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Boundary Crossing Random Walks, Clinical
Trials and Multinomial Sequential Estimation.

Enrico Bibbona∗and Alessandro Rubba

Dipartimento di Matematica “G.Peano”, Università di Torino, Italy

Abstract: A sufficient condition for the uniqueness of multinomial sequential unbi-
ased estimators is provided generalizing a classical result for binomial samples. Unbi-
ased estimators are applied to infer the parameters of multidimensional or multinomial
Random Walks which are observed until they reach a boundary. Clinical trials are
shown to be representable within this scheme and an application to the estimation of
the multinomial probabilities following multinomial clinical trials is presented.

Keywords: Absorbed random walks; Clinical trials; Killed random walks; Sequential
multinomial estimation; Unbiased estimates.

Subject Classifications: 62L12; 62M05

1. INTRODUCTION

Stochastic processes are often used to model the behavior of some phenomena
which is observed up to the first crossing of a threshold level. It is the case of
neuronal modeling, population dynamics, ruin probabilities... (just to mention
a few). Sequential parametric inference is needed to calibrate such models in
order to obtain good fits with experimental data and specific maximum like-
lihood methods have been recently presented (Bibbona and Ditlevsen 2010)
when the underlying process is a discretely observed diffusion. In many cases
Random Walks (RWs) might be used as toy models for such phenomena and
estimation methods that accounts for the presence of barriers can be of help.
Moreover, as we shall see, data from a clinical trial can be be interpreted as
a trajectory of a suitable RW that came with a stopping boundary and such
estimation methods can be applied. If the increments of the RW are indepen-
dent Bernoulli random variables, then a classical result in binomial sequential
estimation (Girshick, Mosteller, and Savage 1946) may be applied to find an un-
biased estimator. In Savage (1947) (updating other references quoted therein)
a sufficient condition for the uniqueness of the unbiased estimator is found.
To a RW on a higher dimensional lattice or any other RW whose increments
have k possible outcomes with probabilities p1 · · · pk, a generalization of the
above result still applies. Indeed in Koike (1993) and Kremers (1990) unbiased
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sequential estimation is extended to the multinomial context, but a sufficient
condition for the uniqueness of the unbiased estimators is no longer available.
The present paper fills this gap and presents a few examples where unbiased esti-
mation is applied to multidimensional or multinomial boundary crossing RWs.
An application of sequential estimation of the multinomial probabilities that
deserve a special attention is that following a phase II multistage clinical trial
(Zee, Melnychuk, Dancey, and Eisenhauer 1999) where patients are classified
according to their respondence to a treatment. Group sequential multinomial
designs recently attracted a lot of attention for application in cancer research
(Zee et al. 1999, Kocherginsky, Cohen, and Karrison 2009, Freidlin, Dancey,
Korn, Zee, and Eisenhauer 2002, Dent, Zee, Dancey, Hanauske, Wanders, and
Eisenhauer 2001, Goffin, Pond, and Tu 2011). Their use has been recommended
by the Task Force on Methodology for the Development of Innovative Cancer
Therapies of the the NDDO Research Foundation (Booth, Calvert, Giaccone,
Lobbezoo, Eisenhauer, and Seymour 2008). A short account on how multino-
mial unbiased estimation can be used in such setting concludes the paper and
the explicit expression of the estimators is derived for a specific design. Further
relevant results related to the main topic can be found in Bhat and Kulkarni
(1966) regarding efficient multinomial sampling plans, in Sinha and Sinha (1992)
for a review of the binomial case and in Sinha, Das, and Mukhoti (2008) for
generalizations to the quasi-binomial context.

2. UNBIASED MULTINOMIAL SEQUENTIAL ESTIMATION

We consider a repeated experiment having k possible outcomes occurring with
probabilities p1 · · · pk. Denote by Xn = (x1

n, · · · , xkn) the process whose compo-
nents xin ∈ N count how many occurrences of events of type i we had at the
n-th (independent) repetition. The process Xn lives in the hyper-plane where
the sum of the coordinates is n. Denoting by Sn ⊂ Rk the portion of such plane
where all the coordinates are positive or null (cf. Figure 1) and SN

n the set of
points in Sn with natural coordinates, for any n we have Xn ∈ SN

n .
Let Xn be observed until it reaches the boundary B of an accessible region

R ⊂ Nk (we mean those points which are not in R but that might be reached
in one step starting from R).

