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Particles that take photographs of themselves: The emergence of the triggered cloud chamber

technique in early 1930s cosmic-ray physics

Matteo Leone

Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy

One of the major accomplishments of early elementary particle physics research was the 

development of an apparatus able to efficiently collect photographs of cosmic-ray particles. This 

accomplishment was achieved in 1932 at the Cavendish Laboratory in Cambridge by triggering a 

cloud chamber with two appropriately connected counters. A careful analysis of the literature 

reveals that the development of the Cavendish apparatus was preceded and, in some respect, 

influenced by hybrid counter – cloud chamber devices devised previously in two U.S. laboratories.

I. INTRODUCTION

The triggered cloud chamber was invented by P. M. S. Blackett and G. Occhialini in 1932, although

its history began in 1912 with V. Hess' study of atmospheric ionization at high altitudes.i  Hess found 

that the ionization levels could not be explained by natural radiation alone. He concluded that a new 

penetrating extra-atmospheric -like radiation (Höhenstrahlung, meaning radiation from above), must 

be responsible. This phenomenon eventually became known as “cosmic rays,” a phrase coined by R. 

Millikan.ii  In the late 1920s, the cosmic -ray hypothesis rested on the empirical measurements 

obtained by closed vessels filled with gases at atmospheric or higher pressures (ionization chambers 

and electroscopes). Although the total ionization in the vessel was easily determined by this method, no

information was available on the details of the production of this ionization.iii

The issue of the mechanism originating this ionization began to be reconsidered in 1929, largely 

because of the use of cloud chambers and counters in coincidence. With these devices, the detection of 

individual charged particles became possible and made possible the discovery of high-energy particles 
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with great penetrating power.iv This discovery suggested a possible connection to the radiation believed

to cause by high altitude ionization. However, the relation between these particles and the penetrating 

radiation was far from clear. The discovery of the former posed a serious problem in understanding the 

nature of cosmic -ray interaction with matter. In late 1920s it was believedv that the absorption of high 

energy  rays was by Compton collisions as governed by the Klein-Nishina formula, which, was of 

uncertain reliability at such high energies.

A great step forward in resolving the issue of cosmic -ray interaction with matter was taken when 

cloud chambers and coincidence counters merged into a single device: the triggered cloud chamber. In 

this apparatus “an event could be made to trigger a cloud chamber, and, so to speak, take a photograph 

of itself, thus enabling rare events to be picked in the presence of a large unwanted background.”vi 

Among the rare events buried in loads of unwanted background events were positrons. In 1933 the 

triggered cloud chamber provided a wealth of evidence for the existence of positrons in cosmic rays. 

This evidence lead to the discovery of a new kind of interaction, leading to pair creation and 

annihilation.vii Pair creation, rather than the Compton effect, governed many of the phenomena 

observed in cosmic-ray physics.

Considering the productivity of the triggered cloud chamber, it is surprising how much its has been 

neglected by historians of physics. The development of the triggered cloud chamber has been studied 

only as it pertains to Blackett and Occhialini’s achievements.viii Little or no effort has been made to place 

it within the broader history of high energy particle detection since the late 1920s. However, if this effort is

made, many interesting and enlightening details emerge on the origin of this important device.

II. DETECTING IONIZING EVENTS WITH CLOUD CHAMBERS

The study of radioactivity in the early 1900s led to the reliable detection of single ionizing particles 
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produced by radioactive decay. One of the methods was the zinc sulphide technique, which detected 

particles as bright spots of light in a scintillator crystal.ix Using this apparatus, conclusive evidence for 

the atomic nucleus (Geiger-Marsden, 1909)x and the proton (Rutherford, 1919)xi was collected.

The zinc sulphide technique had major drawbacks, including its dependence on the visual 

perception of the experimenter, and a sensitivity limited to massive particles. A far more versatile, but 

technologically challenging approach, proved to be the cloud chamber. The cloud camber was 

developed in 1911 by the Scottish physicist C. T. R. Wilson, and made it possible to view and 

photograph the paths of both heavy and light ionizing masses such as  and  particles.xii The 

apparatus consisted of a closed cylindrical expansion chamber, whose movable base slid inside a 

cylinder and served as a piston. The expansion of water saturated, dust-free air in the cylinder created 

the medium through which these ionized particles travelled. Their detection was based on the fact that 

the particles acted as nuclei of condensation in such a medium, which allowed their paths to be seen as

vapor trails.

