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On Flexible Dynamic Trait Replacement for JAVA-like LanguagesI

Lorenzo Bettini∗,a, Sara Capecchia, Ferruccio Damiania

aDipartimento di Informatica, Università di Torino

Abstract

Dynamic trait replacement is a programming language feature for changing the objects’ behavior at runtime by re-
placing some of the objects’ methods. In previous work on dynamic trait replacement for JAVA-like languages, the
objects’ methods that may be replaced must correspond exactly to a named trait used in the object’s class definition.
In this paper we propose the notion of replaceable: a programming language feature that decouples trait replacement
operation code and class declaration code, thus making it possible to refactor classes and to perform unanticipated
trait replacement operations without invalidating existing code. We give a formal account of our proposal through a
core calculus, FDTJ (FEATHERWEIGHT DYNAMIC TRAIT JAVA), equipped with a static type system guaranteeing
that in a well-typed program no runtime type error will take place.

Key words: Featherweight Java, Trait, Type System

1. Introduction

The term trait was used by Ungar et al. [43, 42], in the dynamically-typed prototype-based language SELF, to
describe a parent object to which an object may delegate some of its behavior. Subsequently, Schärli et al. [40, 18]
introduced traits in the dynamically-typed class-based language SQUEAK/SMALLTALK as a mechanism for fine-
grained reuse. A trait is a set of methods completely independent from any class hierarchy. Traits can be composed
to form new traits or classes and trait composition seems to provide a more flexible support to code reuse than (single
and multiple) class-based inheritance. They can be composed in an arbitrary order and require the composed trait or
class to resolve possible name conflicts explicitly. These features make traits more flexible and semantically simpler
than mixins [10, 27, 20, 4]. Because of their flexibility and simple semantics, traits have attracted a great deal of
attention and various formulations of traits within a nominal JAVA-like type system can be found in the literature (see,
e.g., [41, 31, 28, 37, 9]). A form of trait construct is present also in the recent programming language FORTRESS [3]
(where there is no class-based inheritance), while the “trait” construct incorporated in SCALA [32] is indeed a form
of mixin.

Dynamic trait replacement is the ability to change the behavior of an object at runtime by replacing one trait for
another. (Dynamic trait replacement was listed as an issue for further work in the papers on traits in the dynamically-
typed language SQUEAK/SMALLTALK [40, 18]). In the prototype-based language SELF dynamic trait replacement can
be achieved by changing the reference to the parent of an object. In the class-based setting, dynamic trait replacement
has been formalized by Smith and Drossopoulou through the JAVA-like language Chai3 [41]. The language Chai3
contains an operator for replacing a trait in an existing object. This operator requires that the trait to be replaced
corresponds exactly to a named trait used in the object’s class definition. That is, the sets of methods that may be
dynamically replaced are fixed in the object’s class definition and the trait replacement operations are coupled to the
names of the traits used in the object’s class definition.
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In this paper we propose a more flexible dynamic trait replacement operator. A distinguishing feature of our pro-
posal is the notion of replaceable, a feature that provides a means to decouple trait replacement operation code and
class declaration code, thus enabling class refactoring and unanticipated trait replacement operations without inval-
idating existing code. We give a formal account of our proposal through a core calculus, FDTJ (FEATHERWEIGHT
DYNAMIC TRAIT JAVA), equipped with a static type system guaranteeing that in a well-typed program no runtime
type error will take place. A preliminary version of the material presented in this paper appeared as [7].

Organization of the paper. Section 2 presents some background and motivation. Section 3 illustrates our proposal
through examples. Section 4 presents syntax, type system and operational semantics of FDTJ, a minimal core calculus
for dynamic trait replacement. Section 5 shows that the FDTJ static type system is sound: it ensures that in a well-
typed program no runtime error will take place. Section 6 discusses some related work. We conclude by summarizing
the paper and outlining possible directions for further work.