For every point y ∈ B with coordinates (y1, · · · , yk) let us denote by k(y)
the number of paths in R that start at the origin and end in y and by k∗i (y) the
number of those that end in y but start in the point whose i− th coordinate is
1 and the others are 0. The probability that the first hitting to the boundary
occurs in y is

P(y) = k(y) py1

1 · · · p
yk

k . (1)

The region R is defined to be closed if
∑

y∈B P(y) = 1.

Theorem 2.1 ((Koike 1993)). For any closed region R, the ratios

p̂i(y) =
k∗i (y)

k(y)
(2)
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Figure 1: The triangle S4 is illustrated in grey and accessible and inaccessible
points of two different regions are plotted with different markers. The convex
hull of the accessible points of order 4 is colored in a lighter gray. In the right
plot it contains an inaccessible point, thus the corresponding accessible region
is not simple

are unbiased estimators for the probabilities pi.

A necessary and sufficient condition on the region R for the estimator (2) to
be the unique bounded unbiased estimator for the binomial (k=2) probability is
given in Savage (1947). We are going to generalize the sufficient condition to the
multinomial context. For any n the region R ∈ Nk and its boundary B project
onto SN

n defining the accessible points of order n, Rn = R∩SN
n , the inaccessible

points SN
n −Rn and (among them) the boundary points Bn = B ∩SN

n . R is said
to be a simple region if for any n the convex hull H(Rn) of Rn does not contain
inaccessible points. In Figure 1 the definition of a simple region is illustrated.

Theorem 2.2. If the region R ⊂ Nk is simple and closed, the estimators (2)
are the unique bounded unbiased estimators of the parameters pi.

We adapt the method in Savage (1947), but we need the following Lemma
(obvious when k = 2) that will be proved after the main theorem.

Lemma 2.3. Let R be a simple region, and n an order such that in SN
n there are

both accessible and boundary points. Among any collection of boundary points
Cn ⊂ Bn it is always possible to choose a ȳ ∈ Cn and a (k − 2)-hyperplane πȳ
lying in the (k − 1)-hyperplane that contains Sn such that

1. ȳ ∈ πȳ

2. πȳ is identified by two linear equations{
L(x) = m1x1 + · · ·+mkxk = b

x1 + · · ·+ xn = n
(3)
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where mi ∈ N, one vanishing and at least one non-vanishing, and b ∈ N.

3. on Rn we have L(x) ≥ b+ 1

4. at any other boundary point y ∈ Cn, we have L(y) ≥ b+ 1

Proof of Theorem 2.2. If the theorem were false we would have another unbi-
ased estimator Û of pi and the difference ∆ = p̂i− Û would be a non-identically
vanishing unbiased estimate of zero. Since the first boundary point y hit by the
process is a sufficient statistics (Ferguson 1967, Section 7.3, Lemma 1), we re-
strict to those estimators that are function of it and E(∆) =

∑
y∈B ∆(y)P(y) =

0. Let m be the smallest integer such that ∆ is not vanishing at one element
of Bm. If Rm = ∅ for such m then the region R is finite and the thesis follows
from Theorem 4 in Kremers (1990). If instead SN

m contains accessible points we
apply Lemma 2.3 to the collection Cm of boundary points y ∈ Bm such that
∆(y) 6= 0 and find a point ȳ and a linear combination L(x) = m2x2 + · · ·+mkxk
(for notational convenience we stipulate that the vanishing coefficient is the first
one) with mi ∈ N such that L(ȳ) = b and that for any z ∈ Cm ∪ Rm we have
L(z) ≥ b+ 1. A fortiori L(y) ≥ b+ 1 at any y in any Bn with n > m since any
such a y may only be reached evolving from an x ∈ Rm. For some positive ∆∗

we have

|∆(ȳ)| k(ȳ) pȳ1

1 · · · p
ȳk

k =

∣∣∣∣∣∣∣∣
∑

y:
{
L(y)≥b+1
∆(y)6=0

∆(y)P(y)