An important improvement of this device was developed in 1921 by the Japanese physicist T. 

Shimizu.xiii By suitably connecting the piston to a motor, the cloud chamber could be cyclically 

expanded and contracted, thereby allowing the user to take many photographs within a reasonable time 

(one photograph every 10-15 s). Among the most prominent achievements using this tool was the first 

visualization of the artificial transmutation of a nitrogen nucleus by α particle bombardment by P. M. S.

Blackett at the Cavendish Laboratory (1924).xiv

A few years later, the Russian physicist D. Skobeltsyn (Leningrad Polytechnic) discovered that the 

cloud chamber method might be useful in cosmic-ray research. Skobeltsyn had been systematically 

investigating the recoil electrons released by radium -rays due to the Compton effect by means of a 

cloud chamber immersed in a magnetic field. His results confirmed Compton’s theory.xv Between 1927 

and 1929 Skobeltsyn did a detailed follow-up of this investigation using a chamber immersed in a 0.15 

T magnetic field. Out of 600 stereoscopic photographs, Skobeltsyn observed 32 electron-like tracks 
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with very little curvature, indicating an energy over 15 MeV. This energy was much higher than any 

known  particle at the time. He eventually concluded that the tracks were due to the passage of the 

secondary electrons emitted by energetic cosmic radiation according to a Compton process.xvi

By the time of Skobeltsyn’s observation, it was believed that the absorption of high-energy -rays was 

mostly by Compton collisions as governed by the Klein-Nishina formula. If this formula is applied to 

contemporary measurements of the cosmic-ray absorption coefficient, it would predict that cosmic-ray 

electrons have energies of the order of 103 MeV in contrast to about 1 MeV for the most energetic 

radioactive decay products.xvii Most absorption coefficient data had been obtained by ionization chamber 

measurements under deep lakes by R. A. Millikan (Cal Tech) in the late 1920s. Is it correct to 

extrapolate the Klein-Nishina formula to cosmic-ray energies? Experiments performed in Millikan’s 

laboratory by C. Y. Chao showed that the absorption of hard gamma rays exceeded that estimated by 

this formula. Was it correct if the nucleus participates in cosmic-ray absorption? xviii In February 1929 J. R. 

Oppenheimer warned Millikan that it seems “of particular importance […] to determine definitely 

whether the absorption of the cosmic rays is to be ascribed entirely to the extranuclear electrons” 

because the formula would not hold “if the nuclei play an appreciable part in the absorption.”xix Millikan 

understood that Skobeltsyn’s experimental approach, by enabling a direct measurement of the energy of

cosmic-ray electrons, bypassed these problems. For this reason in 1930, Millikan charged C. D. 

Anderson, a young National Research Council fellow, to work on the design of a vertical cloud 

chamber set in a powerful magnetic field (2 T). By the summer of 1931, Anderson succeeded in 

developing an apparatus capable of measuring energies of the order of magnitude to be expected in 

high energy cosmic-ray photon encounters with electrons and nuclei.xx

III. DETECTING IONIZING EVENTS WITH COUNTERS

In the meantime, another apparatus with the power to detect a single ionizing event had entered 

nuclear and cosmic radiation physics, the Geiger-Müller or “tube” counter. The Geiger-Müller counter, 
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which was developed in 1928 by H. Geiger and W. Müller as an improvement of the 1913 “point” 

counter,xxi is still widely used in particle physics experiments. It consists of an inert gas-filled tube with 

a wire stretched along the axis of the tube and a potential difference applied between the tube and the 

wire. The passage of ionizing radiation through the tube produces a short, intense current between the 

electrodes which is counted by the device.

