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The Minimum Density Power Divergence

Approach in Building Robust Regression

Models

A. Durio⇤and E. D. Isaia †

February 22, 2011

Abstract

It is well known that in situations involving the study of large
datasets where influential observations or outliers maybe present, re-
gression models based on the Maximum Likelihood criterion are likely
to be unstable. In this paper we investigate the use of the Minimum
Density Power Divergence criterion as a practical tool for parametric
regression models building. More precisely, we suggest a procedure
relying on an index of similarity between estimated regression mod-
els and on a Monte Carlo Significance test of hypothesis that allows
to check the existence of outliers in the data and therefore to choose
the best tuning constant for the Minimum Density Power Divergence
estimators. Theory is outlined, numerical examples featuring several
experimental scenarios are provided and main results of a simulation
study aiming to verify the goodness of the procedure are supplied.

Keywords: Minimum density power divergence estimators, Monte
Carlo significance test, Outliers detection, Robust regression, Similar-
ity between functions.

1 Introduction

In applied statistics regression is certainly one of the widespread tool in
establishing the relationship between a set of predictors and a response vari-
able. However, in many circumstances a careful data preparation is not
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feasible and data may hence be heavily contaminated by a substantial num-
ber of outliers. In these situations, the estimates of the parameters of the
regression model according to the Maximum Likelihood criterion are fairly
unstable. Since outliers can play havoc with standard statistical methods
(Daniel et al. (1968), Rousseeuw and Leroy (1987), Davies (1993)), many
robust estimators have been proposed since 1960 to be less sensitive to out-
liers. The development of robust methods is underlined by the appearance
of a wide number of papers and books on the topic including the more recent
Huber (1981), Hampel et al. (1987), Staudte and Sheather (1990), Dodge
and Jurečkova (2000), Seber and Lee (2003), Rousseeuw et al. (2004) and
Maronna et al. (2006). In parametric estimation, the estimators with good
robustness proprieties relative to maximum likelihood are those based on a
minimum divergence methods. The minimum divergence estimators are M-
estimators and their proprieties are strictly linked on the distance used as
measure the divergence.

In the following we investigate the use of the Minimum Density Power
Divergence criterion as a valuable tool for useful parametric regression models
building. Our work can be seen as an attempt to explore the pratical utility
of robust estimators based on this minimun distance method that are in
literature proposed from a theoretical point of view by Basu et al. (1998).
One of the main critical issue in the use of a robust family estimators is
the tuning parameters selection. The MDPD estimators family is indexed
by a single parameter which controls the trade-o↵ between robustness and
asymptotic e�ciency of the estimator. In the work of Warwick and Jones
(2005) the best value for the parameter of the Basu family estimators is
selected minimizing an asymptotic estimation of the mean squared error. In
the paper of Fujisawa and Eguchi (2006) is proposed an adaptive methods for
selecting the tuning parameter based on an emphirical approximations of the
Cramer-von Mises divergence. We propose a data-driven way to choose the
tuning parameter based on a Monte Carlo Significance test on the similarity
between a robust and a classical estimators. More precisely, we introduce
and discuss an intuitive procedure which relies on an index of similarity
between estimated regression models and on a Monte Carlo Significance test
of statistical hypothesis. The procedure we suggest allows (a) to verify the
presence of outliers in the data and, if they are present, (b) to select the best
tuning constant for the Minimum Density Power Divergence estimators. We
propose a data-driven way to choose the tuning parameter relevant issue are
solved in a data-driven way

Theory is outlined and numerical examples featuring several scenarios are
provided and for each of them main results of a simulation study, aiming to
verify the goodness of the whole procedure, are supplied and commented.
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2 The methods and the proposed procedure

In this section we first introduce, for a parametric regression problem, the
Minimum Density Power Divergence Estimators (MDPDE), originally pro-
posed by Basu, Harris, Hjort, and Jones (1998). The procedure to choose the
tuning parameter is illustrated in the secon subsection in which we also de-
scribe the similarity index between two estimators and the simplified Monte
Carlo Significance Test.

