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A cost-effectiveness-assessing model of vaccination for varicella and zoster∗
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Abstract. A decision analytical model is presented and analysed to assess the effectiveness and
cost-effectiveness of routine vaccination against varicella and herpes-zoster, or shingles. These
diseases have as common aetiological agent the varicella-zoster virus (VZV). Zoster can more
likely occur in aged people with declining cell-mediated immunity. The general concern is that
universal varicella vaccination might lead to more cases ofzoster: with more vaccinated children
exposure of the general population to varicella infectivesbecome smaller and thus a larger propor-
tion of older people will have weaker immunity to VZV, leading to more cases of reactivation of
zoster. Our compartment model shows that only two possible equilibria exist, one without varicella
and the other one where varicella and zoster both thrive. Threshold quantities to distinguish these
cases are derived. Cost estimates on a possible herd vaccination program are discussed indicating
a possible tradeoff choice.

Key words: varicella zoster virus, vaccine, cost-effectiveness, epidemics
AMS subject classification:92D25, 92D30

1. Introduction

Varicella (chickenpox) and herpes-zoster (also called shingles) have as common aetiological agent
the varicella-zoster virus (VZV). Before a vaccine was developed in 1994, chickenpox was a com-
mon contagious childhood disease that produces itchy blisters but rarely caused serious problems.
However, if adults who did not have the disease as children contract it, it could cause more serious
complications.

†Corresponding author. E-mail: ezio.venturino@unito.it
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Shingles is caused by a reactivation of the virus that causeschickenpox. Once one has had
chickenpox, the VZV lies dormant in his/her nerves and can re-emerge as shingles. The transmis-
sion of varicella occurs by coughing and sneezing, which arehighly contagious means of spreading
the virus, by direct contact, and by aerosolization of virusfrom skin lesions, whereas shingles can-
not be passed from one person to another by air. However, the virus that causes shingles, the VZV,
can be spread from a person with active shingles to a person who has never had chickenpox. In
such cases, the person exposed to the virus might develop chickenpox, but they would not develop
shingles. The virus is spread through direct contact with fluid from the rash blisters, not through
sneezing, coughing or casual contact. Shingles, which is characterized by a rash of blisters, can be
very painful but is not life-threatening.

Varicella vaccine can prevent this disease. Implementation of the universal varicella vaccina-
tion program was followed by a rapid decline in incidence of the disease. The initially recom-
mended one-dose schedule provided only limited protection. Currently then, two doses of vaccine
are recommended for children, adolescents, and adults. Theinterval between the first and the
second dose may be short, but it should be at least one month, standard, 3 to 7 years apart, or
even longer, depending on varicella epidemiology [4]. Thus, the decision concerning an optimal
vaccination schedule depends greatly on the local epidemiological situation [18]. Unfortunately,
whatever the schedule, the vaccine-induced immunity wanes. Vaccine efficacy appears to decline
with age: from an overall efficacy against herpes-zoster of64% when vaccinating at 60-69 years
to 38% among those over 70 years of age [16], [17]. Wild-type VZV infections in those who have
been previously vaccinated are called ”breakthrough cases”. Individuals who become infected with
VZV after vaccination have a milder case of varicella with fewer lesions, so that they are generally
less infectious than infected individuals who were never vaccinated [19].

The major concern is that universal varicella vaccination might lead to more cases of zoster
[10], [24]. Zoster is more likely to occur in people when their cell-mediated immunity declines
with age. As the fraction of vaccinated children increases,exposure of the general population to
varicella infectives become less frequent. Because fewer people infected in childhood are boosted
as they age, a larger proportion of older people will have weaker immunity to VZV, so that zoster
may reactivate in more people.

In this paper we use a decision analytical model to assess theeffectiveness and cost-effectiveness
of routine vaccination against varicella and zoster. The model is formulated in Section 2 and anal-
ysed in Section 3. The simulations are presented in Section 4. In Section 5 the model is used to
estimate the cost-effectiveness of vaccination against zoster.

2. Model Formulation

We consider a total populationN which is subdivided into susceptibles individuals,S, varicella
infectious individuals,I, vaccinated individulas,V , asymptomatics,A and zoster individuals,Z.

A flow diagram is given in Figure 1; and the associated variables and parameters of the model
are described in Table 1.
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Figure 1: The flow diagram for the model (2.1). Individuals are classified as susceptible (S),
infectious (I), vaccinated (V ), asymptomatics, (A) and zoster (Z).

