + MAAc a5} gl

as n — o0o. Then, since | > X, by Lemma 2.2, for n sufficiently large, we
have ||u,|| > p and so, by the previous estimate, ||Un||§;-1-1(RN) > m.
Since supyern [|Unllr2(B,(y)) — 0 and, by (2.4), (u,) is bounded, we have
that u, — 0 in LI(RY) for all ¢ € (2, %) (see, e.g., [15]), a contradiction.

Ul

Now we state a characterization of the sequences (u,) C X such that
@a, (up) — Land ¢}, (up) — 0 for some sequence (a,) C Fnnr.

Lemma 2.4 Let (ap) C Fr, (un) € X and (y,) C RY be such that
Gan(Un) — 1, 0 (up) — 0 and liminf [|u, || g, () = p. Then there exists
u € X with ||ull g, ) = p such that, up to a subsequence,

(i) un(- + yn) — u weakly in X, pa(u) < 1 and ¢l (u) = 0, where a =
lim ay, (- + yp) in the w*-L> topology,



(#) Pa, (Un —u(- = yn)) — 1 = @a(u) and @, (un —u(- —yn)) — 0.

Proof. By (2.4), the sequence (u,) is bounded in X and then there exists
u € X such that, up to a subsequence, u, (- + y,) — u weakly in X.
Moreover, since F,, pr is compact for the w*-L° topology, passing again to
a subsequence, we have that a,(- +yn) — a w*-L>™ for some a € Fp, pr. We
claim that ¢/, (u) = 0.

Indeed, for every v € C°(RY), since @, = an(- + yn) — a w*-L>, we have
Yp(u)v — ¢} (u)v — 0. Moreover, since uy, (- + y,) — u weakly in X and
|al| oo myy < M, we obtain ¢f (w)v — @5 (un(- + yn))v — 0. Then, since
%, (n(- + yn) |l = [l (un)|| — 0, we conclude that ¢} (u)v = 0 for any
v € CX(RMN) and, by density, the claim is proved.

Now, since uy, (- + yn) — u weakly in X we have that

Jan (F(un = u(- = yn)) = F(un) + F(u(- = yn))) dz — 0,
supy)<1 Jry (f (un = u(- = yn)) = fun) + f(u(- —yn)))vdz — 0

and since ||ay||p~ < M we derive

Pan (Un — u(- = Yn)) = Pa, (Un) + Pa, (u(- — yn)) =0, (2.5)
P (Un = ul- = yn)) = ¢, (un) + ¢, (u- = yn)) = 0
Then, since a,(- + yn) — a w*-L*, we obtain g, (u(- — yn)) — @a(u)

and therefore, by (2.5), @a, (un — u(- — yn)) — | — pq(u). Moreover, since
¢l (u) = 0, we have

P 0l =y = [ (al@) = an(a -+ ya))f (@0l + ) da,
and then
I, (u(- = )l = 0

because the set {f(u)v:v € X, ||v|| < 1} is compact in L'(R"). Therefore,
since ¢/, (u,) — 0, by (2.6), we conclude that

Py (tn — (- = yn)) — 0. (2.7)

Finally, to show that ||ul| g, o) > 7 we prove that up(-+yn) — uin H (R"Y).
To this aim for any R > 0 let xgp € C(RY) be such that xg(z) > 0
for any x € RN, xgr(z) = 1 if z € Bg(0), suppxr C Bar(0). Setting



Un = Un(- + Yn) — u, we have anH2BR(O) = (vn, XRUR) = (Un, XRUn) 2|2 R-
We first observe that (v,, xrvn) — 0. Indeed we have

(Vn, XRUn) = SOZL,L (Un('_yn))XR('_yn)vn('_yn)‘F/RN an(T+yn) f(vn) X RUn dx

and the first term goes to zero by (2.7), while the second one by the Lebesgue
dominated convergence theorem, since supp xg C Bar(0).
Then, as n — oo, we have

vn||% o = ol)-— VxrVo,v, dr — / xr(|Vn|? 4+ v2) dx
" 21> R |z|>R
< o1) + (/ VxRV tn? dx)%(/ V2 dz)E
R<[e|<2R R<[o|<2R
= o(1)
since v, — 0 in L?(Byr(0) \ Bg(0)) and (vy,) is bounded in X. 0

We conclude this section studying the problems “at infinity” associated
to any functional ¢,. Given a € Fy, u, let us denote

H(a) = {b€ L®R"Y): 3 (ya) CRY, a(- +yn) — b w-L>},
Hyo(a) = {be L®RN): 3 (y,) CRY, |yn| — 00, a(- + yn) — b w*-L>}.
Then, we have

Lemma 2.5 Hy(a) is sequentially closed with respect to the w*-L* topol-
ogy. In particular, if a € Hx(a) then H(a) C Hx(a).

