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Single and pair neutron transfers at sub-barrier energies
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Multinucleon transfer cross sections in the 96Zr+40Ca system have been measured, in inverse kinematics, at
bombarding energies ranging from the Coulomb barrier to ∼25% below. Targetlike recoils have been identified
in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental data for one-
and two-neutron transfer channels have been compared with semiclassical microscopic calculations. For the
two-neutron transfer channels the relevance of the transitions to the ground state and to the 0+ excited states
of 42Ca are discussed by employing, for the reaction mechanism, the successive approximation. It is found that
the transition to the 0+ state at ∼6 MeV, whose wave function is dominated by the two neutrons in the 2p3/2

shell, is much larger than the ground state one. The comparison with the inclusive data reveals that transitions to
states with high multipolarity and non-natural parity are important. This suggests that more complex two-particle
correlations have to be incorporated in the treatment of the transfer process.
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I. INTRODUCTION

Nucleon transfer reactions at energies close to the Coulomb
barrier always played an important role for nuclear structure
and reaction dynamics. Two-particle transfer reactions are
used for the study of particle-particle correlation in nuclei.
For very light ions the outcome of these reactions has
been crucial for the formulation of the concept of pairing
vibrations and rotations that allowed to correlate the 0+ excited
states in neighboring even-even nuclei [1]. With heavy ions
multiple transfer of nucleons becomes available in the reaction,
providing the possibility of studying the relative role of
single-particle and pair-transfer modes. Of particular interest
is still whether it is possible to reach a situation where multiple
transfer of pairs is dominating the exchange of mass and charge
between the interacting nuclei (Josephson effect [2]).

In spite of extensive experimental and theoretical efforts
we are still missing a detailed understanding of multiple
transfer processes, for instance, it is not clear whether and
how one can probe pair transfer degrees of freedom. This, in
part, is because most of the existing studies involve inclusive
cross sections that have been obtained at above the Coulomb
barrier, where interpretation of the data is made difficult by
the presence of several competing processes that depopulate
the channels of interest. The problematics connected with the
pair correlations is of current interest in ongoing research with
radioactive beams, where, for example, the pairing interaction
is expected to be significantly modified in nuclei with extended
neutron distributions [3]. The recent works on 11Li-induced
reactions [4] provided evidence of phonon-mediated pairing
interaction [5].

In this paper we are dealing with rearrangement collisions
A(a,b)B at energies below the Coulomb barrier. Our attention
is focused on reactions that involve the transfer of neutrons
only. Even though the cross sections are much smaller than
the ones encountered at higher energies, certain advantages
appear when dealing with energies for which the a + A

nuclei cannot overcome their mutual Coulomb barrier. In this
situation the two nuclei are kept apart, making negligible the
formation of compound nuclei and ensuring that the transfer
process is a direct one. At the same time the distortion of the
Coulomb elastic waves by the nuclear attraction is very small
and may easily be accounted for [6]. The main advantage,
however, is that in the calculations of the transfer probabilities
one needs only the overlap of the tails of the intrinsic
wave functions that are involved in the transfer process, and
these asymptotic behaviors are well known at least for single-
particle transfer.

The angular distributions of sub-Coulomb transfer reactions
are featureless with a behavior that is independent on the
transferred angular momentum �; these angular distributions
grow monotonically, reaching the maximum at θc.m. = 180◦.
For each scattering angle θ the radial dependence of the
contribution for the transfer peaks at the distance of closest
approach corresponding to the Coulomb trajectory leading to
that scattering angle. This localization is particularly marked
for heavy ions because of the very short wavelength. It is
this localization that makes plausible the use of semiclassical
approximations [7–9], where the relative motion is considered
classical and the transfer process is treated quantum mechani-
cally. It is only at very low bombarding energy and for not too
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heavy systems that the quantal penetrability may be important
so as to invalidate the semiclassical approximation.

Following the above considerations, in order to have an
overall description of the experimental data on multinucleon
transfer reactions it is convenient to extract the transfer
probability Ptr , defined as the ratio of the transfer cross section
to the corresponding Rutherford cross section,

Ptr = dσtr

dσRuth
, (1)

and to plot this transfer probability as a function of the distance
of closest approach D for a Coulomb trajectory, which is
related to the center-of-mass scattering angle θc.m. via the
expression

D = ZaZAe2

2Ec.m.