In 1929 W. Bothe and W. Kolhörster in Berlin (Physikalisch-Technische Reichsanstalt) used the 

counter to study cosmic rays via the “coincidence method.”xxii In this method, two counters were placed

one above the other in a vertical plane, and each one was connected to a separate fiber electrometer 

whose deflection was recorded on a photographic film. If the deflection occurred within a small 

fraction of a second, a single ionizing cosmic ray particle passed through both counters. Bothe and 

Kolhörster detected the passage of high-energy cosmic-ray particles able to cross a 4 cm thick gold 

brick inserted between the two counters. For comparison, the most penetrating charged particle known 

at that time was the  electron, which could be stopped by less than 1 mm of gold. They concluded that

the ionization was not due to secondary Compton electrons from energetic γ rays, because these 

electrons would not have sufficient energy to pass into the second counter when the brick was placed in

the middle. (Ref. 4)

The full potential of the coincidence method was achieved only by the development of electronic 

recording devices. In late 1929 Bothe devised a circuit that used a two-grid vacuum tube such that 

when pulses were applied to the two grids by simultaneous discharges of both counters, a current pulse 

appears in the plate circuit.xxiii In early 1930 a much better apparatus was developed by Bruno Rossi.xxiv 

Rossi used this new device to discover that a component of cosmic rays (later recognized as muons) 

was able to penetrate through 1 m of lead. Rossi succeeded also in detecting the production of abundant

secondary radiation (later identified as electrons and positrons) by a threefold coincidence 

experiment.xxv Since then, the steady improvement of electronics performance and integration has led to

detector systems for which the coincidence involves many millions of channels.xxvi
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As of late 1931, it was generally agreed that counters in coincidence and cloud chambers in a strong

magnetic field were, in principle, able to detect single ionizing events. It was agreed, as well, that both 

apparatuses had detected particles of cosmic origin. Furthermore, Skobeltsyn and Bothe-Kolhörster’s 

papers showed that the cloud chamber and the coincidence counting methods yielded consistent results 

for the intensity of the cosmic radiation. Although Skobeltsyn had estimated an intensity of 1.2 

electrons per cm2 per minute (by considering the number of observed tracks, expansion time, and cloud

chamber size: see Ref. 4, p. 687), Bothe and Kolhörster arrived at an estimate of 0.6 particles per cm2 

per minute (Ref. 4, p. 772). This experimental evidence opened the prospect for pursuing many 

different goals. Historically, the first question to be tackled was an obvious one: were different devices 

measuring the same physical phenomenon or a mere coincidence?

IV. CORRELATING DISCHARGES AND CLOUD CHAMBER TRACKS

In spite of the evidence I have cited, it was not obvious in 1930 that the two methods had detected 

the same phenomenon. The cloud chamber and counter techniques relied on different physical 

principles and provided different data. The cloud chamber technique (based on the ions as condensation

nuclei) collected the tracks left by ionizing particles entering the cloud chamber. These tracks were 

photographed, and, if a magnetic field was applied, tentative estimates of the energy of the particle 

could be made. By the counter technique (based on the cascade effect), the coincidence rate detected by

two counters separated by a screen of matter was measured, and therefore the penetration power of the 

particles could be estimated.

To understand if the two methods were detecting the same phenomenon, a hybrid counter-cloud 

chamber device was produced in 1931. On 25 March 1931, L.M. Mott-Smith (The Rice Institute) 

looked for “a definite correlation between coincidences in tube-counter and tracks in a suitably 

disposed cloud expansion apparatus.”xxvii The confidence that such a correlation existed was expressed 

most clearly a few months later, when Mott-Smith and G. L. Locher “assumed that [the] radiation 
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[detected by the cloud chamber method] is the same as that responsible for the coincidence effects.”xxviii 

On 4 September 1931, Mott-Smith and Locher reported the results of their attempt to correlate cloud 

chamber tracks and counter discharges. A cyclic-expansion cloud chamber was “interposed between 

two counters so that every particle which operates the counters by passing through them must also pass 

through the chamber.”xxix As Mott-Smith and Locher wrote,

“A track in the chamber will only be formed during a time interval of about 0.05 s just after the 

expansion is completed, so that only particles which operate the counters during this interval can 

be expected to produce a track. Since with the counting rates attainable the chance of obtaining 

more than one discharge during the ‘sensitive’ interval is negligibly small, the appearance of the 

tracks at the expansions for which the counters discharged during this interval is a definite 

indication that the discharge and the track were produced by the same particle emphasis 

added)”(Ref. 28, p. 1400).