Proof. Let (b,) C Hoo(a) and b € L% (RY) be such that b, — b w*-L>. We
prove that b € Ho(a). By definition, for all n € N there exists a sequence
(y7); € RN such that, as j — 400, |y}| — oo and a(- + y}) — by w*
L. Let {¢1}1en € LY(RY) be dense in L' (RY). For all I,n € N we have
Jrv(a(- +yf) — bp)prdz — 0 as j — +oo. Then, by induction, we can
construct an increasing sequence (j,) C N such that |y? | > \y?;ll\ and

/RN(a(-—i-y?n) —by)prde <Lt foranyl=1,...,n.

Therefore, setting g, = yj , it holds that |y,| — oo and for every I € N

/P{N(a(' +gn) - bn)¢l dr — 0 asn— +oo.
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Then, since {¢; }ien is dense in L'(RY), we conclude that a(-47,) — b, — 0
w*-L*>°. Finally, since b, — b w*-L*>°, we obtain that a(- + g,) — b w*-L>,
that is b € Hxo(a). |

Given a € Fyy, 1, we have that Ho(a) C Fpy v and we denote
wola)= inf c(b). 2.8
() = _inf 0 (2.9

[e'9]

Such value turns out to be attained. More precisely

Lemma 2.6 For every a € Fp, m, there exist aso € Hoo(a) and us €
X\ {0} such that pa.. (o) = (o) = Coo(a) and ¢/, (o) = 0.

Proof. Let (b;) C Hx(a) be such that c¢(bj) — cx(a). By the mountain
pass Lemma, for all j € N there exists a sequence (u,), C X such that
o, (ul,) — ¢(b;) and cp’bj (ul) — 0 as n — oo. By Lemma 2.2, for all j € N
there exists a sequence (y), C RY such that liminf, .. ”u%HBl(y,{) > p.
Therefore, by Lemma 2.4, for all j € N, there exist u; € X and a; € Fp m
such that ||u;| g, o) > p and, up to a subsequence, u,(-+y}) — u; weakly in
X, b;(-+yl) — aj w*-L>, Splaj (u;) = 0 and @, (uj) < c(b;). By Remark 2.2,
we have g, (u;) > c(a;). Moreover, by Lemma 2.5, a; € H(bj) C Heo(a) and
therefore, by (2.8), c(a;) > cx(a). Hence, since ¢(bj) — coo(a), we obtain
@a; (Uj) = coola). Applying Lemma 2.4 to the sequence (u;), we obtain that
there exist us € X and aeo € Fpn,nr such that ||uco| s, ) = p and, up to
a subsequence, u; — u weakly in X, a; — ao w*-L°, (pfloo(uoo) = 0 and
Vao (Uoo) < Coo(a). Since, by Lemma 2.5, a € Hxo(a) we conclude, by (2.8)
and Remark 2.2, that ¢, (uso) = (o) = Coo(a). 0

Finally, the following monotonicity property of the mountain pass levels
Coo(a) holds

Lemma 2.7 Let a € Fpypr and p > 0. Then coo(a+ 1) < cxo(a).

Proof. By Lemma 2.6, there exist aso € Hoo(a) and us € X such that
Pa (Uss) = Coo(a) and ¢}, (us) = 0. Moreover there is v € T' such that
Uso = ¥(8) for some 5 € (0,1) and max,c(,1] Pas, (V(5)) = Pan, (Ueo). Let
(y;) € RY be such that |y;| — oo and a(-+y;) — @ w*-L°. Let b = aoo+pt
and sg € [0,1] be such that ¢,(y(s0)) = max,eo,1) ¥u(7(s)). Then y(so) # 0
and

(@) 2 Pa (1(50) = 9s(1(s0) + 4 [ F(3(s0)) do > b) 2 eela+p)

since b € H*®(a + ). O
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3 The perturbed problem

In this section we consider any a € L (R”), a(z) > ap > 0 a.e. in R" and
f satisfying (f1)—(f4). For all @ > 0 we will construct a family of functions
a, € CRYN) (w > 0) with ||ay||r=~ < @ for which the problem (P,iq,)
admits infinitely many solutions if w > 0 is small enough.

Let @ > 0. By Lemma 2.6, since Hy(a + &) = Hy(a) + &, we know that
there exists aso € Hoo(a) such that coo(a + &) = ¢(as + @&). By definition,
there exists a sequence (z;) C R such that a(- + x;) — @ w*-L*° and
|zj41] — |zj| T 4+o00. Then, for w € (0,1) we define j(w) = inf{j € N :
;| = ;1] > 5} and

_ 2 . .
%(x):{aa—ﬂlx—wj\?) for |z — 25| < 2, j > j(w) (3.1)
0 otherwise.