2.1 The regression model and the estimators

Let {(xi1, . . . , xip, yi)}i=1,...,n be the observed dataset, where each observa-
tion stems from a random sample drawn from the p + 1 random variable
(X1, . . . , Xp, Y ). The regression model for the observed data set we study
is yi = m�(xi) + "i, with i = 1, . . . , n, and the object of our interest is the
regression mean

m�(xi) = E[Y |xi] = �0 +
pX

j=1

�jxij,

where the errors {"i}i=1,...,n are assumed to be independent random variables
with zero mean and unknown finite variances. If we furthermore assume
that the errors are i.i.d. N (0, �0), then the estimate of the vector of the
parameters according to the Maximum Likelihood (ML) criterion is

�̂ML = argmax
�

"
1

(2 ⇡ �2
0)

n/2
exp

 Pn
i=1 (yi �m�(xi))

2

2 �2
0

!#
(2.1)

and in this case the solutions of equation (2.1) are equivalent to the ones
given by the ordinary least-squares method; as an alternative we consider
the family (MDPDE).

Given the r.v. X of dimension d � 1 with density '(x|✓0), where ✓0 2
S ✓ Rp and p � 1, for which we introduce the model f(x|✓), with ✓ 2 S,
the density power divergence between f and ' is defined, for ↵ > 0, as

d↵(f,') =

Z

Rd

⇢
f 1+↵(x|✓)�

✓
1 +

1

↵

◆
'(x|✓0)f

↵(x|✓) + 1

↵
'1+↵(x|✓0)

�
dx,

while for ↵ = 0 it is defined as the Kullback-Leibler divergence.
Let X1, . . . ,Xn be a random sample of size n � 2 from X, the Minimum

Density Power Divergence Estimator for ✓0 corresponds to the vector ✓̂↵

minimizing the divergence d↵(f,') between the probability mass function
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'̂n associated with the empirical distribution of the sample and f , that is for
↵ > 0

✓̂↵ = argmin
✓2S

"Z

Rd

f 1+↵(x|✓)dx�
✓
1 +

1

↵

◆
1

n

nX

i=1

f↵(Xi|✓)
#
. (2.2)

In general, it can be shown that as the tuning parameter ↵ increases the
robustness of the Minimum Density Power Divergence estimator increases
while its e�ciency decreases (Basu et al. (1998)). For ↵ = 0 the MDPDE
becomes the Maximum Likelihood estimator, while for ↵ = 1 the divergence
d1(f,') yields the L2 metric and the estimator minimizes the L2 distance
between the densities (e.g Scott, 2001, Durio and Isaia, 2003).

The Minimum Density Power Divergence criterion can easily be applied
to parametric regression problems. In fact if we assume that the random
variables Y |x are distributed as aN (m�(x), �0) random variable with density
function �, then, according to equation (2.2), the estimate of the vector
✓↵ = [�0, . . . , �p, �0], is given by

✓̂↵ = argmin
�,�

"
1

�↵
p

(2⇡)↵(1 + ↵)
� ↵ + 1

↵

1

n

nX

i=1

�↵(yi|m�(xi), �)

#
, (2.3)

as the integral of equation (2.2) becomes
Z

R
�1+↵(y|m�(x), �) dy =

1p
1 + ↵

�↵(0|m�(x), �).

The vector ✓̂↵ obtained by equation (2.3) contains the estimates of the
p + 1 parameters of the model and the estimate of the standard deviation

of the errors, i.e. ✓̂↵ =
h
�̂MD,↵, �̂MD,↵

i
. In the following we unambiguously

indicate with �̂MD,↵ the estimate of the vector � in accord with the Minimum
Density Power Divergence criterion and therefore we denote by m̂MD,↵(x) the
corresponding estimated regression model.

We remark that equation (2.3) is a feasible computationally closed-form
expression so that MDPD criteria can be performed by any standard non
linear optimization code, for instance the nlm routine of the R library, al-
though, whatever the algorithm, its convergence to optimal solutions strongly
depends on its initial configurations.

2.2 The choice of the best ↵ tuning parameter

As stated above, our purpose is to check the presence of outliers in the data
set and, if they are present, to choose in the family of the Minimum Density
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Power Divergence estimators the best one, that is to select the tuning ↵
parameter such that we obtain concurrently the most robust and the most
e�cient estimator.