∣∣∣∣∣∣∣∣ ≤ ∆∗
∑

y:
{
L(y)≥b+1
∆(y)6=0

P(y). (4)

We are going to show that there are values of the parameters at which such
inequality cannot hold. By construction any path from the origin to an y ∈ B
such that ∆(y) 6= 0 and L(y) ≥ b + 1 either ends in Cm or crosses Rm. In
Rm ∪Cm we have a finite number F of points z1 · · · zF and there L(zi) ≥ b+ 1.
For any y ∈ B such that ∆(y) 6= 0 and L(y) ≥ b+ 1 we have

P(y) = P(y |Rm ∪ Cm)P(Rm ∪ Cm) = P(y |Rm ∪ Cm)

F∑
s=1

k(zs)p
zs
1

1 · · · p
zs
k

k (5)

Let us now choose the parameters p2 · · · pk in such a way that for some
common factor 0 < p < 1 we have pi = pmi for any i = 2 · · · k. We get

P(y) ≤ P(y |Rm ∪ Cm) pb+1
F∑

s=1

k(zs)

and inequality (4) becomes

pb |∆(ȳ)| k(ȳ) pȳ1

1 ≤ ∆∗pb+1
F∑

s=1

k(zs) ·
∑

y:
{
L(y)≥b+1
∆(y)6=0

P(y|Rm ∪ Cm) ≤ ∆∗pb+1
F∑

s=1

k(zs)

that is always violated when p is small enough.
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Proof of Lemma 2.3. Existence of an y′ and of a πy′ satisfying conditions 1.
and 3. with rational coefficients in (3) is ensured by the Separating Hyperplane
theorem (Ferguson 1967, Sec. 2.7), and the density of Q in R. To get natural
coefficients in (3) it is then sufficient to multiply the first equation by a suitable
integer and to add to it the second equation a sufficient number of times. Let us
denote by L′(x) = b′ the new equation of πy′ meeting the first three conditions.
Condition 4. may still not be fulfilled by πy′ . Let us denote by c ≤ b′ the
minimum value taken by L′ on Cn and let us consider the plane πc with first
equation L′(x) = c. If it intersects Cn in one and only one point we have found
both the point and the plane satisfying condition 4. If Cn ∩ πc contains more
than one point, let us select one with the following algorithm. Start with the
last coordinate xn and select the points in Cn ∩ πc where xk is largest. Among
them choose those at which xk−1 is largest and continue until the choice of the
largest j-th coordinate singles out one and only one point ȳ of Cn ∩ πc. Now
consider the plane πȳ,r with first equation

Lr(x) = L′(x)− 1

r
x1−

1

r2
x2−· · ·

1

rk
xk = c− 1

r
ȳ1−

1

r2
ȳ2−· · ·−

1

rk
ȳk = br. (6)

Of course πȳ,r still passes through ȳ, and equation (6), once multiplied by
rk, has integer coefficients. Moreover, since Rn is finite and since L(x)− b > 0
for any x ∈ Rn, we can take r large enough to ensure both that Lr(x)− br > 0
for every x ∈ Rn and that the coefficients are natural. The same argument
applies to the points in Cn − πc. Moreover for any y ∈ Cn ∩ πc we have

Lr(y)− br =
1

r
(ȳ1 − y1) +

1

r2
(ȳ2 − y2) + · · ·+ 1

rk
(ȳk − yk)

which is certainly positive due to the algorithm we used to select ȳ.

3. EXAMPLES

In the following examples we derive the unbiased estimators for some multidi-
mensional or multinomial RWs observed up to the crossing of a boundary.