Note that max,cgn o (z) = & = a(z;) for all j > j(w) and a,(z) < Ba if
v € RY\ Ujn B ().
Let us introduce some notation. For w € (0,1), we set

pulw) = Hul = [ (a@) + au(@) F(u(@) da.
Moreover, for any b € Hy(a) and 8 € L®°(RN) with 0 < 8 < @, let

wus(u) = glul® — /RN(b(@ + 6(2)) F(u(z)) dx.

We point out that for every w € (0,1), b and 3 as before, we have a+ ay,, b+
B € Fn,mr where m = 9 and M = 2(||al| Lo gy + @).

We also set K, = Kyta, and cpp = c(b+ ), where, according to Section 2,
c(b+ ) is the mountain pass levels of the functional ¢pg. Finally we denote
Voo = Pasa A Coo = Cool(a + @) = ¢(aoo + @).

Remark 3.1 By construction, following the general results stated in Sec-
tion 2, there exists us € X such that poo(tuse) = oo and @5 (us) = 0.
Moreover, by Remark 2.2, there exists 7o € I, of the form 750 () = $Sc0tco
for which

(Z) maXse(o,1] 9000('700(3)) - (Poo(uoo)a

(17) for every r > 0 there is h, > 0 such that ¢oo(u) < coo — hy for any
u € range Yoo With ||u — uso|| > 7.

11



Remark 3.2 By definition of ¢y, if b € Hyo(a) and 8 € L®(RYN) with
0 < B < aae. in RY, then Cb3 > Cbha = Coo. Moreover, if 8 € (0,a@), by
Lemma 2.7, coo(a + ) > co(a + @) = ¢xo-

In the following Lemma, using Lemma 2.4 and the definition of ¢y, we
give an estimate from below on the level of the sequences (u,,) C X such that
¢, (uy) — 0 and that “carry mass” at infinity, i.e., for which |[u,| g, () > P
for some sequence |y,| — 0.

Lemma 3.1 Let (w,) C (0,1), (up) C X and (yn) C RY be such that
@l (Un) — 0, |yn| — o0 and ||lunll, (y,) = p for every n € N. Then ce <
liminf ¢, (uy).

Proof. For a subsequence, we have a(- + y,) — b and oy, (- + yn) — 0,
w*-L> where b € Hy(a) and 8 € L®°(RY) with 0 < 8 < & a.e. in RY.
By Lemma 2.4, there exists v € X \ {0} such that, up to a subsequence,
Un (- +Yn) — u weakly in X, pp5(u) = 0 and liminf ¢y, (un) > @pg(u). Then,
using Remarks 2.2 and 3.2, the Lemma follows. Ul

In particular, as immediate consequence of Lemma 3.1, since j(w) — oo
as w — 0 we get an estimate from below on the level of critical points of
¢, with a “mass” in B1(z;) with j > j(w) and w > 0 small enough. More
precisely, we have -

Lemma 3.2 For every h > 0 there exists wp € (B,l) such that for all
w € (0,wn] if u € Ky and |lull g, () > p for some y € B (x;), with j > j(w),
then @, (u) > coo — h.

1
w

Now, we can prove a compactness result for the sequences (u,) C X such
that ¢/, (u,) — 0 with a “mass” located in B 1 (z,).

Lemma 3.3 There exist hg > 0 and wg € (0,1) such that if (w,) C (0,wo],
(un) C X and (g) € RY satisfy @y, (un) — 0, [unllpyny = 5, o ©
B 1 (zj,) with j, > j(wy), and limsup @, (un) < coo +ho, then (un(-+yn))

18 precompact in X.

Proof. Let hy € (0, %) and wy = wp, be fixed according to Lemma 3.2. By
Lemma 2.4 there exists u € X such that, up to a subsequence, u,(-+y,) — u
weakly in X, [|ull g, o) > p, ¢, (un—u(-—yn)) — 0 and limsup @, (w, —u(-—
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Yn)) < limsup @y, (uy) —liminf @, (u(- —ypn)) < coo +ho —liminf ¢, (u(- —
Yn))- By the choice of hg, using Lemma 2.2, to get the thesis it is enough to
check that liminf ¢, (u(- — yn)) > coo — ho. We distinguish two cases:

(4) |yn| — oo. In this case, since, up to a subsequence, a(-+y,) — b € Hy(a)
and oy, (-4+yn) — B € L2(RN) w*-L>, 3 < a a.e. in R, we have Php(u) =
0 and then, by Remark 3.2, liminf ¢, (u(- — yn)) = @ps(u) > cpg > Coo-

(74) (yn) is bounded. Then liminfw, > 0 and, up to a subsequence, w, —
w € (0,wp] and y, — y for some y € B1(z;) with j > j(w). Hence, setting
v = u(-—y) we have that ¢/,(v) = 0, HvH;l(y) > pand liminf ¢, (u(-—yn)) =
©u(v) > oo — ho, by Lemma 3.2. O

Now, we have the following concentration result.