The model is given by the following dynamical system:

Ṡ = Π − βSI − ρS − µS (2.1)

İ = βSI + β1V I − γI − µI

V̇ = ρS − β1V I − σV − µV

Ȧ = γI + ǫZ − δA − µA

Ż = δA + σV − ǫZ − µZ

The parameters’ meanings are as follows:Π denotes the immigration rate into classS; β is the
transmission coefficient of the varicella infection and represents the number of adequate contacts
leading to new cases per individual per time unit, i.e., the effective contact rate;ρ is the vaccination
rate for a susceptible individual andµ the natural mortality rate;σ represents the progress rate of
zoster (activation) in a vaccinated individual andδ the rate of reactivation of zoster by age in an
asymptomatic individual. Finally, both varicella and zoster infectious individuals recover with rate
constantsγ andǫ respectively. We defineβ1 = kβ, with 0 ≤ k ≤ 1, as the transmission coefficient
of the disease after vaccination. The parameterk illustrates the effect of immunological memory.
Thus it is the factor that reduces the risk of varicella infection. In the casek = 0, the vaccine is
effective and the immunological memory developed against varicella infection does not wane over
time; whereask = 1 implies that the vaccine is totally useless to induce immunological memory.
From now on we make the realistic assumption that vaccination elicit immune response, but fails
to offer long-lasting protection against varicella infection, i.e.0 < k < 1.

In the model described by Brisson et al. [3] individuals who had been immunised against
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varicella were not able to develop zoster. Although zoster from the vaccine-type virus is very
unlikely, it can occur, so that a small fraction of those in the vaccinated class (V ) could get vaccine
type zoster and move into the zoster class (Z). In our model this possibility is allowed for, as
studies suggest that vaccinated individuals can, in fact, develop herpes-zoster [12].

Finally it is important to remark that a zoster individual isan infectious who cannot transmit
the infection to other individuals by air. The transmissionof VZV from people with zoster can
occur, but is much less likely than from people with primary varicella [13], [2], [5]. Therefore we
assume that zoster individuals are infected, but not infectious individuals, i.e., they are not able to
propagate the infection.

Table 1: Description of variables and parameters for model (2.1)

Variables Description
S susceptible individuals
I varicella-infectious individuals
V vaccinated individuals
A asymptomatic individuals
Z zoster individulas

Parameters Description
Π susceptibles recruitment rate
β transmission coefficient of the susceptible individuals
β1 transmission coefficient of the vaccineted individuals
ρ vaccination rate for susceptible individuals
µ natural mortality rate
σ progress rate of zoster - activation

(yearly rate of vaccine-type zoster in vaccinated individuals)
δ reactivation rate of zoster by age in an asymptomatic individuals

(yearly rate of zoster per 100 000 people)
γ recovery rate from varicella infection
ǫ recovery rate from zoster infection

We now describe in detail each equation of (2.1). Susceptibles individuals, first equation, are
recruited at rateΠ, and leave the class either by acquiring the varicella infection following contact
with varicella infectious individuals, or by being vaccinated, or by dying.

Taking into account that the interval between the first- and the second-dose varicella vaccina-
tion may be short [18], and in any case the average intervaccination time of two months is short
compared to the lifetime of an individual, here we could simply assume the one-dose varicella
vaccination schedule. In other words, the one or possibly two doses vaccination will eventually
lead to immunization, and the parameterρ will denote the rate at which the latter is obtained, no
matter how in fact the vaccine is administered.

Further, in the second equation we assume that susceptible individuals become varicella in-
fectious individuals via a successful contact between an infectious with a susceptible at rateβ,
or a vaccinated one, at lower rateβ1, when the vaccine protection wanes. The varicella-infectious
individuals also leave this class by being healed and therefore by migrating into the class of asymp-
tomatics, i.e. those who have been exposed to the virus and will carry it for life, although the latter
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may or may not be reactivated. This class is also subject to natural mortality.
The equation for vaccinated shows that these individuals are recruited at rateρ from the class

of susceptibles, and can migrate into the class of infectious. This can happen in two circumstances.
Firstly, if the vaccine protection wanes, at rateβ1. Secondly, assuming that zoster from the vaccine-
type virus can occur, here we can also assume that the vaccinated individuals move to the zoster
class at rateσ. Finally, vaccinated individuals are also subject to natural mortality.