2. Background and Motivation

The only dynamic feature in JAVA-like languages is represented by dynamic binding, i.e., the dynamic selection
of a specific method implementation according to the runtime type of an object. This is not enough for representing
the dynamic evolution of objects that behave differently depending on their internal state, the context where they are
executing or the entities they interact with. All these possible behaviors may not be completely predictable in advance
and they are likely to change after the application has already been developed and used. While trying to forecast all
the possible evolutions of system entities, classes are often designed with too many responsibilities, most of which are
basically not used. Furthermore, the number of subclasses tend to grow dramatically when trying to compose different
functionalities into single modules.

Design patterns [21] are a programming techniques enabling to overcome some problematic deficiencies present
in class based object-oriented programming languages. For instance to extend and change dynamic objects behavior
at runtime in a class based context we can use Decorator and State pattern respectively. Design patterns are useful,
however they require manual programming (decreasing productivity). The programmer should explicitly comment
the code about the patterns used and their correct usage, but this still remains an informal specification, and most
of the responsibility is left to the user of such implemented components. On the contrary, linguistic extensions also
“document” the code [13]. For instance, the replaceable construct can be seen as an abstraction of objects’ roles/modes
that directly highlights the main concept underneath its use (see, e.g., RPolicy in Listing 10 and RClassification in
Listing 12). The correct use of the new linguistic constructs can be checked statically and once proved correct, their
usage is guaranteed, at runtime, not to produce any runtime type errors.

The replaceable construct aims to achieve, in a class-based statically-typed setting, part of the dynamic flexibility
typical of prototype-based languages [43, 42]. The same goal is shared, for instance, by the various proposals for
statically typed delegation features than can be found in the literature [25, 33, 35, 6] (we also refer to the Related
Work, Section 6). A distinguished feature of the replaceable construct is that it smoothly integrates into class based
languages that already support traits.

2.1. An Example

Consider an application handling bank accounts, represented by objects of class CAccount sketched in Listing 1,
where the interface IAccount lists all the public methods of account objects. Suppose that the application has to evolve
to support the unanticipated need to classify bank accounts as Gold, Standard or Bad according to their reliability. A
possible way of supporting the new feature is to rewrite the class CAccount by exploiting the design pattern State [21],
which is often used in contexts where it is needed to change object behaviors at runtime according to their state.

The evolved code is sketched in Listing 2, where the interface IAccountState, the classes CStandardAccount,
CBadAccount, CGoldAccount and CAccount represent a possible implementation using the State design pattern. The
interface IAccountState includes methods calculateInterests used to calculate interests (according to the balance and
the class of the customer) and sendSummary sending to the customer’s address a monthly summary of the operations
made on the account. Class CAccount includes an attribute of type IAccountState used to switch the state of the
current account through method changeState. The execution of methods belonging to the interface IAccountState
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interface IAccount {
double getBalance();
double calculateInterests();
void sendSummary();

}

class CAccount implements IAccount {
double balance;
Address a;

CAccount(...) {...}

double getBalance() { return balance; }
double calculateInterests() {...}
void sendSummary() {...}

}

Listing 1: The account example

are delegated to the attribute state that, thanks to dynamic binding, performs the body of the method associated to the
current state of the account. The state can change after a check of the associated balance as in the following code:

void checkCustomer(IAccount c) {
if (c.getBalance()<0) { c.changeState(new CBadAccount()); }
else if (c.getBalance()>1000) { c.changeState(new CGoldAccount()); }

}

Unfortunately, the above solution, that required a significant amount of manual programming, does not scale
well to unanticipated extensions. Suppose, for instance, that a new, unanticipated category of customers has to be
modeled: customers can decide to switch to an online-only account which is less expensive and does not send the
monthly summary. The problem is that this feature is independent from the customers’ state: online customers can
still be Gold, Standard and Bad. The hierarchy in Listing 2 has to be extended by adding the three following subclasses
(where OL stands for online):

class COLGoldAccount extends CGoldAccount { void sendSummary(Address a) {} }
class COLStandardAccount extends CStandardAccount { void sendSummary(Address a) {} }
class COLBadAccount extends CBadAccount { void sendSummary(Address a) {} }