As shown in Fig. 1, the counters T were connected, via the amplifier A, to the relay R, which 

remained closed for somewhat less than 0.01 s at each counter impulse. The cyclic expansion of the 

cloud chamber was made by setting the cam M into rotation. On the same shaft was a finger F which 

closed a pair of contacts just after the expansion and kept them closed for a predetermined interval. 

This finger was adjusted so that it held the contacts closed only during the sensitive interval. Thus, the 

signal lamp L lit only when a coincidence occurred.

Mott-Smith and Locher took over 1200 cloud chamber photographs, 38 of them showing 

significant tracks. By comparing the probability of finding a track on a photograph taken when no 

discharge of the counters occurred to that of finding a track coincident with a discharge, they observed 

that a considerably higher value was found for the latter. They concluded that “the track is produced 

by a cosmic-ray particle which travels through both the counter and the chamber,” and “the best 

assumption we can make is that these particles are electrons.”xxx “Only a fast material particle like an 
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electron could score such double hits.”xxxi In spite of this positive result, no further attempt was made 

by them to use a combined chamber-counter apparatus to obtain information on cosmic rays.

V. VISUALIZING COSMIC RAYS OVER EXTENDED PATHS

By operating a cloud chamber in the close proximity of a pair of counters it was discovered that 

both techniques were measuring the same phenomenon. In a few months, Mott-Smith and Locher’s 

experiment was made more definitive by a different experimental arrangement whose goal was the 

visualization of cosmic rays over much longer distances than previously thought possible by a 

standard cloud chamber.

This goal was pursued by researchers at the Bartol Research Foundation of The Franklin Institute, in

Swarthmore, Pennsylvania, headed by W. F. G. Swann.xxxii In April 1932, at the Washington Meeting of 

the American Physical Society, three research fellows of the Bartol Foundation, Jabez C. Street, 

Thomas C. Johnson, and W. Fleischer, Jr.,xxxiii reported on “an expansion chamber of new design.”xxxiv 

According to the authors, three of these chambers of new design were under development with the goal

of “studying cosmic ray tracks over extended lengths of their paths” by making the cloud chambers to 

work simultaneously.xxxv

The new chamber operated continuously and was “illuminated by photoflash lamps exploded by the

coincident discharge of two Geiger-Müller counters placed above and below the chamber.” The 

illumination took place “only if the coincident discharge of the counters occurs during the sensitive 

interval of the chamber.” By this arrangement, “a large percentage of the photographs obtained […] 

contain straight tracks in the line of the counters.” Johnson, Fleischer, and Street had succeeded in 

obtaining a tracks per photograph ratio much higher than before (for example, Mott-Smith and Locher had

obtained as many as one track every thirty expansions). The success of the Bartol apparatus was lessened 

by the fact that only a small fraction of coincidences was able to trigger the device. The high 

percentage of photographs containing significant tracks was obtained by taking photographs only when a 
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random event (a discharge produced by the passage of an ionizing particle) and another short-lived 

independent event (the expansion of a standard cloud chamber) occurred at the same time.

Notwithstanding this drawback, according to Johnson, the Bartol Foundation cloud chamber “of 

new design” was a success: “with this arrangement, out of fourteen photographs which were taken, ten 

contained tracks which would have passed through the counters”xxxvi (Fig. 2).

VI. LETTING PARTICLES TAKE THEIR OWN PHOTOGRAPHS

The automatic chamber devised at the Bartol Foundation with the goal of visualizing the cosmic 

rays particles over extended paths yielded a cosmic-ray tracks per photograph ratio much higher than 

before. However, this device had a major deficiency, namely, the very poor size of the sample of 

photographs that could be collected within a reasonable time. This deficiency was eliminated a few 

months later in Europe.