(
1 + 1

sin(θc.m./2)

)
. (2)

The extraction of the transfer probability Ptr is very attractive
since the angular distributions obtained at different bombard-
ing energies will be all superimposed, provided the Q-value
window does not change very much with the bombarding
energy (see below). We notice also that the transfer probability
at large distances D may be obtained by measuring an
excitation function at fixed backward center of mass angle
or by measuring angular distributions at forward angles.

The conditions that are met at energies below the barrier are
also very convenient from theoretical point of view. In fact, at
these energies one has been able to obtain a nice description of
the data also for the two-particle transfer channel by including
contributions coming from the successive mechanism [10–12],
while the one-nucleon transfer is conveniently described by
summing the contributions, calculated in the simple first-order
Born approximation, of all the open channels.

In literature many data on transfer reactions have been
represented via the transfer probability Ptr , but they are quite
contradictory (here we just recall the extensive discussion on
the slope anomalies [13,14]) since they have been derived
mostly from angular distributions taken at energies above
the Coulomb barrier. In this situation the values of Ptr at
large distances D are coming from forward scattering angles
where processes other than the direct one may contribute to
the cross section, as it is clearly seen from the Q-value spectra
[15]. The coming into operation of large acceptance magnetic
spectrometers made it possible to perform measurements on
multinucleon transfer reactions with good ion identification,
also at very low energies. With this experimental advance we
are now in a position to extend to more cases the formalism
outlined in Refs. [10,11] and thus to provide an answer on
the origin of the large enhancement factors reported for these
reactions (cf. Refs. [16–18]).

In this work we present the results of a sub-barrier transfer
measurement performed for the 40Ca+96Zr system in inverse
kinematics with the PRISMA spectrometer [19,20]. Projectile
and target are closed-shell nuclei (or nearly so) for both
neutrons and protons, thus providing suitable conditions for
a proper study of the mechanism that governs the exchange
of nucleons in a transfer process [21]. After a description
of the employed experimental techniques we present the
experimental results for neutron transfer channels. Data

are then compared with calculations performed within the
semiclassical framework.

II. THE EXPERIMENT

In direct kinematics the transfer probability at large dis-
tances corresponds to fragments that are scattered at forward
angles. In this angular range the overwhelming yield of elasti-
cally scattered particles often prevents a good identification for
isotopes close to the projectile. At energies below the barrier
measurements of heavy-ion-transfer reaction products present
other significant technical difficulties. Backscattered ions have
low kinetic energies which severely limit their identification,
making available data extremely scarce. To partly overcome
these problems, two methods have been so far employed,
one that identifies the (heavy) target recoils at zero degrees
with recoil mass spectrometers [22,23], and a second where
one makes use of inverse kinematics to detect the lighter
targetlike particles with a magnetic spectrometer at forward
angles [24,25]. Here the energy of the recoiled light fragment
is quite large; thus one can obtain a good resolution in mass
and nuclear charge.

In the data so far obtained at sub-Coulomb energies, the
small solid angle of conventional spectrometers limited the
statistical accuracy. Here we made use of the large solid angle
spectrometer PRISMA. By employing inverse kinematics and
by detecting ions at very forward angles, we have, at the same
time, enough kinetic energy of the outgoing recoils (for energy
and therefore mass resolution) and forward-focused angular
distribution (high efficiency).

We measured an excitation function with a 96Zr beam
delivered from the XTU-Tandem + ALPI superconducting
booster of LNL with average currents of ∼1 pnA onto a
50 μg/cm2 40Ca target. The target was made of a CaF2

material, strip (2 mm width), supported on a 15 μg/cm2 C
backing. The target isotopic enrichment was ∼99.98%. 42Ca
impurities were at the level of 10−5 compared to 40Ca. The
bombarding energy of ALPI has been varied in steps of
15 MeV from 330 to 275 MeV. The lowest energy Elab =
255 MeV was measured with the Tandem only, to have a
precise reference (energy accuracy is better than 0.1%). For
each ALPI energy, measurements were performed at two
additional energies by placing in front of the Ca targets one
and two C foils, with a thickness of 85 μg/cm2 each, in such
a way to degrade the 96Zr beam by about 6 and 12 MeV,
respectively. This procedure has been adopted to decrease
the beam time loss due to the tuning of the ALPI cavities
at each change of energy. So a complete excitation function
has been measured from the Coulomb barrier to �25% below,
measuring the transfer yields down to ∼15.5 fm of distance of
closest approach.