Then, when transforming an account in a online one we have to check its state to find the right subclass:

void setOnline(CAccount b){
if (b instanceof CGoldAccount) { c.changeState(new COLGoldAccount()); }
else if (b instanceof CBadAccount) { c.changeState(new COLBadAccount()); }
else if (b instanceof CStandardAccount) { c.changeState(new COLStandardAccount()); }

}

This solution based on the State pattern is not so flexible w.r.t. unanticipated extensions since the combination of new
features with preexisting states causes subclasses explosion; moreover the code to change the state (as the setOnline
method above) is cumbersome and error prone in case of multiple combinations of state-dependent features.

To avoid the explosion of subclasses, one could use the decorator pattern [21] together with the state pattern: this
way the online state would be a decorator of the other states. However, this requires additional programming, and
might also require to refactor the state hierarchy in order to take in consideration also decorators. Indeed, the OnLine
decorator class would have a reference to a bank account, would redefine the method sendSummary as empty and
would forward all the other methods to the bank account reference. Furthermore, if the bank account changes in the
future, then also the decorator classes will have to be adapted.

The instanceof tests could be avoided implementing setOnline or changeState methods as multi-methods or in
general using dynamic overloading if the language supports these mechanisms (see, e.g., [16, 30, 12, 39, 14, 8]), that
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interface IAccountState {
double calculateInterests(double d);
void sendSummary(Address a);

}

class CGoldAccount implements IAccountState {
double calculateInterests(double d) {...}
void sendSummary(Address a) {...}

}

class CStandardAccount implements IAccountState {
double calculateInterests(double d) {...}
void sendSummary(Address a) {...}

}

class CBadAccount implements IAccountState {
double calculateInterests(double d) {...}
void sendSummary(Address a) {...}

}

interface IAccount {
void changeState(IAccountState s);
double getBalance();
double calculateInterests();
void sendSummary();

}

class CAccount implements IAccount {
double balance;
Address a;
IAccountState state;

CAccount(...) {...}

void changeState(IAccountState s) { state = s; }
double getBalance() { return balance; }
double calculateInterests() { return state.calculateInterests(balance); }
void sendSummary() { state.sendSummary(a); }

}

Listing 2: The evolved account example using the State pattern
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interface ISequence {
void in(Object o); // inserts an element
void out(); // removes an element
Object get(); // returns an element without removing it
boolean isEmpty(); /∗ checks whether this sequence is empty ∗/ }

trait TFifo is {
List l; // required field
void in(Object o) { l.addFirst(o); } // provided method
void out() { l.removeLast(); } // provided method
Object get() { return l.getLast(); } // provided method
boolean isEmpty() { return (l.size() == 0); } /∗ provided method ∗/ }

Listing 3: The interface ISequence and the trait TFifo

is, runtime method selection mechanism based on the dynamic types of the receiver and the arguments. However, any
time we want to add a new state to the hierarchy we also have to add the corresponding multi-method branch in the
class where the multi-method is defined.

In Section 3.4 we will show how, in a language that supports traits, the replaceable construct proposed in this
paper could be used to support these unanticipated software evolution examples.

3. Introducing Traits, Dynamic Trait Replacement and Replaceables

In Sections 3.1, 3.2 and 3.3 we introduce the notions of trait, dynamic trait replacement and replaceable through
simple examples about data structures for sequences. Then in Section 3.4 we code the account example of Section 2.1
using our new language constructs. In the examples we exploit a JAVA-like notation and use a more general syntax
(including, e.g., the types void and int, the assignment operator, etc.) than the one of the calculus that we will present
in Section 4.

3.1. Introducing Traits

Consider the development of a class FifoSequence, by means of a First-in-first-out policy, implementing the
interface ISequence in Listing 3.

