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Abstract

Profilins are important regulators of actin dynamics and have been implicated in activity-dependent morphological changes
of dendritic spines and synaptic plasticity. Recently, defective presynaptic excitability and neurotransmitter release of
glutamatergic synapses were described for profilin2-deficient mice. Both dendritic spine morphology and synaptic plasticity
were fully preserved in these mutants, bringing forward the hypothesis that profilin1 is mainly involved in postsynaptic
mechanisms, complementary to the presynaptic role of profilin2. To test the hypothesis and to elucidate the synaptic
function of profilin1, we here specifically deleted profilin1 in neurons of the adult forebrain by using conditional knockout
mice on a CaMKII-cre-expressing background. Analysis of Golgi-stained hippocampal pyramidal cells and electron
micrographs from the CA1 stratum radiatum revealed normal synapse density, spine morphology, and synapse
ultrastructure in the absence of profilin1. Moreover, electrophysiological recordings showed that basal synaptic
transmission, presynaptic physiology, as well as postsynaptic plasticity were unchanged in profilin1 mutants. Hence, loss
of profilin1 had no adverse effects on the morphology and function of excitatory synapses. Our data are in agreement with
two different scenarios: i) profilins are not relevant for actin regulation in postsynaptic structures, activity-dependent
morphological changes of dendritic spines, and synaptic plasticity or ii) profilin1 and profilin2 have overlapping functions
particularly in the postsynaptic compartment. Future analysis of double mutant mice will ultimately unravel whether
profilins are relevant for dendritic spine morphology and synaptic plasticity.
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Introduction

Dendritic spines are highly dynamic protrusions that form the

postsynaptic part of most excitatory synapses. Changes in spine

number and shape influence the strength of excitatory synaptic

transmission and are thought to be the basis for learning and

memory [1–3]. Actin is highly enriched in dendritic spines and is

essential for their morphological changes (reviews: [4–5]). In fact,

actin dynamics appear to be crucially important for structural

adaptations of neuronal circuits associated with learning and

memory formation [6–10]. Hence, it is important to understand

the detailed mechanisms that link actin dynamics and synaptic

plasticity.

Actin dynamics critically depend on the activity of profilins that

make actin monomers available for the incorporation into actin

filaments and direct them to the site of actin polymerization [11].

Of the four identified profilin isoforms, only profilin1 and profilin2

are expressed in the mouse central nervous system [12]. Both

proteins are located in synaptic structures [13] and show an

activity-dependent recruitment to dendritic spines in neuronal

cultures [14–15]. Moreover, analysis of organotypic hippocampal

cultures suggests a role for profilin1 and profilin2 in dendritic spine

morphology [16]. Based on these studies, it was proposed that

profilins have an important role in activity-driven actin dynamics

in dendritic spines and synaptic plasticity [5]. Accordingly, a

learning-dependent recruitment of profilins into dendritic spines

was observed in fear-conditioned rats [17]. However, these data

are difficult to reconcile with the phenotype of profilin2-deficient

mice as these mutants display normal synaptic plasticity, learning,

and memory [13]. Instead, they show increased neurotransmitter

release, pointing to a critical role of profilin2 in presynaptic

excitability. Therefore, our aim was to investigate the discrepancy

of in vitro and in vivo findings and, for the first time, to elucidate the

isoform-specific synaptic function of profilin1 in vivo.

Profilin1-deficient embryos die during early development [18]

and profilin1 inactivation during brain development interferes

with neuronal migration and brain development [19]. Thus,

analysis of profilin1 in synaptic plasticity requires the deletion of
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profilin1 specifically in the adult forebrain. To do so, we crossed

conditional profilin1 mutants (Pfn1flx/flx) with a transgenic line

expressing cre under the control of the Ca2+/calmodulin-

dependent protein kinase II a subunit (CaMKII-cre) [20–21].

Our analysis revealed normal synapse density in profilin1 mutant

mice and virtually no defect in synapse morphology, with the

exception of a slight increase in the neck length of mushroom-like

spines. Moreover, basal synaptic transmission, presynaptic phys-

iology, as well as postsynaptic plasticity were independent of

profilin1 activity. Hence, our data demonstrate that profilin1

inactivation has no adverse effects on excitatory synapses. We

suggest that profilin1 and profilin2 have the capacity to

compensate each other in postsynaptic structures. Analyses of

double mutant mice are required to ultimately unravel the

postsynaptic function of profilins in vivo.