Next, the asymptomatics dynamics is described in the fourthequation. They are coming either
from the infectious at the disease-recovery rateγ or from the zoster individuals at rateǫ, first two
terms, and can leave after virus reactivation, due to a decrease of the immunitary defense system,
to become zoster at rateδ, or else via natural mortality, these outcomes being modeled by the last
two terms.

Lastly, the zoster individuals enter the class either from the asymptomatic or the vaccinated
classes, at respective ratesδ andσ and leave it by recovery to the class of asymptomatics at rateǫ,
or by dying.

Finally, since the physical situation being modelled concerns human populations, all the de-
pendent variables and parameters of the model are assumed tobe nonnegative.

3. Model analysis

From the second equation (2.1) we find

I · (βS + β1V − (γ + µ)) = 0.

from which two types of equilibria are seen to exist, the chickepox-free one, in whichI = 0 and
the one in which both chickepox and zoster coexist,I 6= 0.

We analyze each one of them separately. For stability purposes, we need also the Jacobian
J ≡ J(S, I, V, A, Z) of (2.1), namely













−ρ − µ − βI −βS 0 0 0
βI βS + β1V − γ − µ β1I 0 0
ρ −β1V −β1I − σ − µ 0 0
0 γ 0 −δ − µ ǫ
0 0 σ δ −ǫ − µ













(3.1)
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3.1. Varicella-free equilibrium

The population levels of this equilibriumE1 = (S1, 0, V1, A1, Z1) are found to be

S1 =
Π

ρ + µ
, (3.2)

V1 =
ρΠ

(ρ + µ)(σ + µ)
,

A1 =
ǫρσΠ

µ(ρ + µ)(σ + µ)(ǫ + δ + µ)
,

Z1 =
Πρσ(δ + µ)

µ(ρ + µ)(σ + µ)(ǫ + δ + µ)
.

This equilibrium is always feasible, since all parameters are nonnegative.
We thus turn to its stability analysis. Substituting the components ofE1 into (3.1) we find that

with I1 = 0 three eigenvalues ofJ(E1) are immediately obtained, namely:−(ρ + µ), −(σ + µ)
and

βS1 + β1V1 − (γ + µ) =
βΠ(σ + µ) + ρΠβ1 − (γ + µ)(ρ + µ)(σ + µ)

(ρ + µ)(σ + µ)
. (3.3)

The remaining ones are the roots of the quadratic equation,

λ2 + (δ + ǫ + 2µ)λ + µ(δ + ǫ + µ) = 0.

which explicitly are found to be−µ, −(δ + ǫ + µ).
Hence, there is only one possibly nonnegative eigenvalue given by (3.3), on which stability

depends. In this way, the equilibrium pointE1 is stable if only if the following condition holds,

βΠ(σ + µ + kρ) − (γ + µ)(ρ + µ)(σ + µ) < 0. (3.4)

Letting

βs =
(γ + µ)(ρ + µ)(σ + µ)

Π(σ + µ + kρ)
, (3.5)

we can rewrite (3.4) as
β

βs

< 1. (3.6)

One way to deal with this situation consists in introducing the concept of reproduction number
in presence of vaccineRvacc, [7], so that the stability of the equilibrium pointE1 holds for

Rvacc =
β

βs

< 1. (3.7)

We can also calculate the basic reproduction number. Setting ρ = 0 into (2.1),E1 simplifies to

S1|ρ=0 =
Π

µ
, I1|ρ=0 = 0, V1|ρ=0 = 0, A1|ρ=0 = 0, Z1|ρ=0 = 0,
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and the simplified eigenvalues are the double one−µ and

βΠ − µ(γ + µ)

µ
, −(σ + µ), −(δ + ǫ + µ).

Letting

βL =
µ(γ + µ)

Π
(3.8)

stability is then regulated by the inequalityβ < βL, or

R0 < 1, (3.9)

having defined the basic reproduction number as

R0 =
β

βL

. (3.10)

Further,Rvacc can now be rewritten in terms ofR0 as follows

Rvacc = R0

µ(kρ + σ + µ)

(ρ + µ)(σ + µ)
(3.11)

from whichR0 > Rvacc follows, since

µ(kρ + σ + µ)

(ρ + µ)(σ + µ)
< 1

is equivalent to
kµρ < ρσ + ρµ

from which dividing byρ we getkµ < σ + µ i.e.