In summer 1931 the cloud chamber expert P. M. S. Blackett was joined at the Cavendish 

Laboratory in Cambridge by Giuseppe Occhialini, a young Italian physicist. Occhialini had become 

familiar with the Geiger-Müller counter technique while working in Florence with Bruno Rossi of 

coincidence counting fame. In the autumn of 1931, Blackett and Occhialini made the most of their 

expertise and jointly started to study the cosmic rays by improving the cloud chamber method.xxxvii The 

results obtained by the Cavendish researchers were first published in a letter sent to Nature on 21 

August 1932,xxxviii and then in a detailed paper communicated to the Royal Society in February 1933.xxxix

A major consideration guiding Blackett and Occhialini’s efforts was the agreement in intensity of 

the radiation. “From measurements with counters it is known that about 1.5 particles fall, from all 

directions, on 1 sq. cm. per [minute],” and that “roughly consistent with these figures are the results 

found with cloud chambers” (Ref. 39, p. 699). Another factor was the previous attempts to reconcile the

evidence obtained by the cloud chamber method with that by the coincidence counting techniques:
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“Mott-Smith and Locher had previously found a correlation between the occurrence of these tracks 

and the discharge of a counter, and recently Johnson, Fleischer and Street have used the 

coincidence of the discharges of two counters to operate the flash which illuminates a continuously 

working cloud chamber.” (Ref. 38)

Most importantly, the Cavendish researchers knew that when the cyclic cloud chamber method was 

applied to cosmic-ray phenomena a problem concerning the empirical base arose. Because the 

phenomena of interest were random and occurred rarely, the standard chambers were at a disadvantage 

because of the very short sensitive time.xl To overcome this problem, many photographs was collected 

and the method was therefore very time consuming and required much photographic film.

Blackett and Occhialini devised an expansion method that enabled the cosmic-ray particles “to take 

their own cloud photographs” (Ref. 39, p. 699). They arranged that “the simultaneous discharge of two 

Geiger-Müller counters due to the passage of one of these particles shall operate the expansion itself” 

(Ref. 38). As in the former methods, two counters were placed above and below the cloud chamber so 

that any particle that passed straight through them also had to pass through the illuminated part of the 

chamber (Fig. 3).

The counters were connected to a valve circuit arranged to record only simultaneous discharges of 

the two counters. The sequence of events was as follows. When a coincidence occurs, the grid of a 

thyratron [a gas-filled relay] connected to the amplifier becomes positive, so that the thyratron short 

circuits a small magnet that had previously held a light armature against a spring. The armature flies off

and moves a catch, which releases the valve under the piston, and so causes the expansion (Ref. 39, p. 

700).

An obvious property of this setup is that the chamber can expand only after the passage of the 

particle through its sensitive volume. As a consequence, the diffusion of the ions during the time 

between the passage of the cosmic-ray particle and the attainment of the supersaturation might 
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negatively affect the sharpness of the tracks. (This inconvenience was not at issue in the Bartol 

machine because an automatic expansion occurred there.) By carefully designing the various parts of 

the apparatus, the Cavendish researchers were able to overcome this problem. “It has been possible to 

make the total time from the discharge of the counters to the end of the expansion as small as 1/100 s. 

In this time the ions produced by an ionizing particle only diffuse a short distance from the position 

where they are formed: the resulting tracks have a breadth […] small enough to allow a very accurate 

measurement” (Ref. 25, p. 700).

This counter-controlled, or triggered, cloud chamber was a significant improvement on the standard

cyclic expansion methods, notably for its greater efficiency in collecting cosmic-ray tracks. As Blackett

and Occhialini reported, “on more than 75 per cent of the photographs so obtained […] are found the 

tracks of particles of high energy,”26 in contrast to the 2% obtained from the standard cloud chambers. 

The triggered cloud chamber was also a dramatic improvement over the Bartol apparatus because each 

coincidence discharge was, in principle, able to operate the cloud chamber expansion. In contrast to the 

Bartol machine the coincidence discharge could trigger the illumination apparatus only when the 

chamber was in the “right” phase of its expansion cycle. And, a fortiori, the Blackett and Occhialini 

apparatus was much better than Mott-Smith and Locher’s, which signalled only when an impulse out of

the coincidence circuit was temporally coincident with the expansion of a cyclic expanding cloud 

chamber. Figure 4 illustrates the different effects produced by the passage of a cosmic-ray particle (dashed 

arrow) through the counters of each of the three apparatus we have discussed.