Materials and Methods

Ethics Statement
Treatment of mice was in accordance with the German law for

conducting animal experiments and followed the NIH guide for

the care and use of laboratory animals. Killing of mice for tissue

analysis was approved by the Landesuntersuchungsamt Rhein-

land-Pfalz (23 177-07/G09-2-001), mouse husbandry and

breeding was approved by the City of Kaiserslautern – Referat

Umweltschutz.

Animals
Forebrain-specific deletion of profilin1 was achieved by crossing

the conditional profilin1 allele (Pfn1flx/flx) [20] with a transgenic

cre-expressing line, driven by Ca2+/calmodulin-depedent protein

kinase II a subunit (CaMKII-cre) [21].

Biochemistry
Protein lysates. Brain extracts were prepared by

homogenizing fresh tissue in ice-cold lysis buffer (in mM): 20

Tris-HCl (pH 8.0), 100 NaCl, 5 EGTA, 2 EDTA, supplemented

with 0.5% TritonX-100 and EDTA-free complete protease

inhibitor mix (Roche) using a tightly fitting douncer.

Preparation of hippocampal synaptosomes was essentially performed as

described before [9]. Briefly, tissue was homogenized in homog-

enization solution containing (pH 7.4, in mM): 320 sucrose, 1

EDTA, 5 HEPES, supplemented with 0.1% bovine serum

albumin and EDTA-free Complete protease inhibitor mix (Roche)

using a tight fitting douncer. After removing nuclei and cell debris,

material containing synaptosomes was resuspended in Krebs-

Ringer solution (pH 7.4) containing (in mM): 140 NaCl, 5 KCl, 1

EDTA, 10 HEPES, 5 glucose. Synaptosomes were enriched on a

floatation gradient consisting of 35% Percoll. Anti-b tubulin

antibody was purchased from Sigma-Aldrich (clone TUB 2.1,

#T5201; 1:5,000). Antibodies that specifically recognize profilin1

and profilin2 were used as described before [12–13].

Electrophysiology
Tissue preparation. 4–6 week-old mice were sacrificed by

cervical dislocation, and their brains were rapidly removed and

dissected in chilled solution (4uC) containing (in mM): 87 NaCl, 2

KCl, 0.5 CaCl2, 7 MgCl2, 26 NaHCO3, 1.25 NaH2PO4, 25

glucose, 75 sucrose, bubbled with a mixture of 95% O2/5% CO2,

leading to a pH of 7.4. 300–370 mm-thick horizontal hippocampal

slices were cut with a VT1200S vibratome (Leica), preincubated

for 30 min at 37uC, and then transferred to recording solution

(room temperature) containing in (mM): 125 NaCl, 2.5 KCl, 2

CaCl2, 1.3 MgSO4, 26 NaHCO3, 1.25 NaH2PO4, 10 glucose, 2

sodium pyruvate, 3 myo-inositol, 0.44 ascorbic acid, bubbled with

a mixture of 95% O2/5% CO2, leading to a pH of 7.4. Slices

rested in this solution for at least one hour before recordings

began.

Single cell recordings. Patch pipettes had resistances of 4–

8 MV when filled with a solution containing (in mM): 117.5

CsMeSO4, 2.5 CsCl, 8 NaCl, 10 HEPES, 10 TEA, 0.2 EGTA,

4 Na2ATP, 0.6 Na2GTP, 5 QX-314 pH was adjusted to 7.2

with CsOH. Slices were transferred into the recording chamber,

which was continuously perfused at a rate of 1.5–2 ml/min with

recording solution at room temperature. CA1 hippocampal

neurons were visualized with DIC-infrared optics using a 606/

1.0 water immersion objective on an upright Eclipe E600-FN

microscope (Nikon). Electrophysiological responses were

recorded with an EPC 10 patch-clamp amplifier and

PatchMaster and FitMaster software (HEKA Elektronik). For

measurements of miniature EPSCs (mEPSCs), the bath solution

contained 4 mM CaCl2 and 4 mM MgSO4. During recordings,

0.5 mM tetrodotoxin (TTX; Ascent Scientific), 100 mM

picrotoxin (Ascent Scientific), and 250 mM trichlormethiazide

(TCM; Sigma-Aldrich) were added to the recording solution.

CA1 hippocampal neurons were voltage clamped at 270 mV,

and spontaneous mEPSCs were recorded for five minutes.