3.1. RWs on a bidimensional lattice

Let Wi be a RW on Z2 such that W0 = 0 and Wi = Wi−1 + Ii where the
increments Ii take the values (0,1), (1,0),(0,-1) and (-1,0) with probabilities

p1, p2, p3 and 1 −
∑3

i=1 pi. Let Wi be observed up to the first time its second
component equals b > 0. The process Xn = (x1

n, · · · , x4
n) whose components

xin count how many occurrences of increments of type i we had at the n-th
step of the RW is of the kind described in Section 2. and it is observed until
it hits B = {x ∈ N4 : x1 − x3 = b}. The accessible region is closed whenever
p1 ≥ p3 > 0 and simple. The maximum likelihood (ML) estimators of the pi
are Xi

N/N , while the unique unbiased estimators (2) are

p̂1 =
b− 1

b
· X1

N

N − 1
, p̂2 =

X2
N

N − 1
, p̂3 =

b+ 1

b
· X3

N

N − 1
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ML estimators Unbiased estimators
mean sd m.s.e. mean std m.s.e.

p1 = 0.4 0.436 0.081 0.0078 0.400 0.080 0.0063
p2 = 0.15 0.148 0.045 0.0020 0.150 0.046 0.0020
p3 = 0.3 0.268 0.078 0.007 0.200 0.087 0.008
p1 = 0.7 0.727 0.123 0.016 0.701 0.130 0.017
p2 = 0.1 0.095 0.072 0.005 0.101 0.077 0.006
p3 = 0.1 0.084 0.085 0.007 0.098 0.098 0.010

Table 1: Results of inference on a simulated sample of RWs on a bidimensional
lattice stopped as soon as their second component reaches the threshold value
b = 10.

The trajectory count is based on the reflection principle (Feller 1971).
The results of a simulation study performed on 10.000 paths are shown in

Table 1. The performances of the two methods are not much different and the
best choice depends on the parameter range. When p1 is close to p3 some of the
unbiased estimators have a smaller mean square error than the corresponding
ML, while when p1 is higher ML estimates are better. Let us remark that the
estimates of parameters p2 and p4, in the direction on which the RW is not
constrained, are estimated much better than the other two.

3.2. A simple RW allowing for null steps

Let Wi be a RW on Z such that W0 = 0 and Wi = Wi−1 + Ii where the
increments Ii are 1, 0 or -1 with probabilities p1, p2 and 1 −

∑2
i=1 pi. Still we

count the increments by Xn = (x1
n, · · · , x3

n). Wi is observed up to the first time
it equals b > 0 and Xi until X1 − X3 = b. The accessible region is simple
and whenever p1 ≥ p3 > 0 also closed. ML estimators are again the sample
proportions, and the unbiased ones are

p̂1 =
b− 1

b
· X1

N

N − 1
p̂2 =

X2
N

N − 1
.

4. SEQUENTIAL MULTINOMIAL ESTIMATION AND CLINI-
CAL TRIALS

In a classical binomial multistage phase II clinical trial (Jennison and Turnbull
2000, Chapter 12) a group of patients is treated with a new drug and classified
into responders vs. non-responders. If the number of responders is high enough,
the drug is considered as potentially active and phase III studies are started. If
instead the number of responders is too low, the trial is stopped and the drug is
no longer considered. In the intermediate case when the number of respondent
patients lies between the thresholds, a further group of patients is enrolled to
accumulate more data and a new stopping rule is applied to the second stage.
When the trial is terminated a further analysis of the data is often carried on:
point (or interval) estimation of the response probability is of interest, for ex-
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ample, for an initial comparison with that of other treatments and in order to
optimize the design of phase III studies (Jennison and Turnbull 2000, Chapters
8 and 12). In Jung and Kim (t2004) the estimation of the response probability
after a multistage binomial phase II clinical trial is directly addressed. Maxi-
mum likelihood estimators are shown to be biased and an unbiased estimator
is derived which is nothing but the explicit expression of (2) once the design
is specified. The efficiency of the two methods are compared showing that for
some values of the parameter maximum likelihood outperform unbiased estima-
tion, in other ranges the opposite is true. This is in perfect agreement with our
results of Section 3..