σ + µ · (1 − k) > 0,

which is verified since0 ≤ k ≤ 1.
The stability analysis can also be recast into other forms. In terms ofρ, starting from (3.4) by

rewriting it we find

ρ >
βΠ(σ + µ) − µ(γ + µ)(σ + µ)

(γ + µ)(σ + µ) − kΠβ
. (3.12)

If the right hand side is negative, evidently any positive amount of vaccination will be enough to
stabilize the equilibrium so that varicella is eradicated.The right hand side is positive if one of the
two conditions hold:

µ(γ + µ)

Π
< β <

(γ + µ)(σ + µ)

kΠ
;

µ(γ + µ)

Π
> β >

(γ + µ)(σ + µ)

kΠ
. (3.13)
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If either one of (3.13) holds, then to eradicate the disease one needs a rate of vaccination which
exceeds the following value

ρs =
βΠ(σ + µ) − µ(γ + µ)(σ + µ)

(γ + µ)(σ + µ) − kΠβ
. (3.14)

Further, note that (3.4) can also be recast in the following form

ρ[
(γ + µ)(σ + µ)

µ(γ + µ)
−

kΠβ

µ(γ + µ)
] >

βΠ(σ + µ)

µ(γ + µ)
−

µ(γ + µ)(σ + µ)

µ(γ + µ)
,

from which, recalling (3.10) and (3.8), we have

ρ >
µ(σ + µ)(R0 − 1)

(σ + µ) − kµR0

.

Again if the right had side is negative, any positive vaccination rate ensures the eradication of the
disease, here. On the other hand, the right hand side is positive for one of the alternative conditions

1 < R0 <
σ + µ

kµ
; 1 > R0 >

σ + µ

kµ
. (3.15)

These once again ensure thatρs ≥ 0, where this threshold quantity can also be written as

ρs =
µ(σ + µ)(R0 − 1)

(σ + µ) − kµR0

(3.16)

and the varicella-free equilibrium is attained if the vaccination rate exceedsρs.

3.2. Coexistence Equilibrium

Solving the nonlinear system (2.1), forI 6= 0, we find the following population values for the
coexistence equilibriumE2 = (S2, I2, V2, A2, Z2)

S2 =
Π

βI2 + ρ + µ
, (3.17)

V2 =
ρΠ

(βI2 + ρ + µ)(β1I2 + σ + µ)
,

A2 =
δγI2(ǫ + µ)(βI2 + ρ + µ)(β1I2 + σ + µ) + ǫρσΠ

µ(βI2 + ρ + µ)(β1I2 + σ + µ)(δ + ǫ + µ)
,

Z2 =
δγI2(βI2 + ρ + µ)(β1I2 + σ + µ) + ρσΠ(δ + µ)

µ(βI2 + ρ + µ)(β1I2 + σ + µ)(δ + ǫ + µ)
,

where the value ofI2 is determined by the roots of the following quadratic

aI2 + bI + c = 0, (3.18)

a = kβ2(γ + µ) > 0,

b = (γ + µ)[kβ(ρ + µ) + β(σ + µ)] − kβ2Π,

c = (γ + µ)(ρ + µ)(σ + µ) − Π[kβρ + β(σ + µ))].
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All populations in (3.17) are nonnegative, so feasibility is obtained by discussing the sign of
the roots of (3.18). Descartes’ rule ensures one positive solution for c < 0, independently of the
sign ofb, and two positive ones forb < 0 andc > 0. Now, b > 0 is equivalent to

β <
(γ + µ)(k(ρ + µ) + σ + µ)

kΠ
≡ βb (3.19)

andc > 0 can be rewritten as

β <
(γ + µ)(ρ + µ)(σ + µ)

Π(kρ + σ + µ)
≡ βc. (3.20)

It is easily verified thatβb > βc. Therefore forβ < βc there are only negative roots, while for
β > βc there is one positive root. Nowβc recalls the feasibility condition for the varicella-free
equilibrium (3.5), (3.6). The feasibility condition for the coexistence equilibrium is then

β >
(γ + µ)(ρ + µ)(σ + µ)

Π(kρ + σ + µ)
, (3.21)

recalling again (3.5), so that it can be rewritten asβ > βs, from which finally

1 <
β

βs

≡ Rvacc.