The new method quickly proved very useful. As reported in February 1933 (Ref. 39), during late 

autumn 1932, Blackett and Occhialini accumulated some 700 photographs of cosmic-rays, including 

groups of associated rays that came to be known as “showers” of cosmic ray particles. Eighteen 

photographs were obtained on which there were tracks of more than eight high energy particles, and 

four photographs show more than twenty tracks. They quickly collected large data sets on range, 

ionization, curvature, and the direction of tracks, and concluded that the showers “consists chiefly of 
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positive and negative electrons” (Ref. 39, p. 708) (Fig. 5). According to Blackett and Occhialini, (Ref. 

39, p. 714) the existence of positrons and electrons in the cosmic ray showers could be explained by a 

pair production mechanism proposed by P. A. M. Dirac, who was a few hundreds of meters away from

the Cavendish Laboratory.xli

The existence of positrons in the showers raised the question of why they had previously eluded 

observation. According to Blackett and Occhialini, it seemed likely that the positrons “disappear by 

reacting with a negative electron to form two or more quanta” as expected by Dirac’s theory of the 

electron. According to this theory, “all but few of the quantum states of negative kinetic energy, which 

had previously defied physical interpretation, are taken to be filled with negative electrons. The few 

states which are unoccupied behave like ordinary particles with positive kinetic energy and a positive 

charge” (Ref. 39, p. 714). In 1931, Dirac found that these “holes” have the same mass as negative 

electrons. Thus, the showers had previously eluded observation because the positrons should have a 

short life “since it is easy for a negative electron to jump down into an unoccupied state, so filling up a

hole and leading to the simultaneous annihilation of a positive and negative electron, the energy being 

radiated as two quanta” (Ref. 39, p. 714). Blackett and Occhialini concluded that the life time of the 

positron “is long enough for it to be observed in the cloud chamber but short enough to explain why it 

had not been discovered by other methods” (Ref. 39, p. 716).

Blackett and Occhialini were able to collect no less than fourteen positron tracks (Ref. 25, p. 706), 

therefore providing in February 1933 compelling evidence for the existence of positrons. However, in 

spite of the high efficiency of the counter-controlled cloud chamber in showing positron tracks, 

Blackett and Occhialini narrowly missed the actual discovery of the positron. Evidence for the positron 

was first obtained a few months earlier by Anderson in the context of his Millikan driven study of 

cosmic radiation (see Sec. II). While studying the scattering of cosmic rays in a lead screen placed 

within a cloud chamber immersed in a strong magnetic field, Anderson obtained in August 1932 a few 

tracks that were likely due to positive particles of electronic mass.xlii The irony is that Anderson 
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overtook Blackett and Occhialini by means of a low efficiency cyclic cloud chamber, that is, by an 

apparatus where the collection of an ionizing track was a chance occurrence (Anderson took over 3000 

photographs to obtain a meager harvest of three positron tracks).

VII. EPILOGUE

Although cloud chambers have inherent limitations, rooted in the low density of the gas so that very

few particles collide with the nuclei inside the chamber, the approach underlying this apparatus, that is, 

the visualization of particle tracks, survived well into the second half of the twentieth century. In the 

late 1940s, the nuclear emulsion technique, coupled with precision microscopy, emerged. This 

technique used a photographic plate made by a dispersion of silver bromide crystals in a gelatine 

matrix. By exposing this emulsion to ionizing radiation, silver atoms are produced which are not visible

until the emulsion is developed. Cecil Powell received the Nobel prize in physics in 1950 for 

discovering the pion by means of this method. By the early 1950s, another visualization technique was 

successfully pursued, the bubble chamber. In close analogy with the cloud chamber technique, the 

bubble chamber was based on the principle of bubble formation in a liquid heated above its boiling 

point. If the liquid is suddenly expanded, the passage of ionizing particles can be detected by the trails 

of bubbles formed along the tracks of particles and captured by high speed photography. The 

development of the bubble chamber led to a Nobel prize in physics (Donald Glaser, 1960)xliii and 

notable discoveries (for example, weak neutral currents, 1973).xliv

Geiger-Müller counters (as well as scintillation detectors) were replaced by spark chambers and 

wire chambers. The spark chamber was devised in the early 1950s and is a direct outgrowth of the 

spark counter, which was a variation of the Geiger-Müller counter geometry. The observation that the 

spark between parallel plates occurs along the path taken by a particle as well as a number of important

improvements, made the spark chamber one of the principal particle detectors until the early 1970s. 