Amplitude and inter-event intervals (IEI) were analyzed with

miniAnalysis (Synaptosoft), with an amplitude threshold of 3.5

pA.

Field potential recordings. For stimulation of Schaffer

collaterals, monopolar glass electrodes, filled with recording

solution, were placed in the stratum radiatum of the CA1 region.

For field potential experiments, pipettes were filled with 3 M NaCl,

and fEPSPs were measured at a stimulus intensity that elicited

amplitudes that were ,30–50% of the maximum. Input-output

curves were built by measuring the fiber volley and fEPSP responses

evoked by stimulating afferent fibers with current intensities ranging

from 20 to 300 mA. Paired-pulse ratio (PPR) was analyzed by

applying pairs of stimuli at the following inter-stimulus intervals (ISI;

in ms): 10, 15, 25, 50, 75, 100, 150, 200. LTP was elicited either by a

single one-second 100 Hz train or by 10 bursts of four pulses at

100 Hz, separated by 200 ms (theta-burst stimulation). For the

measurement of long-term depression (LTD) experiments, mice

were in the age of postnatal day 17 (P17) to P21. For the induction of

LTD, a low-frequency stimulation (LFS) was used, consisting of 900

pairs of stimuli (distance 50 ms) at 1 Hz.

Morphology
Golgi staining. Mice aged 10–12 weeks were used. The FD

Rapid GolgiStainTM kit (FD Neurotechniques) was used for Golgi

staining; tissue impregnation and tissue section staining were

performed according to the manufacturer’s data sheet. Briefly,

mice were perfused with 4% formaldehyde and brains were

quickly removed from the skull and postfixed in the same fixative

overnight. After incubation in impregnation solution and solution

C, brains were imbedded in gelatin-albumin and cut into 100 mm

coronal sections using a vibrating microtome (Campden

Instruments Ltd.). Sections were mounted on gelatinized glass

slides, further processed for the Golgi staining procedure, and

finally mounted in Entellan (Merck). High magnification images

of 2nd order dendritic branches in the hippocampal CA1 stratum

radiatum were generated with an Axioskop microscope and a Plan-

Neofluar 1006/1.30 oil immersion objective (Carl Zeiss). Spine

density and morphology were measured using ImageJ 1.42q

imaging software (NIH). Image acquisition and morphometric

analyses were performed by an experimenter blind to the

genotype of the mice. Electron microscopy: 10–12 week-old mice

Profilin1 Is Dispensable for Excitatory Synapses
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were perfused with 1% formaldehyde/1% glutaraldehyde in

phosphate buffer (0.1 M PB, pH 7.4). Their brains were postfixed

in the same fixative overnight, and small specimens taken from

the dorsal hippocampus were postfixed in 1% OsO4 in 0.1 M

cacodylate buffer, dehydrated, and embedded in epoxy resin.

Ultrathin sections were stained with uranyl acetate and lead

citrate and observed in a JEM-1010 transmission electron

microscope (Jeol) equipped with a side-mounted CCD camera

(Mega View III, Soft Imaging System). Spine density was assessed

by analyzing 192 digitized images from four mice of each group.

Images (30,0006 magnification, area size 14.66 mm2) were

captured in the proximal part of CA1 stratum radiatum.

Morphometric analysis was done on electron micrographs taken

at 75,0006 using ImageJ 1.42q imaging software. Synaptic

structures were identified by presynaptic terminals with at least

three synaptic vesicles, a visible synaptic cleft and a well-defined

postsynaptic density. Image acquisition and morphometric

analysis were performed by an experimenter blind to the

genotype of the mice.

Statistical analysis
The unpaired two-tailed t-Student’s test was used for statistical

analysis.

Results

Forebrain-specific deletion of profilin1 and unaltered
profilin2 expression levels