This result is the opposite of the stability condition for the varicella-free equilibrium (3.9). When
the disease-free equilibrium is stable, the coexistence one is not feasible. Vice versa, when there
is coexistence, the disease-free equilibrium must be unstable. Further, forI2 = 0, the coexistence
equilibrium becomes the varicella-free one, compare theirrespective components (3.18) and (3.2).
Thus mathematically we have here a transcritical bifurcation: atRvacc = 1 equilibriumE1 concides
with E2 and whenRvacc grows larger, the former loses its stability in favor of the latter.

Note that the coefficient of the polynomial (3.18) can be rewritten as

c = (γ + µ)(ρ + µ)(σ + µ)(1 − Rvacc). (3.22)

Therefore, forRvacc > 1, c < 0, there is only one positive root for the quadratic (3.18), i.e., the
coexistence equilibrium is feasible and must be stable. ForRvacc < 1, c > 0, there are two negative
solutions for the polynomial (3.18), i.e. only the varicella-free equilibrium exists and it is stable.

We now elaborate this result in terms of the vaccination rateρ as done in the previous case.
Expressing (3.21) in terms ofρ we find

ρ <
µ(γ + µ)(σ + µ) − βΠ(σ + µ)

kβΠ − (γ + µ)(σ + µ)
≡ ρs. (3.23)

If the right hand side of (3.23) is negative then (3.21) does not hold, and the coexistence equilibrium
is then infeasible. For (3.21) to hold, we need a positive right hand side of (3.23), which is ensured
by

ρ <
µ(σ + µ)(R0 − 1)

(σ + µ) − kµR0

.
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In order that this inequality be satisfied, the right hand side must be positive. Then we obtain
that the conditions for which the coexistence equilibrium is feasible coincide with the stability
conditions (3.15) for the chickepox-free equilibrium earlier found.

The stability analysis of the interior coexistence equilibrium hinges on the full Jacobian (3.1).
Luckily the characteristic equation of this matrix factors, to give the following two explicit eigen-
values as roots of a quadratic,

λ1 = −µ, λ2 = −(δ + ǫ + µ), (3.24)

which are both negative and therefore do not influence the stability issue. The remaining ones the
are roots of the monic cubic

λ3 + a2λ
2 + a1λ + a0 = 0 (3.25)

with

a2 = (β − β1)I2 + βS2 + β1V2 + ρ − γ − µ − σ,

a1 = (−ρ − µ − βI2)(βS2 + β1V2 − β1I2 − γ − σ − 2µ) +

(βS2 + β1V2 − γ − µ)(−β1I2 − σ − µ) − β2

1
I2V2,

a0 = (ρ + µ + βI2)
[

(βS2 + β1V2 − γ − µ)(−β1I2 − σ − µ) − β2

1
I2V2

]

+

βS2(ββ1I
2

2
+ β1ρI2).

To study stability using the Routh-Hurwitz conditions, since the signs of all coefficients are not
easily determined, is quite involved. Therefore we will investigate the stability only via numerical
methods.

4. Simulations

The first results show that coexistence can indeed been achieved, as the theoretical analysis of the
stability of this equilibrium is missing, Figure 2.

Only for simulations purposes, we have chosen the fixed parameters as follows. We select
k = 0.02 assuming the vaccine to be98% effective;ρ = 0.85 assuming to be able to vaccinate
85% of the susceptibles;γ = 52.142 years−1, by converting into the time unit, the year, the disease
infectious period, which is7 days;δ andσ are the rates at which zoster can appear, respectively
after varicella and after the vaccine administration; these parameters are estimated to be70 and17
persons every100.000 per year;ǫ = 18.25 years−1 represents the reciprocal of the healing time,
which is assumed to be20 days;µ = 1/85 years−1 is the reciprocal of life expectancy; assuming
the average lifetime to be85 years; the immigration rate is takenΠ = 100.000 people years−1,
since the rate of progress of zoster is expressed in terms of this population unit.

From these values, we find

βs =
(γ + µ)(ρ + µ)(σ + µ)

Π(kρ + σ + µ)
= 9.27133 · 10−5.
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and thus we take values ofβ just above and belowβs, namelyβ = 9 · 10−4 people−1 year−1 and
β = 9 · 10−5 people−1 year−1.

In Figure 2, forβ > βs, the system settles to the coexistence equilibriumE2 and forβ < βs,
the system settles to the varicella-free equilibriumE1. These equilibria are explicitly given by

E1 = (116041, 0, 8264536, 119341, 82), E2 = (23829, 3705, 257599, 8214548, 317),

whenβ < βs.
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Figure 2: Profiles of populations for infectious individuals where (a)β > βs: coexistence equi-
librium; (b) β < βs: varicella-free equilibrium. System’s behavior for (a)β = 9 · 10−4 and (b)
β = 9 · 10−5.