In a language with traits the class FifoSequence can be developed by first introducing a trait TFifo providing the
methods (see Listing 3) and then composing the class, by exploiting the trait, as follows

class FifoSequence implements ISequence by TFifo {
List l; // provided field
FifoSequence() { this.l = new LinkedList(); } // constructor

}

Subsequently, a class LifoSequence implementing the ISequence interface by means of a Last-in-first-out policy
can be developed by reusing the methods in and isEmpty provided by the trait TFifo to define the trait TLifo in Listing 4
(the operation exclude forms a new trait by excluding a method from a given trait and the sum operation, +, merges
two traits to form a new trait — see [18, 9]). The class LifoSequence can be defined as follows

class LifoSequence implements ISequence by TLifo {
List l;
LifoSequence() { this.l = new LinkedList(); }

}
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trait TLifo is (TFifo[exclude out][exclude get])
+ { List l; // required field

void out() { l.removeFirst(); } // provided method
Object get() { return l.getFirst(); } /∗ provided method ∗/ }

Listing 4: The trait TLifo

class Sequence implements ISequence by TFifo {
List l;
Sequence() { this.l = new LinkedList(); }

}

Listing 5: The class Sequence

3.2. Introducing Dynamic Trait Replacement
The classes FifoSequence and LifoSequence illustrate the use of traits as a static construct: the composition of

traits into a class is fixed, once and for all, at compile time. For an example illustrating dynamic trait replacement con-
sider the problem of developing a method changePolicy that takes as argument an instance s of the class Sequence of
Listing 5, changes the extraction policy of s, extracts an element from s (according to the new policy), and terminates
by changing further the insertion/extraction policy of s.

The Lexicographical-ordering extraction policy (that extracts elements from a sequence according to lexicograph-
ical ordering on the values returned by invoking the toString method on its elements) and the First-in-first-out inser-
tion/extraction policy can be described by the traits TLoExtractionPolicy and TFifoPolicy in Listing 6, respectively.

During the execution, the extraction policy of the sequence s can be changed into Lexicographical-ordering by
means of the trait replacement operation s{TLoExtractionPolicy}. Once the replacement has taken place, invoking
the methods get and out will select the implementation of such methods as provided by TLoExtractionPolicy. The
insertion/extraction policy can be then changed to First-in-first-out by executing the operation s{TFifoPolicy}. This is
illustrated in the following code:

void changePolicy(Sequence s) {
s{TLoExtractionPolicy}; // (1)
System.out.println(s.get());
s.out();
s{TFifoPolicy} // (2)

}

Note that there is no coupling between the definition of the class Sequence and the trait replacement operations.
Consider, for instance, the need to develop the methods disableIn and enableIn that take a sequence object s and
disable/enable the in operation without affecting the get and out operations. The methods disableIn and enableIn can
be written, without changing the code of the class Sequence, by first defining the traits TinDisabled and TinEnabled
in Listing 7. Then, the code of the methods is as follows

void disableIn(Sequence s) {
s{TinDisabled}; // (3)

}

void enableIn(Sequence s) {
s{TinEnabled}; // (4)

}

Since in the proposed approach there is no coupling between the definition of a class and the trait replacement
operations on its instances, any change to the code of class Sequence that preserves the signatures of its methods
does not affect existing trait replacement operations. For instance, the trait replacement operations (1), (2), (3) and
(4) that have been written to deal with the class Sequence in Listing 5 are still valid when the class is rewritten, as in
Listing 8, in order to make sequences to be created as Last-in-first-out sequences.
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trait TLoExtractionPolicy is {
List l; // required field
void out() { ... } // provided method (removes the minimum element according to Lexicographical−ordering)
Object get() { ... } /∗ provided method (returns the minimum element according to Lexicographical−ordering) ∗/ }

trait TFifoPolicy is {
List l; // required field
void in(Object o) { l.addFirst(o); } // provided method
void out() { l.removeLast(); } // provided method
Object get() { return l.getLast(); } /∗ provided method ∗/ }