To investigate the role of profilin1 in synapse physiology and

plasticity, we generated conditional mutants with a selective

Figure 1. Deletion of profilin1 in Pfn1flx/flx,CaMKII-cre mice. (A) Immunoblot analysis in different brain regions from an adult Pfn1flx/flx control
and an adult Pfn1flx/flx,CaMKII-cre mutant (P70), revealing efficient deletion of profilin1 in the forebrain of mutants. In all three forebrain tissues (cortex
(CX), striatum (STR), hippocampus (HIP)), profilin1 expression was almost undetectable in mutants. In contrast, profilin1 expression level was
unchanged in the cerebellum (CB), in which cre is not expressed. Identical results were obtained when investigating profilin1 expression levels in two
other Pfn1flx/flx,CaMKII-cre mice. (B) Immunoblot analysis of hippocampal synaptosomes, demonstrating the absence of profilin1 from synaptic
structures in mutants. (C) No changes in profilin2 expression were found in the cortex, hippocampus, or striatum of three individual profilin1-
deficient mice. (D) Normal profilin2 content in hippocampal synaptosomes from two individual Pfn1flx/flx,CaMKII-cre mice. Expression of b tubulin was
examined to control protein load in A–D.
doi:10.1371/journal.pone.0030068.g001

Profilin1 Is Dispensable for Excitatory Synapses

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30068



deletion of the profilin1 gene in principal neurons of the adult

forebrain (Pfn1flx/flx,CaMKII-cre). Immunoblot analysis of protein

lysates from various brain regions of Pfn1flx/flx,CaMKII-cre mice at

P70 confirmed the efficient deletion of profilin1 in all three

forebrain structures examined (cortex, hippocampus, striatum;

Fig. 1A). As expected, no changes in profilin1 expression levels

were detectable in lysates from the cerebellum, where cre is not

expressed [21]. Notably, no profilin1 immunoreactivity was

Figure 2. Unaltered spine density and morphology in hippocampal CA1 region of Pfn1flx/flx,CaMKII-cre mice. (A) Representative images of
2nd order dendritic branches of Golgi-stained pyramidal cells in the hippocampal CA1 stratum radiatum. Scale bar: 2 mm. (B) Unaltered spine density
in Pfn1flx/flx,CaMKII-cre mice. Spines were morphologically categorized into mushroom-like, stubby, and thin spines (.1,000 mm length of dendritic
branches for both groups, four mice per group). Representative electron micrographs of CA1 stratum radiatum of (C) Pfn1flx/flx controls and (D)
Pfn1flx/flx,CaMKII-cre mice. Scale bar in C: 200 nm. b: presynaptic bouton, sp: dendritic spine, *: postsynaptic density. Unaltered spine area (E) and PSD
length (F) in Pfn1flx/flx,CaMKII-cre mice as deduced from cumulative distributions and mean values (insets in E and F).
doi:10.1371/journal.pone.0030068.g002
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detectable in hippocampal synaptosomes of Pfn1flx/flx,CaMKII-cre

mice, demonstrating the absence of any profilin1 from synaptic

structures (Fig. 1B). In none of the three Pfn1flx/flx,CaMKII-cre

forebrain regions (Fig. 1C), nor in hippocampal synaptosomes

(Fig. 1D), did we find evidence for different expression levels of

profilin2.

Spine density and synapse ultrastructure are normal in
Pfn1flx/flx,CaMKII-cre mice

The activity-dependent recruitment to dendritic spines in

dissociated hippocampal neurons suggests that profilin1 is

important for the morphology of postsynaptic compartments

[15]. To address this point, we visualized dendritic spines in

Golgi-stained neurons from coronal sections of control and

Pfn1flx/flx,CaMKII-cre mice at P70–P80. For the analysis of

dendritic spine density and morphology, we chose 2nd order

dendritic branches in the CA1 stratum radiatum (Fig. 2A), in which

profilin1 immunoreactivity is reportedly particularly pronounced

[15]. The density of spines was similar in controls (23.960.9

spines/20 mm dendrite) and Pfn1flx/flx,CaMKII-cre mice (25.660.3

Table 1. Dendritic spine morphology.

Pfn1flx/flx Pfn1flx/flx,CaMKII-cre

mushroom-like head perimeter (mm) 2.3160.08 2.2160.09

neck length (mm) 0.4660.02 * 0.5260.01

Stubby perimeter (mm) 2.5360.05 2.4660.04

Thin length (mm) 1.1960.05 1.1660.05

Shown are the mean values (6SEM).
*:P,0.05.
doi:10.1371/journal.pone.0030068.t001