4.1. System’s behavior as as function ofβ

We now perform further numerical experiments to investigate the behavior of the coexistence equi-
librium when the parameters change. First we used as bifurcation parameterβ. In a second phase,
we included also the vaccination rateρ. Finally, together with these two parameters, also the
influence of the immmigration rateΠ has been considered.

In Figure 3 we have the bifurcation diagram ofI as a function of the disease incidenceβ. There
is a transcritical bifurcation (forward bifurcation) atβ = βs = 9.27133 · 10−5, (3.5) orRvacc = 1.
At that pointE1 becomes unstable, whileE2 instead becomes feasible and stable. The transcritical
bifurcation affects also the other populations. A forward bifurcation occurs, that is, forRvacc < 1,
the varicella-free equilibrium is locally asymptoticallystable, and forRvacc > 1, the coexistence
equilibrium is locally asymptotically stable. The diagramof the forward bifurcation corresponding
to equation (3.18) as a function ofRvacc is depicted in Figure 2.

The equilibrium change entails lower population values in the classes of susceptibles and vac-
cinated, while the populations of asymptomatic individuals and of zoster increase as the infected
do. The reason is thatS decreases for larger values of infected, since they become varicella infec-
tious individuals. Therefore also the number of susceptibles that can be vaccinated decreases. A
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Figure 3: Bifurcation diagram ofI as function ofβ

larger value ofI entails that more asymptomatics and thus also more zoster individuals will appear
in the population.

4.2. System’s behavior as as function ofβ and ρ

We now investigate the modifications in the equilibria when both disease incidence and vaccination
rate change. In this case we therefore give a bifurcation diagram ofI as function ofβ andρ, Figure
4.

Note that the curve intersection of the surface with theβ − ρ plane gives the locus of all the
threshold pointsβs, (3.5) which vary between the extreme values given by

βs|ρ=0 = 3.06861 · 10−6, βs|ρ=1 = 9.86255 · 10−5 (4.1)

In fact from (3.5) we have thatβs ≡ βs(ρ), and Figure 4 depicts graphically this dependence.

4.3. Threshold behavior in terms ofρ and Π

Here we consider the thresholdβs behavior in terms of the vaccination rateρ and the immigration
rateΠ, namelyβs = βs(ρ, Π), see once again (3.5). We take as domain of the parameter plane the
cartesian product of the intervalsρ ∈ [0, 1] andΠ ∈ [0, 10000000].

In Figure 5 for large values ofΠ, say107, the thresholdβs tends the faster to zero, the largerρ
is and conversely, whenΠ approaches0 the threshold grows the faster very large, the closer to1 is
the vaccination rate. The minimal value we have obtained in the simulations isβs = 3.06861·10−8.
Thus the smaller the immigration rate, the smaller the chances are of eradicating the disease.
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Figure 4: Bifurcation diagram ofI as function ofβ and0 ≤ ρ ≤ 1

5. Cost estimates

Here we analyze the costs that are incurred for treatment andother issues like doctors’ bills, lab-
oratory tests, hospitalizations, workdays or schooldays lost and so on, see for instance [21]. The
data used here are the ones reported in [20].

The cost function is obtained as sum of the individuals costs, ci for infected,cv for vaccinated
andcz for zoster individuals, over a suitable time spantf ,

C =

∫ tf

0

(ciI + cvV + czZ)dt.

In general this function depends not only on these quantities, but on the disease incidence and the
vaccination rate as well, so that

C = C(β, ρ, I(t), V (t), Z(t)),

which needs to be minimized. This task has been performed numerically, in view of the complexity
of the problem, to get some insight into it.

Using the parameters already appearing in the simulations,we simulate the cost as function
of the remaining parameters, in particular at first the disease incidenceβ, taking into account also
[14, 20].
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Figure 5: Plot ofβ as a function ofρ andΠ

5.1. Cost as a function ofβ

Let us assume the individual costs to be306e, 100e and200e respectively for infected, vaccinated
and zoster individuals. For a population of500000 individuals, we obtain the value of the average
individual cost as

153 · 106 e

5 · 105
= 306 e.