Lemma 3.4 For every p € (0,p) there exist v, € (0,2) and R, > 1 such
that for every w € (0,wo), if u € X satisfies |¢l,(u)| < vy, u(u ) < oo + ho
and ||u| g, () > p for some y € B (x;) with j > j(w), then

HUHRN\BRp(y) < p-

Proof. By contradiction, there exist p € (O,ﬁ), R, C (1,400), (wn) C
(0,wp) and (up) C X such that R, — +oo, ¢}, (u,) — 0 and, for every
n € N, ¢, (un) < coo + ho, |tnll B, (y,) > p for some y, € B 1 (xj,) with

jn > j(wn) and [unllgs\ By (y,) = p- This contradicts the fact that, by
Lemma 3.3, the sequence (un( + yn)) is precompact in X. O

Using Remark 3.2 and Lemma 3.4, we will select infinitely many disjoint
regions in X in which the Palais Smale condition holds. Precisely, for every
€ (0,1), h>0,v >0 and j > j(w), we consider the set

Ajw,hv)={ueX : ¢,(u) <cwth, [lg,(u)] <v

and  sup ||ull () = P}-
yEB 1 (z;5)

Setting py = g, let vy = 19,, and Ry = Ry,, be given by Lemma 3.4.
Then, by the previous result, we obtain that the elements of Aj(w,h,v)
concentrate in B 1 (z;) for w, h, v small enough.

2w

Lemma 3.5 There ezist 0 € (0,wp), h € (0,ho) and v € (0,v0) such that
if u € Aj(w, h,v) for some w € (0,0) and j > j(w), then

HUHRN\E%_J%) < 2po.
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Proof. Arguing by contradiction, we have that there exist (wy,) C (0,wp) and
(up) C X such that w, — 0, Yo, (un) = 1 < coo, @, (Un) — 0, lunll B, (yn) =

p for some y, € B (x;,) and ”UnHRN\E . ) = 2po, with j, > Jlwr).
wn Tom

_ (zjn
1

By Lemma 3.4 we have that ||UnHRN\BRO(yn) < 2po. Therefore ﬁ —1-Rp <
[yn — zj,| < i and then a(- +y,) — B € (0,@) in LS.. By Lemma 2.4, up
to a subsequence, we have u,(- + yn) — u # 0 weakly in X, a(- + yn) —

b € Hoo(a) w*-L>, pys(u) = 0 and | > ¢pg(u). By Remarks 2.2 and 3.2,
wpa(u) > coola + ) > coo(a + @) = coo, contrary to | < coo. O

;From now on, we will denote A;(w) = A;(w, h, 7) and B,(A;(w)) = {u €
X vinfycg;(w) lu —vl| < p} for any p > 0. Then we have

Lemma 3.6 Letw € (0,0) and j > j(w).
() 1w € Bapy(A(0). then gy, (o)) < 7
2w

;)

(i4) If u € (Bapy (Aj(w)) \ Aj(w)) N {pw < coo +h}, then ||, (u)]| > 7.
Proof. (i) By Lemma 3.5, if u € By,,(Aj(w)), then
ez, ) < 20+ 40 < 5. (3.2)

(13) If SUD, | (a)) |ullB,(yy = P, since u & Aj(w), by definition of A;(w),
we obtain [|¢/ (u)|| > 7. On the other hand, if SUDLcT | (o)) lull B, ) < P

by (3.2), we obtain sup,cgn [[ullp,(y) < p. Therefore, by Lemma 2.1, we
get [l (w)| > %||u|| and since infveAj(w) lv]| > 5 and 7 < £, we obtain
el (u)ll > 5(p —4po) > v. -

Remark 3.3 By Lemma 3.3, for all w € (0,0) and j > j(w), the Palais
Smale condition holds in A;(w) and then, by Lemma 3.6, in By, (A;(w)) N
{Yw < ¢oo + h}.

Now, we will prove the existence of infinitely many critical points of the
functional ¢, provided w > 0 is sufficientely small. More precisely, by the
above stated properties of the sets A;(w), we are able to show the existence
of a pseudogradient flow which leaves invariant suitable localized minimax
classes. This allows us to show the existence of critical points of ¢, in A;(w)
whenever w is small enough.
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First, by Lemma 3.6 and Remark 3.3, we prove the existence of a pseu-

2
dogradient vector field acting in A;j(w). We set g = + min{v, 28} and
E= %min{h, 2,t}.