Since we already pointed out that the robustness of the Minimum Den-
sity Power Divergence estimator increases as ↵ increases, when outliers are
present the vectors of the estimates �̂ML, and �̂MD,↵, for some 0 < ↵  1,
will be not equal and hence the estimated regression models tend to be dis-
similar.

In order to compare the performance of MDPDE with respect to MLE
or, more generally, the performance between any two estimators in the fam-
ily of the Minimum Density Power Divergence Estimators, we resort to the
normalized index of similarity between regression models originally proposed
by Durio and Isaia (2010).

Letting T0 and T1 be two regression estimators and �̂T0
, �̂T1

the corre-
sponding vectors of the estimated parameters, the similarity index takes into
account the space region between m̂T0(x) and m̂T1(x) with respect to the
space region where data points locate. If we introduce the sets

Ip = [min(xi1);max(xi1)]⇥ . . .⇥ [min(xip);max(xip)]

I = [min(yi);max(yi)]

the similarity index is defined as

sim(T0, T1)
def
=

R
Dp+1 dtR
Cp+1 dt

Cp+1 = Ip ⇥ I

Dp+1 =
�
(x, y) 2 Rp+1 : ⇣(x)  y  ⇠(x),x 2 Ip

 
\Cp+1,

(2.4)

where ⇣(x) = min (m̂T0(x), m̂T1(x)), ⇠(x) = max (m̂T0(x), m̂T1(x)) and clearly
0  sim(T0, T1)  1.

If the vectors �̂T0
and �̂T1

are close to each other, then sim(T0, T1) will be
close to zero On the other hand, if the estimated models m̂T0(x) and m̂T1(x)
are dissimilar we are likely to observe a value of sim(T0, T1) tending to unit.

We therefore suggest to use the sim(T0, T1) statistic given by equation
(2.4) to verify the following system of hypothesis

(
H0 : � = �0

H1 : � 6= �0

(2.5)

where �0 is the value of �̂T0
computed on the observed data.
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Since it is not realistic to look for a closed-form of the sim(T0, T1) dis-
tribution, in order to check the above system of hypothesis we resort to the
simplified Monte Carlo Significance Test (Barnard, 1963, Hope, 1968).

Denoting with simT0T1 the value of the sim(T0, T1) statistic computed
on the observed data, the simplified Monte Carlo Significance test (MCS
test) consists in rejecting the null hypothesis of system (2.5) if simT0T1 is
the m↵-th most extreme statistic relative to the corresponding quantities
sim⇤

T0T1
computed on each of the random samples of the reference set. The

reference set consists in m � 1 random samples of size n each generated
under the null hypothesis, that is drawn at random from the regression model
m̂T0(x) with � = �̂T0 . We remark that if we set the type-I error probability
equal to 0.001(0.002, 0.01, 0.05) then the size of the reference set will be
999(499, 99, 19).

In order to meet our target, we introduce a procedure consisting in three
steps. For a given dataset, we start verifying the presence of outliers checking,
with the aid of the MCS test, the similarity between MLE and the less
e�cient but more robust MDPDE with ↵ = 1.

If outliers are present, i.e. if the MCS test leads us to reject the null
hypothesis of system (2.5), we look for the best MDPD estimator checking
the similarity between MDPDE with ↵ = 1 and MDPDE with ↵ < 1,
increasing ↵ until the MCS test allows us to accept for the first time the null
hypothesis of system (2.5).

The whole 3 Steps procedure can be summarized as follows

Step 1: considering the Maximum Likelihood estimator and the Minimum
Density Power Divergence estimator with ↵ = 1, i.e. we set T0 = ML and
T1 = MD↵=1, we check for outliers testing sim(ML,MD↵=1).

Step 2: if the MCS test of Step 1 leads us to accept H0, then we can state
that outliers are absent and the best model is the one corresponding, for its
inherent properties, to the Maximum Likelihood criterion.