Figure 3. Normal presynaptic function of hippocampal CA3-CA1 synapses in Pfn1flx/flx,CaMKII-cre mice. (A) Basal synaptic transmission, as
deduced from input-output curves, was normal in Schaffer-collateral-CA1 synapses of Pfn1flx/flx,CaMKII-cre mice (n = 15 for controls and 10 for mutants).
(B) In Pfn1flx/flx,CaMKII-cre mice, no changes were found in paired-pulse ratios (PPR; n = 14 for controls, n = 17 for mutants) at various inter-stimulus
intervals (ISI; 10–200 ms). Cumulative curves of amplitudes (C) and inter-event intervals (IEI) of mEPSCs (D) were virtually equal between genotypes
(n = 8 in each group). Insets in C and D depict mean values.
doi:10.1371/journal.pone.0030068.g003

Profilin1 Is Dispensable for Excitatory Synapses
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spines/20 mm dendrite; Fig. 2B). Moreover, there was no

difference in the density of mushroom-like, stubby, or thin spines

between the two groups. Likewise, morphometric analyses

revealed virtually no difference in spine morphology between

controls and mutants, except for a slight increase in the neck

length of mushroom-like spines (controls: 0.4660.02 mm, mu-

tants: 0.5260.01; P,0.05; Table 1). Electron microscopic

analysis in CA1 stratum radiatum (Fig. 2C–D) confirmed that the

density of excitatory synapses was unchanged in the absence of

profilin1 (controls: 4.7160.46 synapses/10 mm2, n = 3386 mm2

from four mice; mutants: 4.6660.35 synapses/10 mm2,

n = 2829 mm2/4 mice). Moreover, spine area and length of the

postsynaptic density (PSD) were indistinguishable between

controls and mutants (Fig. 2E–F).

Profilin2 has been implicated in the organization of synaptic

vesicles [13], and we wanted to know whether profilin1 fulfills a

similar function. We therefore analyzed the synaptic vesicle

organization in Pfn1flx/flx,CaMKII-cre mice and found no changes

in the vesicle density (control: 178.9968.25 vesicles/mm2, n = 182

presynaptic terminals/4 mice; mutant: 160.4468.75 vesicles/mm2,

n = 177 presynaptic terminals/4 mice) or in the density of docked

vesicles (control: 12.9261.02 docked vesicles/mm of active zone,

n = 129 presynaptic terminals/4 mice; mutant: 12.5660.66

docked vesicles/mm, n = 141 presynaptic terminals/4 mice). In

summary, synapse density, spine morphology, as well as synap-

tic vesicle density and organization were all unchanged in

Pfn1flx/flx,CaMKII-cre mice.

Profilin1 is dispensable for pre- and postsynaptic
physiology

Profilin2 is required for presynaptic function, yet not for

postsynaptic plasticity [13]. We next set out to test whether

profilin1 plays a similar or complementary role in pre- and

postsynaptic physiology. To do so, we first assessed whether

general synaptic transmission and synaptic efficiency were affected

in the absence of profilin1. We recorded extracellular field

potentials in the CA1 region in acute hippocampal slices upon

stimulation of the Schaffer collateral pathway with intensities

ranging from 20–300 mA. The resulting input-output curves

revealed no differences in presynaptic fiber volley amplitude or

postsynaptic fEPSP slope between the genotypes (Fig. 3A). To

elucidate a potential involvement of profilin1 in presynaptic

physiology, we determined the paired-pulse ratio (PPR) at various

inter-stimulus intervals (ISI; 10–200 ms) and again found no

differences between Pfn1flx/flx,CaMKII-cre mice and controls

(Fig. 3B). Moreover, the amplitudes and the inter-event intervals

(IEI) of miniature excitatory postsynaptic currents (mEPSCs)

obtained from patch-clamped CA1 pyramidal neurons were not

changed in profilin1-deficient mice (Fig. 3C–D). Together our

data demonstrate that presynaptic vesicle loading, vesicle release

probability, and the vesicle release machinery are not altered in

Pfn1flx/flx,CaMKII-cre mice.

Localization experiments have suggested a potential role of

profilin1 in postsynaptic physiology [15]. We tested this hypothesis

Figure 4. Unimpaired synaptic plasticity in the absence of
profilin1. (A) In Pfn1flx/flx,CaMKII-cre mice, no difference was found in LTD
induced by low frequency stimulation (1 Hz) of 15 min duration (n = 9
for controls, n = 12 for mutants) when analyzing the last 10 min of the
recordings. LTP induced by either a single 100 Hz tetanus of 1 s
duration (B) or by theta-burst stimulation (TBS) (C) was also not
different between genotypes (16100 Hz: n = 10 for controls and 8 for
mutants; TBS: n = 10 for both groups). ns: not significant.
doi:10.1371/journal.pone.0030068.g004