Out of the spark chamber, in turn, came the wire chamber, a sort of spark chamber with wires instead of
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plates, the multiwire proportional chamber (whose invention by George Charpak garnered the Nobel 

Prize in Physics in 1992),xlv and the drift chamber (a multiwire chamber on its side). The wire chamber

was used in the discovery of the charm quark in 1974 and in the discovery of the intermediate bosons 

in 1983 at CERN.xlvi By the early 1980s, fifty years after the development of the counter-controlled 

cloud chamber, the visualization and counting approaches advanced to a higher level through the 

production of electronically generated, computer-synthetized images.xlvii

VIII. CONCLUDING REMARKS

Historians of physics generally agree that the experimental expertise achieved at the Cavendish 

Laboratory in 1932 was fundamental to the development of the triggered cloud chamber. Surely, 

Blackett and Occhialini’s expertises were crucial. We have shown that another far less acknowledged 

contribution existed, that is, the role of those researchers who, in earlier months, prepared the basis for 

the Cavendish project.

Several months before the development of Blackett and Occhialini’s chamber, two hybrid devices, 

with the same geometrical arrangement but different design, achieved some success in the 

characterization of cosmic radiation. Most notably, these devices showed that the same physical 

stimulus was involved in the cloud chamber and in the coincidence counting technique. This far from 

simple achievement was a direct result of the capability of mastering the new counters in the 

coincidence method as well as the old cloud chamber method. The development of the hybrid devices 

in Texas and Pennsylvania shows that the Cavendish Laboratory was not the only place where these 

capabilities existed. However, only the Cavendish-style counters and cloud chamber apparatus enjoyed 

lasting success. Blackett and Occhialini had grasped that the most fruitful way to merge the cloud 

chamber and the counter techniques was focusing on the efficiency of track collection. Before them, 

“the [cloud chamber] method to photograph cosmic rays somewhat resemble[d] that of a hunter 

shooting in the air and hoping that a bird will fly over.”xlviii Following the development of the triggered 
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cloud chamber, it is as if the bird had learned how to shoot itself.
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FIGURE CAPTIONS

FIG. 1. A schematic diagram of the Mott-Smith and Locher apparatus. The lamp L lighted only 



when a coincidence in counters T and cloud chamber E occurred.

FIG. 2. Cosmic ray tracks photographed by the Johnson-Fleischer-Street automatic camera. 

Source: T. H. Johnson, “Cosmic rays – theory and experimentation,” J. Franklin Institute 214, 665-89 

(1932), p. 676.

FIG. 3. Design of the Blackett-Occhialini chamber. The cloud chamber is placed between the

counters (B1 and B2). A magnetic field is applied at right angles to the plane of the chamber.

FIG. 4. Schematic comparison of three devices merging cloud chamber and coincidence 

counting techniques. In the apparatus developed by Mott-Smith and Locher (a) a cosmic-ray particle 

passing through the counters must also pass through a cyclic expansion cloud chamber. A lamp shows 

when the expansion is coincident with a counter discharge. In the Johnson, Fleischer and Street 

counter-controlled apparatus (b) the coincidence operates the illumination apparatus when the cloud 

chamber is in the “right” phase of its expansion cycle. In the Blackett and Occhialini device (c) the 

coincidence operates the actual expansion of the cloud chamber.

FIG. 5. Photographs of “showers.” The track curved markedly to the right is due to a positron. 

Source: P. M. S. Blackett and G. Occhialini, “Some photographs of the tracks of penetrating 

radiation,” Proc. R. Society London, Ser. A 139, plate 22 facing p. 722 (1933).