Step 3: if from Step 1 we reject H0, in order to choose the best Minimum
Density Power Divergence estimator we check the similarity between the re-
gression models estimated by MD↵=1 and MD↵<1. We perform the MCS
test increasing ↵ until for the first time it allows us to accept the null hy-
pothesis. The corresponding value of the tuning parameter ↵ = ↵? gives the
best Minimum Density Power Divergence estimator for the given dataset.
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3 Numerical examples and simulation

In this section we provide and comment some numerical examples featuring
several experimental situations in order to show how the 3 Steps procedure
we propose works in practice.

Furthermore, with the aim to verify the goodness of the whole proce-
dure, we introduce and comment a simulation study that we apply to each
experimental scenario.

3.1 Numerical examples

The first example considers a situation where no outliers are present, while
the next two scenarios involve a substantial number of outliers (20%) a↵ect-
ing the data. A last numerical example investigates the behaviour of the
procedure and consequentially the performance the Minimum Density Power
Divergence estimators when the number of outliers increases (from 2.4% up
to 20%).

Example I: as a first example, we consider a simulated dataset of n = 600
points generated according to the model

Y = 0.5X1 + 0.5X2 + " (3.1)

where X1, X2 ⇠ U(0, 1) and " ⇠ N (0, 0.1).
Since in this situation no outliers are present, we expect that the regression
models estimated according to the Maximum Likelihood and to the Minimum
Density Power Divergence criteria can be considered similar and this for any
0 < ↵  1. This example is provided to show that the procedure do not falls
in select a less e�cient MPDP estimators when its robust proprieties are
not necessary.
We start considering the ML estimator and the MDPD estimator with
↵ = 1 (i.e. we set T0 = ML and T1 = MD↵=1) and we obtain the fol-
lowing estimates �̂ML = [�0.0053, 0.5095, 0.5073] with �̂ML = 0.0927 and
�̂MD,↵=1 = [�0.0086, 0.5106, 0.5152] with �̂MD,↵=1 = 0.0974, while according
to equation (2.4) the similarity index is simML,MD↵=1 = 0.00176. If we apply
the MCS test (level of significance 99.8%), it leads us to accept H0, as we
obtain max(sim⇤

ML,MD↵=1
) = 0.00651 > simML,MD↵=1 = 0.00176.

Clearly for this scenario, where outliers are absent and the two estimated
models m̂ML(x) and m̂MD,↵=1(x) can be considered similar, we state that
the best model is the one given, for its inherent properties, by the Maximum
Likelihood criterion, i.e. m̂ML(x) = �0.0053 + 0.5095 x1 + 0.5073 x2.
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Table 1: main results of the MCS test of Step 3 applied to
sim(MD↵=1,MD↵<1) for the simulated dataset of Example I where outliers
are absent.

↵ �̂0 �̂1 �̂2 �̂ simMD↵=1,MD↵<1 H0

0.10 �0.0061 0.5094 0.5093 0.0930 0.00139 Acc.
0.30 �0.0071 0.5094 0.5118 0.0941 0.00076 Acc.
0.60 �0.0079 0.5097 0.5138 0.0960 0.00027 Acc.
0.90 �0.0084 0.5103 0.5149 0.0973 0.00041 Acc.

Even if it is not necessary, but just for spirit of inquiry, we perform Step 3
of our procedure. This means setting T0 = MD↵=1 and T1 = MD↵<1 and
repeatedly applying the MCS test. The results of Table 1 show that the pairs
of MDPD estimators can be considered similar for any value of ↵ < 1 and
this confirms the goodness of the strategy we suggest even in simple case
where outliers are absent.

Example II: we consider now a variant of the situation of Example I. This new
scenario involves a simulated dataset of n1 = 480 points generated according
to the model

Y = 0.5X1 + 0.5X2 + " (3.2)

and n2 = 120 points, that we consider as outliers, drawn from the model

Y = 0.7X1 + 0.7X2 + " (3.3)

where X1, X2 ⇠ U(0, 1) and " ⇠ N (0, 0.1).
In this case too we start estimating the parameters of the regression model
resorting to MLE and MDPDE with ↵ = 1 and we obtain the following
vectors of the estimates �̂ML = [0.0074, 0.5817, 0.5714] with �̂ML = 0.1876
and �̂MD,↵=1 = [0.0126, 0.4922, 0.5035] with �̂MD,↵=1 = 0.1130. If we com-
pute the similarity index between the two estimated regression models we
have simML,MD↵=1 = 0.04226 and the MCS test (level of significance 99.8%)
leads us to reject the null hypothesis as max(sim⇤

ML,MD↵=1
) = 0.00868.