Recently multinomial phase II clinical trials attracted a lot of attention for
their application in cancer research (Zee et al. 1999, Kocherginsky et al. 2009,
Freidlin et al. 2002, Dent et al. 2001, Goffin et al. 2011) and their use has
been recommended by the Task Force on Methodology for the Development of
Innovative Cancer Therapies of the the NDDO Research Foundation (Booth
et al. 2008). In this setting, indeed, a finer classification of the responses is
needed since even when the cancer is not reduced but its dimension is kept
stationary it might indicate that the drug is active (it has a cytostatic effect).
After a first group of patients are treated with the new therapy, they are clas-
sified as responders if tumor shrinkage is more than 50%, non-responders if it
is less and early progressions if they undergo a progress in the disease. The
design proposed in Zee et al. (1999) is the following. Let K be the maximum
number of stages allowed and ns for s = 1 · · ·K the number of patients enrolled
in each stage. We denote by Ns =

∑
i≤s ni the number of patients involved up

to the s-th stage. The process Xj = (rj , j − rj − ej , ej) counts the number of
respondent, non-respondent and early progressions among the first j patients.
For any j 6= Ns the trial is continued, but when j = Ns for some s < K there
are three options:

1. the trial is stopped and the therapy considered promising if rNs ≥ ρPs and
eNs ≤ εPs and such stopping region is denoted by BP

Ns

2. the trial is stopped and the therapy considered ineffective if rNs
≤ ρIs and

eNs
≥ εIs and such stopping region is denoted by BI

Ns

3. the trial is continued to stage s+ 1 in any other case and the continuation
region is denoted by RNs

.

The stopping regions involved in such multinomial design are illustrated in Fig-
ure 2.

Estimation of the probability of response and early progressions after such
trials is again of interest, but it has not been addressed yet. It is our aim to
make available a couple of unbiased estimator that render formula (2) explicit
for such a design. Let us fix the following notation: the trial ends at a random
stage S ≤ K with a final observation XNS

= (r,NS − r − e, e). Estimators (2)
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Figure 2: At every step Ns when the s-th stage is ended the trial is stopped
for futility at the region BI

Ns
while it is stopped for activity in BP

Ns
. The light

grey region is the convex hull of the continuation region, that in general is not
a simple region.

are

p̂1(r,NS − r − e, e) =

∑
RN1

∑
RN2
· · ·
∑

RNS−1

(
n1−1

rN1
−1,y1,eN1

)(
n2

rN2
,y2,eN2

)
· · ·
(

nS

rNS
,yS ,eNS

)∑
RN1

∑
RN2
· · ·
∑

RNS−1

(
n1

rN1
,y1,eN1

)(
n2

rN2
,y2,eN2

)
· · ·
(

nS

rNS
,yS ,eNS

)
p̂3(r,NS − r − e, e) =

∑
RN1

∑
RN2
· · ·
∑

RNS−1

(
n1−1

rN1
,y1,eN1−1

)(
n2

rN2
,y2,eN2

)
· · ·
(

nS

rNS
,yS ,eNS

)∑
RN1

∑
RN2
· · ·
∑

RNS−1

(
n1

rN1
,y1,eN1

)(
n2

rN2
,y2,eN2

)
· · ·
(

nS

rNS
,yS ,eNS

)
where

(
n

r,y,e

)
denotes the multinomial coefficient n!

r!y!e! and the sums are per-

formed over the triples (rNi , yi, eNi) belonging to the continuation regions RNi

with i < S. Let us remark that the continuation region is in general not a simple
one (cf. Figure 2) and estimators (2) might not be the unique bounded unbiased
estimators for the multinomial probabilities, nevertheless they are unbiased.

5. CONCLUSIONS

The main mathematical result of the paper is to prove that simplicity of the
accessible region R is a sufficient condition to ensure the uniqueness of the
unbiased estimators (2). Of course the availability (and the uniqueness) of
unbiased estimators does not mean that they are the best way to estimate the
parameters and the simulation study performed on RWs in Sec. 3. shows that
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there are both parameter ranges where the unbiased estimators are superior
than ML and vice-versa. The bias of the ML estimators, moreover, can be
reduced as in Whitehead (1986) or by bootstrapping and the best method to
be used needs to be decided case by case. Multinomial clinical trials provide an
important application of the method presented.
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