Absolute normalization of cross sections and normaliza-
tions between different runs was ensured by two silicon surface
barrier monitor detectors placed at θlab = 55◦ and θlab = 60◦
with respect to beam direction and at a distance of ∼40 cm from
the target. The monitors detected the Rutherford-scattered
Ca-like (as well as 19F and 12C) recoils. The energy of the
96Zr beam delivered by the ALPI booster was defined with a

034603-2



SINGLE AND PAIR NEUTRON TRANSFERS AT SUB- . . . PHYSICAL REVIEW C 84, 034603 (2011)

FIG. 1. Velocity (β = v/c) vs in-plane scattering angle (θlab) for
the reaction 96Zr+40Ca at Elab = 330 MeV. The magnetic fields of the
spectrometer were set to bring the Ca ions with maximum yield near
the center of the focal plane area. The events at large β correspond
to Ca-like recoils, and those at lower β to Zr-like ions scattered from
Ca, as well as from other elements (see text for details).

precision ∼2%. The centroids of the peaks of the Rutherford-
scattered targetlike Ca, F, and C ions in the two monitor
detectors have been taken into account via a minimization
procedure with the constraint to pass through the points at
Elab = 255 MeV measured with the Tandem only, defining the
final energies better than 1%.

Ca-like recoils have been detected by PRISMA at θlab =
20◦, corresponding to θc.m. � 140◦. In Fig. 1 we show an
example of two-dimensional plot velocity (reconstructed via
time-of-flight) vs in-plane scattering angle. One sees the events
corresponding to Ca-like recoils as well as those corresponding
to Zr-like ions entering into PRISMA. The ridges of these
Zr-like ions are due to scattering on Ca (main ridge presenting
a bending around the kinematic limiting angle θlab = 24.6◦), on
lighter elements (with smaller limiting angles), and on other
heavier elements. The almost horizontal ridge, with high yield
and with a β ∼ 0.08, is due to Zr scattering in direct kinematics.
Full identification in mass (A), nuclear charge (Z), and Q
value of transfer reaction products has been achieved. The
nuclear charge Z has been obtained through the measurement
of energy loss �E and total energy E in the ionization
chamber located at the focal plane. In Fig. 2 we present an
example of a �E-E matrix integrated over the whole angular
acceptance of the spectrometer, where the Z selectivity in the
Ca region is shown. In the same figure one also sees the tail
of the Zr-like events. Mass identification has been based on an
event-by-event reconstruction of the ion trajectory inside the

FIG. 2. �E − E matrix obtained at the indicated bombarding
energy and with the spectrometer at θlab = 20◦. The most intense spot
corresponds to Z = 20 (Ca isotopes), the lower ones to Z = 19 and
Z = 18, respectively. The tail of events corresponding to Zr-like ions
entering into the spectrometer are also visible.

magnetic elements, using two-dimensional entrance and exit
positions and time of flight [20]. Since the yields for proton
transfer drop off very rapidly at these sub-barrier energies, in
this work we discuss only pure neutron transfer channels where
sufficient statistics have been accumulated. Mass spectra at
representative energies are shown in Fig. 3, where a clear
separation of different isotopes is visible. At energies close to
the Coulomb barrier we observe the population of more than
four neutron pick-up channels, while at sub-barrier energies
only one or at most two neutron transfers survive. A significant
transfer yield could be detected at the level of 10−4 with respect
to the elastic channel.

The total kinetic energy loss (TKEL) distributions are
shown in Fig. 4 for the quasielastic (elastic + inelastic) and the
+1n and +2n transfer channels at three different bombarding
energies. They are constructed from the measurement of the
vector velocity of the selected ions on the assumption of binary
kinematics. The width of the quasielastic channel is ∼3 MeV,
i.e., compatible with the overall resolution of PRISMA and
beam-energy indetermination. The ground-state Q values,
indicated with vertical dotted lines, are at +0.51 MeV for
the +1n channel and at +5.53 MeV for the +2n channel. The
spectra for the +1n channel have a maximum that slightly
moves toward higher energy losses with the increase of the
bombarding energy, in accordance with the energy dependence
of the optimum Q value, that for neutrons is very close to
zero. The width is constant below the barrier and grows
above it, reflecting the opening of other reaction channels.
The spectra of the +2n display a similar behavior but, in
this case, the reaction mechanism leaves unpopulated the
ground-state transition where most of the pairing strength
should be concentrated.