The two estimated regression models can thus be considered dissimilar. This
result is quite obvious since we are in presence of a substantial cluster of
outliers (20%) and the estimator based upon the L2 norm tends to estimate
the heaviest cluster of data (Durio and Isaia, 2004).
In order to look for the the best estimator in the family of the Minimum
Density Power Divergence estimators, we move to Step 3 of our procedure,
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Table 2: main results of the MCS test of Step 3 applied to
sim(MD↵=1,MD↵<1) for the simulated dataset of example II where outliers
are present.

↵ �̂0 �̂1 �̂2 �̂ simMD↵=1,MD↵<1 H0

0.10 0.0185 0.5521 0.5491 0.1810 0.03413 Rej.
0.15 0.0185 0.5521 0.5491 0.1810 0.03215 Rej.
0.20 0.0227 0.5407 0.5409 0.1770 0.03093 Rej.
0.25 0.0269 0.5287 0.5323 0.1718 0.02711 Rej.
. . . . . . . . . . . . . . . . . . . . .
0.65 0.0205 0.4880 0.5028 0.1180 0.00321 Rej.
0.70 0.0186 0.4889 0.5030 0.1162 0.00233 Rej.
0 .75 0 .0170 0 .4897 0 .5032 0 .1150 0 .00146 Acc.
0.80 0.0157 0.4904 0.5033 0.1142 0.00087 Acc.
0.85 0.0146 0.4910 0.5034 0.1136 0.00058 Acc.
0.90 0.0138 0.4915 0.5035 0.1133 0.00022 Acc.

i.e. we set T0 = MD↵=1 and T1 = MD↵<1 and we repeatedly apply the
MCS test. The results displayed in Table 2 show that the best value of the
tuning parameter corresponds to ↵? = 0.75, while for any ↵ > 0.75 we always
accept H0. It follows that the optimal estimate of the regression model is
m̂MD,↵=0.75(x) = 0.0170 + 0.4897 x1 + 0.5032 x2 with �̂MD,↵=0.75 = 0.1150.

Example III: as a third example we examine a situation where the response
is explained by four predictors. To this end we consider a simulated dataset
of n1 = 480 points generated according to the model

Y =
4X

i=1

0.25Xi + " (3.4)

and n2 = 120 points, that we consider as outliers, drawn from the model

Y =
4X

i=1

0.35Xi + " (3.5)

where Xi ⇠ U(0, 1) and " ⇠ N (0, 0.1).
Considering Step 1 of our procedure we set T0 = ML and T1 = MD↵=1 and
from equations (2.1) and (2.3) we obtain the following vectors of the estimate

�̂ML = [�0.0299, 0.2977, 0.2837, 0.2871, 0.2725]

�̂MD,↵=1 = [0.0097, 0.3060, 0.2616, 0.2070, 0.2483]
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with �̂ML = 0.1351 and �̂MD,↵=1 = 0.1179.
If we calculate the similarity index between the two estimated models we
have simML,MD↵=1 = 0.01997 and the MCS test (significance level 99.8%)
leads us to reject the null hypothesis, as max(sim⇤

ML,MD↵=1
) = 0.01059.

Since the two estimated regression models m̂ML and m̂MD,↵=1 can be judged
dissimilar, we move to Step 3 of the procedure and, setting T0 = MD↵=1 and
T1 = MD↵<1, we repeatedly apply the MCS test. Doing so, we find that the
best value of the tuning parameter is ↵? = 0.65, while for any ↵ > 0.65 we
always accept H0. It follows that the best estimate of the regression model
is m̂MD,↵=0.65(x) = 0.0057 + 0.2982 x1 + 0.2662 x2 + 0.2233 x3 + 0.2499 x4

with �̂MD,↵=0.65 = 0.1209.