After obtaining the coexistence equilibrium values, the costs of each subpopulation are eval-
uated,CI(t) = ciI(t), CV (t) = cvV (t), CZ(t) = czZ(t) and then the total oneC(t) = CI(t) +
CV (t) + CZ(t). Repeating the calculation for each value ofβ, we thus find the graph of Figure 6.
On summing each instantaneous cost over time and repeatig for each value ofβ we obtain the total
cost in time

CT ≡ CT (β) =
365
∑

t=0

C(t)

From this, the extremal values are found respectively forβ = 1 andβ = 0

Cmin = 4.47181595378536 · 108
e, Cmax = 2.40930560139391 · 1011

e.

There is thus a higher cost with varicella and vaccination, instead of the one with high infectivity.
This can be explained by looking at how each subpopulation behaves in time.

Starting fromβ = 0 we find that the sum of each subpopulation is
∑

I(t) = 1,
∑

V (t) = 2.409258812 · 109,
∑

Z(t) = 2.339296341 · 104.
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Figure 6:C as function ofβ and time.

The largest population is the one of vaccinated individuals, therefore this one will bear the largest
weight in the cost calculation, in spite of having its pro-capita cost smaller than the other subpop-
ulations. Infected remain constant at 1, since the disease does not spread. Zoster individuals come
only from vaccine failures. The costs for each class are

CI = 306, e, CV = 2.40925881241 · 1011
e, CZ = 4.67859268124 · 106

e.

On summing we findCT = 2.40930560139391 · 1011 e.
We now analyze the caseβ = 1. The sum in each class is now

∑

I = 1.39936520 · 106,
∑

V = 105.497125,
∑

Z = 9.48264717 · 104.

Here the largest class isI, containing about106 individuals, while formerly the peak was at1011.
For the costs we have

CI = 4.282057513 · 108
e, CV = 1.054971 · 104

e, CZ = 1.896529435 · 107
e

from which the total costCT = 4.471815954 · 108 e.
We then analyze two intermediate situations forβ, respectively above and below the threshold

βs = 3.06861 · 10−8, (3.5), considering the interval[0, 0.00001]. Repeating the simulation, we
obtain Figure 7. The total cost is almost constant, apart from some peaks, at about the level
2.4086 · 1011, and the maximum is obtained forβ = 0. For values ofβ larger thanβs, we consider
the interval[0.0001, 1], Figure 8. The values obtained fall in the interval[4.46 · 108, 4.47 · 108].
Therefore a vaccination program which aims at involving85% of the population is cheaper if the
disease incidence has a high value, and it is not worth the case to implement it whenβ falls below
the thresholdβs.
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Figure 7: Graph ofCT as function ofβ with β ∈ [0, 0.00001]

Figure 8: Graph ofCT as function ofβ with β ∈ [0.0001, 1]

5.2. Cost as a function ofβ and ρ

We now vary both disease incidence and vaccination rate. Theintervals in which these are allowed
to vary are

ρ ∈ [0, 1], β ∈ [0, 0.00001] ∪ [0.1, 1]

The maximum forβ < βs is

Cmax = 2.41567255166791 · 1011
e

and Figure 9 contains the graphical display of the results. It shows that cost increases withρ
independently ofβ, with a maximum at(β, ρ) = (0.000001, 1). Thus forβ < βs we are better
off minimizing the vaccination rate. Forβ > βs, excluding the trivial case of the origin, with no
disease evolution in the population, namely(β, ρ) = (0, 0) with a cost of306e, the minimal cost
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Figure 9: Plot of the total cost as a function ofβ andρ, with β < βs

is, see Figure 10,
Cmin = 4.471700787594944 · 108

e .

In this case, asβ decreases andρ increases, the cost becomes higher, up to the peakCmaxrel =
4.48398374297879·108e at(β, ρ) = (0.1, 1). Asβ grows, the total cost decreases with a minimum

Figure 10: Plot of the total cost as a function ofβ andρ, with β > βs

at (β, ρ) = (1, 1). But in this case almost all values are between4.4717 · 108 and4.4723 · 108. For
smallerβ and the sameρ the cost is higher.

In summary, a herd vaccination program would make sense if the disease incidenceβ is above
the threshold, or ifRvacc > 1. In these cases costs can be minimized. But the disadvantage is that
the disease will not be eradicated, it will remain at an endemic level. Conversely, it is possible
to eradicate varicella, but this can be obtained only at large costs. Perhaps the tradeoff choice
consists of keeping around the threshold valueβs, since this entails high cost, but not a maximal
one together with the possibility of eradicating the disease.
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