A. Transfer probabilities

The differential cross sections are obtained by taking into
account the geometry of monitor and PRISMA detectors and
assuming an energy and mass independent ion transmission
through the spectrometer. This assumption is well justified
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FIG. 3. Mass distributions for pure neutron transfer channels
obtained in the reaction 96Zr+40Ca at the indicated bombarding
energies of 96Zr. Ca-like recoils have been detected with the
spectrometer at θlab = 20◦. The obtained resolution is �A/A∼ 1/150,
which allows clear separation of the different isotopes.

in the present experiment, as we are dealing with pure
neutron transfer channels which, at sub-Coulomb energies,
have narrow Q-value distributions weakly dependent on the
isotope and well within the acceptance of the spectrometer.
Exploiting the fact that the angular distributions at all measured
energies have the same shape, in order to maximize the
statistical accuracy we integrated over the full angular range
of the spectrometer and ascribed the corresponding cross
section and transfer probability Ptr to the central angle that
is then used to derive the distance of closest approach [see
Eq. (2)]. To get the absolute normalization, we used the
fact that the elastically scattered 40Ca ions in PRISMA at
energies well below the barrier correspond to pure Rutherford
events.

The extracted transfer probabilities for the +1n, +2n, and
+3n transfer channels are shown in Fig. 5 as a function of
the distance of closest approach D. In the same figure are also
shown the results for the +4n channel, where data could be
extracted only at the highest energies.

The transfer probabilities are very well described by an
exponential function with a decay length that gets smaller as
the number of transferred neutrons increases. This behavior of
the transfer probabilities suggests a simple phenomenological
interpretation of the data. The full line represents a fit to
the transfer probability for the +1n channel. By using a
simple transfer model based on the exchange of independent
particles that predicts for the two-particle channel a probability
proportional to the square of the single-particle probability,
one can obtain a nice description for the +2n and +3n

channels with the equations P2n = 3(P1n)2 and P3n = 3(P1n)3.
These are shown with dashed lines in the same figure. The
factor 3 appearing in the previous expressions represents an
enhancement factor whose origin is addressed in the following
section.

III. RESULTS AND DISCUSSION

In this section we shortly outline the formalism we use
for the analysis of one- and two-nucleon transfer data. The
transfer channels, although many, are quite weak so as to
allow a perturbative approach. In first order the semiclassical
amplitude for a transition from the entrance channel |ψα〉 to
the final channel |ψβ〉 is given by

cβ(�) = 1

ih̄

∫ +∞

−∞
〈ψβ |(Vα − Uα)|ψα〉Rei(Eβ−Eα )t/h̄dt, (3)

where the time integral has to be performed along the classical
trajectory of partial wave �. Vα represents the interaction
among all the nucleons in the entrance channel mass partition
and Uα its expectation value in their ground-state configu-
rations, usually identified with the real part of the ion-ion
optical potential. With R we indicated the distance between
the center-of-mass of the two nuclei, which in the semiclassical
approximation is defined as the average between the distances
in the entrance and exit channel. The channel wave function
of energy Eβ ,

|ψβ(t)〉 = ψb(ξb, t)ψB(ξB, t)e− i
h̄
δβ (t), (4)

is defined as the product of the two intrinsic wave functions
times a phase factor δβ(t) that takes into account that the two
ions are moving along a classical trajectory developing in a
nuclear plus Coulomb field. The ξb and ξB represent the spin
and space coordinates of the nucleons in projectilelike and
targetlike systems, respectively.