Example IV: in this last example we examine the behaviour of the Minimum
Density Power Divergence estimators as the number of outliers increases. To
this end, we consider a sample of n1 + n2 = 200 points generated according
to the one predictor model

Y = Xni + " (3.6)

where Xn1=180 ⇠ U(0, 0.5), Xn2=20 ⇠ U(0.5, 1) and " ⇠ N (0, 0.1),
We furthermore we generatem = 5(10, 20, 30, 40, 50) points, that we consider
as outliers, from the model

Y = 0.5X + " (3.7)

where X ⇠ U(0.7, 1) and " ⇠ N (0, 0.05).
According to this specific layout, Step 1 leads us invariably to reject the null
hypothesis of similarity between he estimated models m̂ML and m̂MD,↵=1,
that is the MCS test always detects the presence of outliers infecting the
data and this for any value of m.
Moving to Step 3, which implies setting T0 = MD↵=1 and T1 = MD↵<1 and
repeatedly applying the MCS test, we obtain for m = 5, 10, 20, 30, 40, 50 the
following best values ↵? = 0.065, 0.200, 0.370, 0.425, 0.515, 0.655 (see first row
of Table 3 and left panel of Figure 2).
These results indicate that the ↵? values increase as the number of outliers
grows up. This behaviour is not surprising and it is fully justified if we think
that increasing the number of the outliers the optimal tuning parameter tends
to unit, which is to say that it tends to the estimator based on the L2 norm
and this for the intrinsic properties of the estimators based on the Minimum
Density Power Divergence criterion.

10
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Figure 1: panel(a) histograms of the best values of the tuning constant ob-
tained from simulation for Example II and panel(b) histograms of the best
values of the tuning constant for Example III.

3.2 The simulation

We turn now our attention to investigate the goodness of the 3 Steps proce-
dure, that is to verify if the ↵? values we obtained on the datasets of Examples
I through IV remain somewhat constant if we resample form each generating
model. To this end we decide to set up a simulation study where

1. we generate h = 1000 samples from the given generating models

2. on each sample we perform Step 1, 2 and 3 of our procedure. With
regard to Step 3, we let the tuning constant varying from ↵ = 0.01 up
to ↵ = 0.90 with increments of 0.005.

3. for each sample we record the best value ↵?s of the tuning constant.

Example I: for this simple scenario, where the 600 points are generated from
model (3.1) and hence no outliers infect the samples, the results of the sim-
ulation corroborate the solution we obtained on our original sample. This
in the sense that we always accept the hypothesis of similarity between the
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Table 3: ↵? values for the sample data of Example IV and summary statistics
of the distributions of the ↵?s obtained from simulation.

number of outliers
m = 5 m = 10 m = 20 m = 30 m = 40 m = 50

↵?
0.075 0.200 0.370 0.425 0.515 0.655

Min 0.055 0.125 0.300 0.385 0.475 0.600
Mean 0.078 0.194 0.366 0.430 0.512 0.653
St.Dev. 0.011 0.035 0.029 0.019 0.023 0.024
5% Qu. 0.060 0.150 0.325 0.412 0.475 0.612
25% Qu. 0.070 0.175 0.350 0.412 0.500 0.644
50% Qu. 0.075 0.200 0.375 0.425 0.512 0.653
75% Qu. 0.085 0.225 0.400 0.450 0.525 0.675
95% Qu. 0.095 0.250 0.400 0.465 0.550 0.688
Max 0.105 0.275 0.425 0.465 0.563 0.700

regression models estimated by ML and by MDPD↵=1 and also between
MDPD↵=1 and any MDPD↵<1.

Example II: in this situation we generate data points from models (3.2) and
(3.3) and we always reject the null hypothesis on Step 1, i.e without fail we
recognize the presence of outliers.
With regard to Step 3, the results of the simulation are quite encouraging
and this in the sense that all the 1000 ↵?s values range from 0.520 up to 0.875
with a mean of 0.719 (recall that for our original sample we found ↵? = 0.75),
a median equal to 0.70 and a standard deviation of 0.072. Furthermore, see
Figure 1 panel(a), we can state that 90% of the ↵?s fall in the range [0.60; 0.85]
while the 50% of them belong to the interval [0.70; 0.75].