Profilin1 Is Dispensable for Excitatory Synapses

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e30068



in our genetic model by measuring synaptic strength modulation

during LTD and LTP. When LTD was evoked through paired

stimulation at 1 Hz for 15 min, we did not see a significant

difference in the induced steady state (45–85 min of the recording)

between controls and profilin1 mutants (Fig. 4A; P.0.05,

considering the last 10 min of the recordings for statistical

analysis). Also, when we induced LTP by a single 100 Hz tetanus

of 1 s duration (16100 Hz) or by theta-burst stimulation (TBS), we

did not find any significant differences in the resulting steady states

(25–40 min of the recording) between controls and profilin1

mutants (Fig. 4B–C; P.0.05 in both experiments considering the

last 10 min of the recordings for statistical analysis). Hence, our

data demonstrate unchanged synaptic plasticity of hippocampal

CA3-CA1 synapses in the absence of profilin1.

Discussion

A depolarization- and NMDAR-driven recruitment of profilin1

and profilin2 to postsynaptic sites of excitatory synapses has been

demonstrated in studies on dissociated hippocampal neurons [14–

15]. Accordingly, analysis of organotypic hippocampal cultures

suggests a role of profilin1 and profilin2 in dendritic spine

morphology [16]. Based on these experiments, it was suggested

that profilins are involved in actin turnover in postsynaptic

compartments, in activity-dependent morphological changes of

dendritic spines, and in postsynaptic plasticity [4–5,22]. These

ideas were supported by results obtained from fear-conditioned

rats which showed a learning-induced translocation of profilins

into dendritic spines of lateral amygdala neurons [17]. However,

as the antibody used in this study recognizes both profilin isoforms,

the relative contribution of profilin1 and profilin2 to postsynaptic

mechanisms remained unclear. For example, profilin2 is present in

a much larger fraction of dendritic spines than profilin1 [15].

Thus, a predominant contribution of profilin2 to postsynaptic

plasticity was postulated [4,23–24], which, however, could not be

confirmed in vivo in profilin2-mutant mice [13]. Moreover, various

forms of synaptic plasticity (LTP, LTD), as well as learning and

memory, were normal in this mouse model [13]. Thus, the

discrepancy between the results obtained from in vitro experiments

and those of profilin2-mutant mice raised two important questions:

First, do profilins indeed play a role in dendritic spines in vivo?

Second, which profilin isoform does then contribute to postsyn-

aptic mechanisms?

To address these questions, we chose a genetic approach: we

deleted profilin1 specifically in principal neurons of the mouse

forebrain by using a conditional knockout mouse model and a

transgene expressing cre under the control of the CaMKII-a [20–21].

As profilin1 expression levels are particularly high in hippocampal

neurons [15], we chose CA1 hippocampal pyramidal cells for

morphometric analysis and hippocampal CA3-CA1 projections for

the characterization of profilin1 function in excitatory synapses.

By two independent approaches (Golgi-staining and electron

microscopy), we found that inactivation of profilin1 has no

effect on the organization of synaptic vesicles or on the density

and morphology of excitatory synapses, except for a slight

increase in the neck length of mushroom-like spines. Moreover,

our extensive electrophysiological analyses revealed that basal

synaptic transmission, presynaptic mechanisms (vesicle loading,

vesicle release probability), and postsynaptic plasticity (LTP,

LTD) are fully preserved in the absence of profilin1. Together,

these data indicate that inactivation of profilin1 has no adverse

effects on the structure and function of excitatory synapses.

Thus, in contrast to previous suggestions, we show that profilin1

is not essential for dendritic spine morphology and synaptic

plasticity.

Our data are in agreement with two possible scenarios. First:

profilins are not relevant for actin regulation in postsynaptic

structures, activity-dependent morphological changes of dendritic

spines, and synaptic plasticity. Second: profilin1 and profilin2 have

the capacity to compensate each other in postsynaptic structures.

In agreement with the latter suggestion, down-regulation of

profilin2 is functionally compensated by profilin1, specifically in

dendritic spines [16]. Whether this also occurs in vivo still needs to

be addressed experimentally. Future analyses of double-mutant

mice are therefore needed for a comprehensive understanding of

profilin function in synaptic physiology and will ultimately unravel

whether profilin activity is relevant for dendritic spine morphology

and postsynaptic plasticity.
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