Lemma 3.7 For any ¢ € (0,&) there exists w. € (0,w) for which if A;(w)N
Ko =0 for some w € (0,w,) and j > j(w), then there exist pj, > 0 and a
locally Lipschitz continuous function Vj, : X — X wverifying:

(i) Viw()l < 1, @L()Viu(u) > 0 for all u € X and Viu(u) = 0 for all
ueX \ B4po (Aj(w))’

(i1) L, (u)Vju(1) > pju if u € Byy(A;(w)) N{pw < oo + 51,
(i) oL, (u)Viw(u) = fi if u € (Bapg (Aj(w)) \ Bpy(Aj(w))) N {pw < coo + B},
(i) (, Vio( ) g5, (o) = 0 i [ullpm 5, o) > &

Proof. By Lemma 3.6 (i), we know that HUHRN\E L) <P for every
w1

U € Bypy(Aj(w)) with w € (0,@) and j > j(w). Therefore, given ¢ € (0,2)
there exists w. € (0,) such that if w € (0,w;) and j > j(w) then for all
u € By, (A;j(w)) there exists iy, € {[5=],...,[1]—1} (where [r] is the integer
part of r € R) for which

||U||Biu+1(xj)\3iu (z;) S 7 (3.3)

Let w € (0,w.) and j > j(w). For all u € By, (A;(w)) we denote E, =
RN\ B;, (z;) and E, = RN \ B, +1(z;) and we define

1 if v € RV \ E,
Bu(x) = iy +1—|z—xj| ifzeE,\Ey,
0 if x € Ey.

Note that 3, € X, 0 < Bu(z) < 1 and |V, (2)| < 1 for ae. z € RV,

Moreover, if 3 € {3y, 1 —Bu}, by (f1), we have |f(Bu)| < |f(u)| and F(Bu) <
F(u). Therefore, since [lulz < p, by Remark 2.1, if E € {E, \ Ey, Ey},
b1, P2 € {1,Bu,1 — By} and v € X, then

[ F(g)do < gyl and [ |(Brwparldo < g lulslols. (34

Using (3.3) and (3.4), by direct estimates, for all u € By,,(A;(w)) andv € X
with [|v|| < 1 we obtain
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(1) L) (A=Bu)u = gllullg, +{u, A=Bu)u) g\ g, —3lull, | 5, = 35(lullh, -
(2) o(Bur) < llullfm g, — Jav\a, (0@) + aw(@)F(u) do + ulf |, <

(3) 1L (Buw)v — ¢, (w)Buv| < [\ g, [VBulluVv = vVul dz + |lull g\ g, <
2Nl g, < 5

Let us consider u € Bpy(A;j(w)) N{pw < coo + 2} or u € (Bapy(Aj(w)) \

By (Aj(w))) N{pw < coo + 5}. We distinguish the two alternative cases:

|ullg, = § or ||ul|g, < §.In the first case setting Vi, = (1 — B,)u, we obtain

IVall S 100Vl ) = ol 3, ) a0 by ()

2

AV > 35 —5) =

In the second case, since A;(w) NKC, = (), by Remark 3.3, there exists p., €
(0, ;2) such that ||, (u)|| > 4pje for all u € Buyy(A;j(w)) N {pw < coo + 2}
Then, there exists V,, € X with [|V,|| <1 such that ¢/, (u)Vy, > 2puje.

Now, let u € (Bap, (Aj(w))\ By, (Aj(w))) N{pw < coo—i—%}. We distinguish
the cases: ||ul|g, > & or |lulg, < 2. In the first case we set V,, = (1—fy)u.

— — 2 i
Then, we obtain [|V,| < 1, <u,Vu)RN\B%($]_) = HUHRN\E%(%) and, since

5%

€ < &, by (1), we get

‘om

()V> ( 7%)>j.

In the second case, note that since & < h, by (2), we have ¢, (B3.u) < o (u )—1—
2 T .

% < Coo + h. Moreover, since ||(1 — Bu)ull® = |lul|F, + [I(1 ﬂu)uHE B, S
2

%—l—%_ i we have

4

inf u—vl| < inf Ju—vl]| +]|(1 = Bu)ul < 2pp + 2 < 4po,
LB ol <t ol (L= Bu)ul < 20+ 8 < dpy

L B ol =t =l = (1= Bl 2 p0 = § > 0.

Then Byu € Buap,(Aj(w)) \ Aj(w) and ¢, (B4u) < o + h. By Lemma 3.6
(1), there exists W, € X with ||[W,|| <1 such that ¢/ (B,u)W, > 5. By (3),
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since £ < Z, we have [, (u)3,W, > % and setting Vi, = 3 (B, Wo + (1 — Bu)u)
we have |Vl < L 0. V) g, (o = [0, ) and, by (1)

2

eL(u)Vu > >

oo\t\
w‘m
%)

E‘T\

In conclusion, for all u € By, (Aj(w)) N{pw < co + %} we have shown that
there exists V,, € X which verifies the following properties:

(1) Vall <1,

(ii) @l (u)Va = 2o if w € Bap, (Aj(w)) N{po < coo + 41,

(i) @, )V = 21 = s min{w, 2} if u € (Bap(Aj(w)) \ By (Aj (@) N
{‘Pw < Cx + %},
(iv) (u V >RN\B1 (z5) ” HRN\EA(%‘) if HUHRN\E%(%) > %

Then the lemma follows by the use of a suitable partition of the unity and
a suitable cut-off function as in the classical pseudogradient construction. []

By the previous Lemma, considering the Cauchy problem

) = Vi (n(s,u)) 520
(O u)—u ue X

and setting &(w) = {u € X : HUHRN\EL (25) < e}, one can easily obtain the

following deformation result:

Lemma 3.8 For all € € (0,8) there exists we. € (0,w) such that if Aj(w) N
Ko =0 for some w € (0,w) and j > j(w), then there exists a continuous
function nj, : X — X which verifies:

(i) Mj(w) = u for all u € X \ Bap(A; (),

(1) pu(js(u)) < @u(u) for allu € X,

(i) u(njus(1)) < u(u) — fipy if 1 € Bpy(Aj(w)) N{pw < oo + 5},
(iv) nju(E(w)) C E(w).
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By Remark 2.4 there exists N > 0 such that sup,cp,, (4;() |lul| < N
for all w € (0,w), j > j(w). Considered the path 7 defined in Remark 3.1
we can choose N > 0 so large that max,cp,1) [[7o0(s)[| < N. Let & > 0 be
such that & < £ min{¢, hy,, fipo} where h,, is defined in Remark 3.1 (ii) and
f and € in Lemma 3.7. We define a family (I'j(w)) of local mountain pass
classes by setting

Tjw) = {7 €T [y < N and [9()lpmp, ay) <& Vs € 0,11},
We have the following properties:

Lemma 3.9 There exists € (0,wz) such that for all w € (0,0) and j >
J(w), setting vj(s) = Yoo(s)(- — x;) for all s € [0,1], there results:

(1) v € Tj(w),
(44) maxep1] Pw(7j(8)) < oo + 6,
(i@) if 7j(8) & Bpo(A;j(w)) then 0u(75(5)) < Coo — 5hp,-

Proof. Since 75([0,1]) is compact in X, for w small enough we have that
H'yoo(zs)HRJ\f\E1 (o) <€forallse [0,1] and (z) follows.

Moreover, since a(- + ;) + a, (- + ;) = oo + @ W*-L>® asw — 0, j > j(w),
we have

sup - max |, (75(s)) = Poo(Yoo(s))] = 0 (3.5)

§2ij(w) s€0.4]
as w — 0. Then (i¢) follows by Remark 3.1 (7). Finally, note that u(-—z;) €
Aj(w) for w > 0 small enough, then, by (3.5) and Remark 3.1 (i7), we derive
(vi1). O

In particular it follows that for all w € (0,w) and j > j(w), I';(w) # 0 and
therefore

(W) = inf » )
¢j(w) Janf ) max ¢ (v(s)) eR

We have that these mountain pass levels are close to the mountain pass level
Coo in the following sense

Lemma 3.10 For allw € (0,&) there exists j(w) > j(w) such that |cj(w) —
Coo| < € for all j > j(w).
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Proof. By the previous Lemma we already know that ¢j(w) < coo +€ for all
w € (0,&) and j > j(w). To prove that ¢j(w) > ¢ — € for j large enough,
consider any path v € I'j(w). By definition of I'j(w), using Remark 2.1, for
all s € [0, 1] we have

Poo(V(8) (- + 25)) — u(v(s)) =
/ a(z 4+ xj) + oz + 25) — aso() — @) F(y(s)(- + x5)) dx

/7 a(z + x;5) — aco())F(v(s)(- + x;)) dx +
(a(x + 25) — oo () F (u) dax + 1|1v(s )IIRN\B1 »

Hence

- N .
Janf ) ma (v(s)(- + ;))

< &l )+|su<pN/B1(0)( (4 2)) = aco(2)) F(u) du + 5

Since poe(7(5)(- + 7)) = Prx(3(5)) With h = (- — ;) € Hao(a) and
I'j(w) C I, by definition of co,, we obtain

Coo < ¢j(w) + sup ﬁ (a(z + 7j) — a0o(2))F(u) dz + 5.
[ <N /B 1 (0)
Finally, since {xz, (O)F(u) . |lul| € N} is precompact in L*(RY) and a(- +

Tj) — Qoo w*-L> as j — oo, we have that for all w € (0,&) there exists
j(w) > j(w) such that for all j > j(w)

sup / (a(x + xj) — aso(x))F(u) do < %
lull <N /B 1.(0)
and therefore coo < ¢j(w) + €. 0
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Now, using Lemmas 3.8, 3.9 and 3.10, we can prove the existence of in-
finitely many solutions of the perturbed problem (P, ) provided w > 0 is
sufficiently small.