Considering the stripping of a single nucleon a(b + 1) +
A → b + B(A + 1), for even-even nuclei (Ia = IA = 0), the
first-order amplitude for the transition of a nucleon from
the single-particle state a′

1 ≡ (n′
1, l

′
1, j

′
1) in the projectile to

the single-particle state a1 ≡ (n1, l1, j1) in the target may be
written in the form

cβ(�) = −i
∑
λμ

(−1)λ+μ

√
2λ + 1

〈j ′
1m

′
1λ − μ|j1m1〉I (a1,a

′
1)

λμ (�), (5)

where λ is the transferred angular momentum, μ its third

component, and I
(a1,a

′
1)

λμ is the orbital integral of the radial form
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FIG. 4. Experimental TKEL distributions for the elastic(+inelastic) and +1n and +2n transfer channels obtained in the reaction 96Zr+40Ca
at the indicated bombarding energies. The vertical dotted lines represent the ground-state Q values.

factor, which is calculated to be

I
(a1,a

′
1)

λμ (�) =
√

2πatr

r̈oh̄
2 Yλμ(π/2, 0)fλ0(D�)

× e
− atr

2r̈0h̄2 (�E−Qopt−h̄μφ̇(0))2

. (6)

With fλ0 we have indicated the radial form factor of multipo-
larity λ (as a function of the distance of closest approach D�),
with �E the Q value of the transition, with Qopt the optimum
Q value, while r̈0 and φ̇(0) are the radial acceleration and
the angular velocity at the distance of closest approach. The
transfer probability is readily calculated from the amplitude as

Pβ(�) = P(a1,a
′
1)(�) =

∑
m′

1,m1

|cβ(�)|2

= U 2(a1, IA)V 2(a′
1, Ia)

∑
λμ

2j ′
1 + 1

2λ + 1

× ∣∣I (a1,a
′
1)

λμ (�)
∣∣2

, (7)

where we wrote explicitly the occupation probabilities for
the single-particle states a′

1 and a1 in projectile and target,
respectively.

In deriving the expression (6) we exploited the fact that the
radial form factor, in the tail region, may be well approximated
with an exponential tail,

fλ0(R) ∼ e−(R−R0)/atr , (8)

and that the trajectory of relative motion may be approximated
with a parabola osculating the true trajectory at the distance of
closest approach D�. The optimum Q value takes into account
that the amplitude is maximal for transitions that have a good
matching between the entrance and exit channel trajectories.
Its expression may be found in Ref. [9]. The actual width
of the experimental TKEL spectra (see Fig. 4) derives from
the distribution of the form-factor strength weighted by the
adiabatic cut-off function [Eq. (6)].

The parameter atr defines the range of the transfer form
factor. Its value is related to the binding energy of the
transferred nucleon in the target system if one adopts the
so-called prior representation, while is related to the binding
energy in the projectile if one adopts the post representa-
tion. These different representations, which derive from the
nonorthogonality of the channel wave functions, is of minor
importance for reactions involving nuclei in the β-stability
valley but may lead to conflicting arguments when dealing
with exotic beams where the Fermi energies of the projectile
and target are very different. These considerations also have
some relevance here, since we chose to represent the transfer
probabilities as a function of the distance of closest approach
(D�) in order to have a direct visualization of the tail of
the transfer form factor. From Eqs. (5)–(7) we see that the
probability for a given transfer is proportional to the square
of the form factor times a term (adiabatic cut-off function)
that depends on the optimum Q value of the reaction. This
result clearly shows that it is convenient to extract from the
data the transfer probability Ptr (D) and to plot it as a function
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FIG. 5. (Color online) Transfer probabilities as a function of the
distance of closest approach for neutron transfer channels. Points are
the experimental data: +1n (full circles), +2n (empty circles), +3n

(full triangles), and +4n (empty triangles). For the +1n channel we
indicated in black the data obtained from the nominal bombarding
energy. The energies, in the center of the target, are 329.2, 315.9,
298.4, 287.7, 276.1, and 262.6 MeV, corresponding to the distances
of closest approach 12.28, 12.80, 13.55, 14.05, 14.64, and 15.40 fm.
With red and cyan colors we indicated the data obtained with one and
two degraders, respectively. Quoted errors are statistical only, errors
on D, reflecting energy indetermination, are �1%. The full line is
a fit according to the expression P1n = exp(13.95 − 1.25D). In the
fit we excluded the points at the highest measured energies where
absorption starts to be a significant fraction of the elastic channel.
The dashed lines correspond to the shown equations.

of the distance of closest approach. However, one has to keep
in mind that the transfer probability extracted from inclusive
cross section will have a tail representing the binding energies
of the transferred nucleon only if the width of the Q-value
spectra do not depend strongly on the bombarding energy.