Example III: in this context we generate data points according to models
(3.4) and (3.5) and we systematically reject the null hypothesis on Step 1,
that is we always detect the presence of outliers.
Moving to Step 3, the outcomes of the simulation are promising and this
in the sense that all the ↵?s obtained from simulation range from 0.510 up
to 0.890 with a mean of 0.686 (remember that for our original sample we
had ↵? = 0.65), a median equal to 0.70 and a standard deviation of 0.063.
Furthermore, see Figure 1 panel (a), we can assert that 90% of the ↵?s values
fall in the range [0.575; 0.825] while the 50% of them belong to the interval
[0.650; 0.725].
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Figure 2: panel (a) displays data points of Example IV (m = 10) and the
estimated regression models m̂ML, m̂MD,↵=1 and m̂MD,↵?=0.20. The panel (b)
shows the boxplots of the distributions of the ↵?s obtained from simulation
for the six di↵erent values of m.

Example IV: in this situation, fixed the number m of the outliers, and we
generate data points from models (3.6) and (3.7) and thus we consider six
sub-scenarios.
Applying Step 1 of our procedure to each sub-scenario, we always reject the
hypothesis of similarity between m̂ML and m̂MD,↵=1. This means that the
estimator based on the L2 norm detects the presence of outiliers even when
m = 5, although this behaviour is essentially due to the specific expression
of the generating model (3.6).
Table 3 shows, for each sub-scenario, some summaries of the distribution of
the ↵?s values obtained from simulation along with the ↵? values computed
on the original datasets (first row).
In this case too the results of the simulation are quite promising and this
in the sense that all the ↵? values computed on the original samples are
very close to the mean values of the distributions of the ↵?s obtained from
simulation. Furthermore all the observed ↵? values lay in the intervals
[25% Qu.; 75% Qu.] of the distribution of the ↵?s and in some cases they
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coincide with the median.
We remark (see Figure 2, panel(b)) that the six 90% intervals for ↵?s, that
is [5% Qu.; 95% Qu.], are not overlapping as m increases and, since all the
notches of the plots do not overlap, we may a�rm that there is a strong
evidence that the m medians di↵er among them (Chambers et al., 1983).

4 Conclusions and future works

Given that “..all models are wrong, but some are useful” (Box, 1979), exploit-
ing the inherent properties of the estimates based on the Maximum Likeli-
hood and the Minimum Density Power Divergence criteria, we introduce and
outline a procedure which can be helpful in parametric regression models
building especially in those situations involving the study of large datasets
where a substantial number of outliers or clustered data maybe present and
data cleaning is impractical and statistical e�ciency is a secondary concern.

The procedure we suggest allows simultaneously to detect the presence
of outliers in the data and, if they are present, to select the best tuning
constant for the Minimum Density Power Divergence estimators, for which
computationally closed-form expressions are available so that solutions can
be obtained applying any standard non linear optimization code. We also
pointed out that, despite feasible computationally closed-forms expressions
are available for the estimators, particular care must be taken in choosing the
initial guesses of the minimizing routine, we suggest a random generations of
initial guesses.

The core of the procedure relies on the concept of similarity between
estimated regression models, for which a normalized index is introduced and
a Monte Carlo significance test of statistical hypothesis is provided. From
a computational point of view, the similarity index given by equation can
easily be evaluated resorting to the algorithm suggested by Durio and Isaia
(2010), advantageous in terms of parsimony of computing time, notably in
high dimensional problems.

The procedure we advise seems to behave very well in all the experimental
situations we explored and the results of a simulation, applied to several
scenarios, validate this impression. We compute our simulations on various
scenarious, in other to match some tipical situations that frequently arise
in scientific areas (e.g. engineering, chemical, pharmaceutical) and a future
work would be its applications on real datasets.

A more deeply study on the procedure performance would be a compari-
son about the results in terms of best tuning parameter given by our algorthm
with respect to those obtained by other metods.
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Futher features on the topic would be test our procedure for classical
robust estimators such as regression quantile, regression rank scores or the
densiti-based minimum divergence estimators proposed by Basu et al. (2001)
that are based on those introduced by Windam (1995) .
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