Theorem 3.1 Ifw € (0,0) then A;(w) NIy, # 0 for every j > j(w).

Proof. Arguing by contradiction, suppose that there exist w € (0,&) and
J > j(w) such that Aj(w) N K, = 0. Let nj,: X — X be the function
given by Lemma 3.8 and 7; € I'j(w) defined as in Lemma 3.9. Let 4;(s) =
Njw(v;(s)) for all s € [0,1]. By Lemma 3.8 (i) and (iv), the class I';(w) is
invariant under the deformation 7, and then 4; € I'j(w). We claim that
maxe(o,1] Pw(§j(5)) < ¢j(w) — € and therefore we get a contradiction with
the definition of ¢j(w). Indeed, if v;(s) & B,y (Aj(w)), by Lemma 3.9 (iii),
we have ¢, (7j(5)) < oo — %hpo < oo — 2€, since € < %hpo. Then, by Lemma
3.8 (i1), ¢u(9j(5)) < vuw(7j(s)) < €oo — 2. On the other hand, if v;(s) €
Bp,(Aj(w)), by Lemma 3.8 (iii) and Lemma 3.9 (i) , we have p,(7;(s)) <
u(75(8)) = fipo < Coo + € — fipo < Coo — 2€, since € < B2, Therefore, by
Lemma 3.10, for all s € [0, 1] we conclude ¢, (9;(s)) < €0 — 28 < ¢j(w) — €.

Ul

4 Proof of the main Theorem

In this section we consider an arbitrary a € L°°(RY) with lim inf |, a(z) =
ap > 0. Given & > 0 let @ = $ min{ao, &} and a(z) = max{a(z),a}. Since
the results proved in the previous section can be applied to a, defining «,
according to (3.1), by Theorem 3.1, there is @ > 0 such that the prob-
lem (Pjtq,) admits infinitely many solutions whenever w € (0,&). More
precisely, denoting by

2 ~
pu(u) = 3lul —/RN(a(ﬂf)Jr%(w))F(U) dx
and by Aj(w) the set constructed in section 3 corresponding to a, if w €
(0,&) then Aj(w) N K, # 0 for every j > j(w), where K, is the critical set
of ¢,. We point out that j(w) can be choosen large enough in order that
{z:ay(z) #0} C{z:a(x) = a(x)}. Hence o, is in fact a perturbation of
a.

Next goal is to prove that the critical points of ¢, are “stable” under
perturbations which are “small at infinity”. In particular we can take as
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admissible perturbation the function a — a, so that we obtain the existence
of infinitely many solutions for the perturbed problem (P, 4, ).

Given any 8 € L®(RY), let us introduce the functionals

pun) = pulw) = [ B@)F(u) do

RN
and let us denote by Ky the corresponding critical sets.

First, we state a local compactness property satisfied by ¢,,3. Let us fix
M = 2(lall = + a).

Lemma 4.1 If 3 € L®(R") is such that ||B||L~ < &, then p.s satisfies
the Palais Smale condition in By, (A;(w)) for every j > j(w) andw € (0,w).

Proof. Let (uy,) C Bip,(A;(w)) be a PS sequence for 3. Since By, (A;(w))
is bounded, there exists u € X such that, up to a subsequence, u,, — u
weakly in X. Moreover, arguing as in the proof of Lemma 2.4, one can
check that ¢} 5(u) = 0, (u, — u) is again a PS sequence for ¢,5 and
u, — u strongly in H} (RY). Since (u,) C Biy,(A;j(w)), by Lemma 3.6
(2), HunHRN\Eﬁ_l(‘rj) < p for every n € N and then, HUHRN\E%_I(%) <p,
too, being p given by Lemma 2.1. Hence lim sup ||u, — u|| < v/2p. Therefore,
since |la + ay, + Bl < M, Lemma 2.1 yields |ju, — ul? < 00,5 (un —
w)|| ||un — ul| + &[|un — ul|* and then |lu, — uf — 0. O

Now the existence of infinitely many critical points for ¢,3 with 8 €
L®(RY) “small at infinity” can be stated in the following way.

Lemma 4.2 There exists B > 0 such that for all w € (01 W) and B €
L®(RN) with 18 oo mry < % and Hmsup, . [B(z)| < B, there exists
Jp(w) > j(w) such that Kz N Aj(w) # 0 for every j > jg(w).