Our treatment of the two-particle transfer process follows
very closely the one of Ref. [12], so here we simply remind

some initial considerations referring to the above references
for details. To calculate the amplitude for the transfer of
two nucleons one has to solve the well-known system of
semiclassical coupled equations up to the second-order Born
approximation. This may be written in the form

cβ (�) = (cβ)(1) + (cβ)ort + (cβ)succ, (9)

where the first term (cβ)(1) describes the simultaneous transfer
of the pair of nucleons, the second term arises from the
nonorthogonality of the channel vectors ψγ , and the last term
describes the successive process via an intermediate channel γ :

(cβ)succ

=
(

1

ih̄

)2 ∑
γ

∫ +∞

−∞
dt < ψβ |(Vγ − Uγ )|ψγ >R

× ei(Eβ−Eγ )t/h̄∫ t

−∞
dt ′ < ψγ |(Vα − Uα)|ψα >R ei(Eγ −Eα )t/h̄, (10)

where for the initial (α), intermediate (γ ), and final (β)
channels we have made the following identification (we
consider a stripping reaction):

a(b + 2) + A → c(b + 1) + C → b + B.

It is very easy to demonstrate that in an independent particle
description the first and second term cancel exactly (one
can in fact resort to the completeness relation). Although in
actual cases this does not fully hold, since the single-particle
energies of the intermediate states cannot be kept the same
in the two-step process, it was shown in many works [10–12]
that the cancellation almost persists, so we here consider that

(cβ)(1) = (cβ)ort (11)

and we use only the successive term. By using the two-particle
parentage expansion of the projectile (a) and of the
target-like (B) wave functions one can express the successive
amplitude in terms of the one-particle transfer form factor
introduced above for the calculation of one-nucleon transfer
reactions. Working in the m representation one can write
(cf. Ref. [12]):

(cβ)succ = 1

h̄2

∑
a1,a

′
1

B(A)(a1a1; 0)B(a)(a′
1a

′
1; 0)2

(−1)j1+j ′
1

√
(2j1 + 1)

√
(2j ′

1 + 1)

∑
m1m

′
1

(−1)m1+m′
1

×
∫ +∞

−∞
dtfm1m

′
1
(R)ei[(Eβ−Eγ )t+δβγ (t)+h̄(m′

1−m1)�(t)]/h̄

×
∫ t

−∞
dtf−m1−m′

1
(R)ei[(Eγ −Eα )t+δγα (t)−h̄(m′

1−m1)�(t)]/h̄. (12)

The two-dimensional time integral is easily calculated in terms of the one-dimensional time integral encountered in the calculation
of the one-neutron transfer amplitude by using the step function θ (t − t ′) to complete the second time integral up to +∞:

θ (t − t ′)= 1

2
[1 + ε(t − t ′)] = 1

2

[
1 + i

π
P

∫ +∞

−∞

dq

q
eiq(t−t)

]
. (13)
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FIG. 6. (Color online) Neutron single-particle levels in 96Zr and
40Ca.

For more details see, for example, Ref. [12].
The B coefficients appearing in the above expression are the

spectroscopic factors for two particles. For superfluid systems
described in the BCS approximation they may be expressed as
a function of the occupation probabilities U and V as

B(A)(a1a1; 0) = (−1)l1
√

j1 + 1/2 U (a1; 0)V (a1; 0), (14)

while for pairing vibrational systems, described in the Tamm-
Dancoff approximation, they are given by

B(A)(a1a1; 0) = X(A)(a1). (15)

In applying the above formalism in the calculation of inclusive
cross sections, we cannot just add-up the probabilities of all
possible transitions—the number of transitions may be very
large and the sum may exceed one, even if the single transitions
are quite small. The inclusive transfer probability Pinc has to
be calculated as

Pinc =
∑

β

Pβα

∏
γ �=β

(1 − Pγα) � e− ∑
γ Pγα

∑
β

Pβα,

where the sum has to be extended over all open channels. The
first term of the right-hand side of the last equation

Po = e− ∑
γ Pγα (16)

provides the probability to remain in the elastic channel. It
is from this equation that the imaginary part of the optical
potential has been calculated [26,27].

FIG. 7. Theoretical transfer probabilities for one- and two-
particle transfer (lines) in comparison with the experimental data
(points). The full line represents the inclusive transfer probability
for one-neutron transfer, the dotted line the ground-ground state
transition for the two-neutron transfer, and the dashed line the
transition to the first 0+ excited state at 5.76 MeV in 42Ca (see
text).

A. One-neutron transfer

To compute the inclusive one-neutron stripping cross
section (remember that we are working in inverse kinematic
so that 96Zr is the projectile) we use Eq. (7) to calculate
the transfer probability for a given single-particle transition
and we obtain the total transfer probability by summing
over all possible transitions that can be constructed from
the single-particle states in the projectile and target shown
in Fig. 6. The set of single-particle states covers a full shell
below the Fermi level for the 96Zr and a full shell above for
the 40Ca. The spectroscopic factors have been all set to one. In
fact, when dealing with inclusive cross sections we can neglect
the fragmentation of the single-particle strength over several
states and suppose that the full strength is concentrated on a
single transition. The calculated total transfer probability is
shown in Fig. 7 with a full line.

To calculate the single-particle transfer form factors we
have generated the wave functions of the single-particle states
by using a shell model potential of standard Woods-Saxon
form with a = 0.65 fm and r0 = 1.25 fm. Its depth has
been adjusted so as to reproduce the experimental binding
energy. The same shell model is then used as the interaction
responsible for the transfer. For the ion-ion potential entering
in the calculation of the form factor we use the empirical
potential of Ref. [9]. The data are quite well described both
in magnitude and slope, and this is not unexpected since the
one-neutron transfer form factors are constructed by using the
experimental single-particle energies.

B. Two-neutron transfer

The formalism discussed above for the transfer of two
neutrons may only be applied to the transfer of a J = 0+
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TABLE I. Wave functions for the 0+ ground state of 94Zr and for the 0+ ground state of 42Ca with its first 0+ excited state at 5.76 MeV (see
text for more details).

94Zr 42Ca

ai B.E. (MeV) B(ai ,ai ;0+) ai B.E. (MeV) B(ai ,ai ;0+) B(ai ,ai ;0
+
2 )

2d3/2 −16.730 −0.0579
1f5/2 −16.420 −0.0734
2p1/2 −15.300 −0.0485
1g9/2 −12.610 0.1663
2d5/2 −7.854 0.8360
3s1/2 −5.579 0.1693 1f7/2 −8.620 0.93 0.29
2d3/2 −4.476 0.1617 2p3/2 −6.760 0.22 −0.93
1g7/2 −4.315 0.2181 2p1/2 −4.760 0.19 −0.16
1h11/2 −3.314 0.2075 1f5/2 −3.380 0.21 −0.14

pair. The ground-state wave function for the 94Zr is obtained
from a BCS calculation by adopting the single-particle states of
Fig. 6 and a state-independent pairing interaction G = 0.218
that gives a pairing gap � = 0.746 MeV with a Fermi energy
of 7.6523 MeV. The calculated B(aiai ; 0) coefficients are
reported in Table I.

For the description of 42Ca we diagonalize the Hamiltonian
H = H0 + Vres, where H0 is the single-particle Hamiltonian
whose eigenvalues are the single-particle states shown in Fig. 6
(only the states above the Fermi energy of 40Ca are considered),
and Vres is a surface-delta two-body interaction simplified to
have constant radial matrix elements. The explicit expression
for the matrix element can be found in Ref. [28] (cf. page 32).
The model space contains only a two-particle configuration
coupled to 0+. The strength of the interaction is tuned so
that the lowest eigenstate of the Hamiltonian reproduces the
separation energy between 42Ca and 40Ca (–19.843 MeV). The
resulting 0+ states are at energies of 5.76, 9.10, and 11.96 MeV.
The B(aiai ; 0) coefficients for the ground state and the 0+

2
state at 5.76 MeV are shown in Table I. Since the model space
for the description of 42Ca is very small, the model does not
reproduce all the experimental 0+ states. The ones at 1.84 and
3.30 MeV are recognized to derive from core excitations and
are outside our model space. We point out that the core-excited
states should be very weakly populated in a transfer reaction,
since they have to rely on higher order processes like inelastic
excitation followed by transfer or vice versa.

In Fig. 7 with a dotted line we show the calculated
probability for the ground-ground state transition. Clearly, this
transition does not contribute to the total transfer strength, in
agreement with what was pointed out in the discussion of the
Q-value spectra. In the same figure, with a dashed line, we
show the predicted transfer probability for the transition to the
0+ state at 5.76 MeV in 42Ca.