Proof. Letting N be the constant fixed after Lemma 3.8, there exists C' =
C(N) > 0 such that for any R > 0 we have

”Sﬁl<pN’ fRN\BR(O) B(@)F(u) dz| < CHﬁ”Lw(RN\BR(o)) , (4.1)
et Ba) f(u)v da| < C||B| L . (42
lul <N, ||v||§1’fRN\BR(O) (z) f(u) | 18| oo N\ Br(0)) (4.2)

Let 3 < $min{a, £}, being & > 0 fixed after Lemma 3.8. Since lim sup |3(z)]

|z|—o00

< (3, there exists R > 0 such that 18| oo M\ Br(0)) < 2. Moreover, let
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us fix jg(w) > j(w) such that 31 (zj) € RN\ Bg(0) for all j > jg(w). By
contradiction, assume that ngﬂA (w) = 0 for some w € (0,w) and j > jg(w).
We firstly note that, since Aj(w) C Bn(0), using (4.1) and Lemma 4.1,

(1) there exists v; > 0 such that lee,p(w)ll > v; for all u € Aj(w) N {pw <
Coo + h}.

Now, using (1) and Lemma 2.1 (note that ||a + a,, + B/~ < M), we can
repeat the argument of the proof of Lemma 3.7 to construct a pseudogradient
vector field for ¢,3 acting on the set A;(w). Precisely, we have that there
exist ¢1; > 0 and a locally Lipschitz continuous function ‘N/] X — X verifying:

(@) V()| < 1, <pwﬁ(u)f/( ) > 0 for all w € X and Vj(u) = 0 for all
UGX\B4po( i),

(i1) La(u)V;(u) > pj if u € Byo(A;(w)) N {pw < oo + 51,
(iti) lg(u)Vi(u) > & if u € (Bagy(Aj (@) \ B (A;j(@))) N {pw < coo + L},

Let us remark that the only difference with respect to the proof of Lemma 3.7
concerns the case u € (Bip,(A;j(w))\ By (Aj(w))) N {pw < coo + 2}, because
now we cannot use directly Lemma 3.6 (zz) In this case, using the same
notation of the proof of Lemma 3.7, Syu € (Bayy(Aj(w)) \ Bpy(Aj(w))) N

{pw < o + 2} always holds. Moreover we can obtain again

el (Bu)ll = Nl (Buw) | = el (Bure) = lop(Buw)ll > 7 = § > 37

because supp B,u C RV \ B(0) and we can use (4.2) and Lemma 3.6 (7).
Considering the flow associated to the field V;, we obtain the existence of a
continuous function 7; : X — X which verifies:

(2)" mj(u) = u for all u € X \ Byyy(A;(w)),

(1) pup(nj(u)) < pup(u) for all u € X,

(i) pup(nj(w) < pus(w) = B if u € Byy (Aj(w)) N {pw < oo + 5},
(70)" 1;(&j(w)) C &j(w).
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Then, considering the path 4; = n;(;), where ~; is given by Lemma 3.9, by
(¢)" and (iv)’, we obtain 4; € I'j(w). Furthermore, for every u € range ; U
range ; we have

[puw(u) — pup(u)| < ’/RN\BR(O d:C’ + ‘ /BR dx‘

with
’/ Bx)F(u) dz| <208 <5,
RN\BR(0)

because of (4.1) and the choice of £, and

[, P@F@ da] < Flully o) < Heling, o) < 5
because of Remark 2.1 and the definition of I'j(w) (in fact [[ul| g, o) < &)
Hence
maXe(o,1] Puw(F(5)) < maxeep 1) Pus(F;(s)) + % + §7 (4.3)
max,elo, Lus(75(s)) < maxgepo (i () + 5+ (44)

Finally, by (4.3), (4.4), (i) and (i)', since € < % min{hy,, fipo}, using
Lemma 3.10, we have
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maxsefo;] o(7i(5)) < max Qus(Fi(s)) + s+

< max{cos — 2hp, + &+ %,coo — Lhpo + 26 + %} < ¢j(w),
a contradiction with the definition of ¢;(w). |

Lastly, the following result completes the proof of Theorem 1.1.

Theorem 4.1 If w € (0,w) then the problem (Paiq,) admits infinitely
many solutions. In addition, there exists By > 0 such that for all w € (0,0)
and 3 € L®(RN) with 18l oo (mry < Bo, also the problem (Poya,,+p) admits
infinitely many solutions.

Proof. The first part follows by Lemma 4.2, taking 8 = a — a. Indeed in this
case ((z) = 0 for |z| large enough, and |||z < [la]ze + & < & since & <
@. The second part is again a consequence of Lemma 4.2. Indeed, fixed Gy =
min{a — @&, 3}, where 3 is given by Lemma 4.2, for any [ € L"O(RN) with
18]z~ < Bo, we can write a+a,+5 = a—l—aw—i—ﬁ where 8 = a—a+/3 satisfies
the assumptions of Lemma 4.2. Indeed |||z < |la|[ze + &+ ||B] = < X,
since ||8]|peomyy < @ — &, and imsup|y_,o0 [6(2)] = limsupp, o [B(z)] <
Bo < B. O
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