It is apparent that the contribution of this transition is much
larger than the ground-state contribution. Besides its good
match with the optimum Q value, this is mostly due to the
2p3/2 component that dominates its wave function and that has
a much larger form factor. The centrifugal barrier for an f state
is in fact larger than the one for a p state. The contributions
of the other high-energy 0+ states, at 9.10 and 11.96 MeV,
are negligible and are not shown. Note that 0+ states in the

energy region of ∼6 MeV were strongly populated in (t, p)
reactions [29].

To try to come to an understanding of the still-missing factor
for the description of the total transfer cross section, we recall
that the data are inclusive and that our calculation includes
only the transfer to 0+ states. From a previously performed
measurement of the same reaction at a energy higher than
those of the present work [20], where γ rays were measured in
coincidence with the reaction fragments, it has been possible to
reconstruct, for 42Ca and 94Zr nuclei, the level schemes shown
in Fig. 8 together with the estimated strength (see caption).
From these spectra one sees that in the reaction are populated
states with relatively high angular momentum and states with
non-natural parity (we recall that Ia = 0 and IA = 0). From
an analysis of the strength distribution, the population of these
states turns out to account for ∼75% of the total yield. Thus it
seems plausible to ascribe the enhancement factor of ∼3 to the
fact that the two-nucleon transfer reaction does not populate
only 0+ states but it is much richer, so that more complicated
two-particle correlations have to be taken into account. To
this purpose we stress, in particular, the population of the
non-natural parity states, since their population indicates that
in the 2n-transfer reaction the effect of the recoil is important.
We also stress the role played by the single-particle states
f7/2 and p3/2. While the first dominates the ground-state wave
function of 42Ca, the second dominates the wave function of
the 0+ state at 5.76 MeV, the p3/2 state providing the major
contribution to the transfer process.

IV. SUMMARY

An excitation function for multinucleon transfer channels
has been measured in a broad energy range and far below the
Coulomb barrier. Measurements have been done in inverse
kinematics, detecting the lighter targetlike ions with the large
solid angle magnetic spectrometer PRISMA placed at a for-
ward angle, providing good ion identification. The two-neutron
transfer channel has been analyzed with a semiclassical model
that calculated, in the successive approximation, transitions to
0+ states. It has been shown that the transfer probability for the
transition to the excited 0+ state in 42Ca, whose wave function

034603-8



SINGLE AND PAIR NEUTRON TRANSFERS AT SUB- . . . PHYSICAL REVIEW C 84, 034603 (2011)

00

21525
0

1837

22424

42752

63189

43254

3 3447
23654

4 3954

44443

24760

45017

05866

00

2919

01300

21470

21671

32058

2
2151

42330

52605

(6 )3142

(7 )3442

24

30
38

40

74

25

189

620

14

38

20

27
14

29

10

2

15 174

11

11

26

469

186

10

40

14

22

42
Ca

94
Zr

FIG. 8. Level schemes and observed intensities for the 42Ca and 94Zr nuclei reconstructed from the measured γ transitions in 40Ca+96Zr at
Elab = 152 MeV [20]. The experiment has been performed with the PRISMA and CLARA [30] setup. The γ -ray spectra of binary partners have
been obtained after Doppler correction. The correction for the projectilelike ions is based on the knowledge of their velocity vector measured
with the spectrometer. The correction of the (undetected) targetlike ions is based on the assumption of binary kinematics and the corresponding
calculated velocity. The intensities (reported in the figure as normalized counts, bold numbers) have been obtained taking into account the
branching ratios [31] and the efficiency of the CLARA γ array.

is dominated by the two neutrons in the 2p3/2 shell, is much
larger than the ground-state one, but by considering only 0+
transitions the experimental cross section is underpredicted by
a factor of ∼3. This is ascribed to transitions to states with large
angular momentum and to transitions of non-natural character,
indicating that more complex two-particle correlations have to
be considered in the transfer process.

It is important to pursue further studies at sub-Coulomb en-
ergies in systems with different nuclear structure, in particular
for cases where the ground-state Q values match the optimum
ones. Of course, one should also try to get information on
correlations involving proton transfer channels. These studies
will be of particular relevance in the near future due to the
advent of radioactive beams where these problematics are of
top priority to understand some of the basic properties of very

weakly bound nuclei. In this context it is extremely important
to extend the formalism in such a way to calculate the transfer
of pairs with large angular momentum and where the full recoil
is taken into account.
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