Listing 6: The traits TFifoPolicy and TLoExtractionPolicy

trait TinDisabled is { void in(Object o) { } /∗ provided method ∗/ }

trait TinEnabled is { void in(Object o) { l.addFirst(o); } /∗ provided method ∗/ }

Listing 7: The traits TinDisabled and TinEnabled

3.3. Introducing Replaceables
Consider the problem of developing a more general version of the method changePolicy of Section 3.2, let us

call it changePolicy1, that can accept as argument an object s belonging to any class that implements the interface
ISequence. Unfortunately, the signature

void changePolicy1(ISequence s)

is not able to guarantee at compile time that the dynamic replacement of the methods in, out and get of s is type
safe. In fact it is not enough to simply check that the replacing methods have the same signatures as the replaced
ones: these methods may rely on other methods and/or fields. In order to be able to statically type-check runtime
method replacement when the static type of the target expression e of the replacement operation e{T} is not a class,
we introduce the notion of replaceable as mean to specify these requirements.

A replaceable is a predicate over a set of methods (that is, over a trait), declared independently from any interface
hierarchy and from any other replaceable declaration. The syntax of a replaceable definition is as follows

replaceable R is {S;}〈G; p Z; p J;〉

where S and Z are disjoint sequences of method signatures (S are the methods they may be replaced and Z are the
methods that may be used by the methods in S and may not be replaced), G is a sequence of fields (the fields that may
be used by the methods S∪Z) and J is a sequence of interface names (the interfaces that may be used as types of this
within the bodies of the methods S∪Z).

Interface names and replaceable names are used to form a novel kind of source language type that contains the
information needed for statically type-checking runtime method replacement. Namely, given an interface I and a
replaceable

replaceable R is {S;}〈G; p Z; p J;〉

I{R} is the type of references to any object whose class implements the interface I and has the methods described by
the replaceable R. Through a reference of type I{R} it is possible

• to invoke on the referenced object the methods of the interface I, and

• to replace, in the referenced object, any of the methods with signatures S by any trait that satisfies R.

Note that, with respect to method invocation, the type I{R} is equivalent to the standard JAVA type I. The methods with
signatures Z may not be replaced. The signatures Z provide, together with the fields G and the interfaces J, additional
constraints needed to ensure safety. Namely, to ensure safety, the class of the referenced object must:
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class Sequence implements ISequence by TLifo {
List l;
Sequence() { this.l = new LinkedList(); }

}

Listing 8: A Last-in-first-out version of the class Sequence

replaceable RExample is { void outTwice(); boolean isNotEmpty(); boolean test(); }
< ISomeSequence s; ISomeSequenceComparator c;
| boolean isEmpty(); void out();
| ISomeSequence; >

interface ISomeSequence extends ISequence { void outTwice(); boolean isNotEmpty(); boolean test(); }

interface ISomeSequenceComparator { boolean compare(ISomeSequence s1, ISomeSequence s2); }

trait TExample1 is { ISomeSequence s; // required field
ISomeSequenceComparator c; // required field
void out(); // required method
boolean isEmpty(); // required method
void outTwice() { out(); out(); } // provided method
boolean isNotEmpty() { return (! isEmpty()); } // provided method
boolean test() { return c.compare(this,s); } /∗ provided method ∗/ }

trait TExample2 is { void out(); // required method
void outTwice() { out(); out(); } /∗ provided method ∗/ }

Listing 9: The replaceable RExample, the interfaces ISomeSequence, ISomeSequenceComparator and the traits
TExample1, TExample2

• implement all the interfaces I∪J;

• have all the fields G; and

• have all the methods S∪Z.

A trait T (that is, a set of methods) satisfies the replaceable R if and only if T consists of methods whose signatures
occur in S and whose bodies

• select only the fields G on this,

• select only the methods S∪Z on this,

• assume only the interfaces J as nominal types of this, i.e.,

– pass this as argument to a method only if there exists an interface in J that is a subtype of the type of the
corresponding formal parameter of the method, and

– return this as result of a method only if there exists an interface in J that is a subtype of the return type of
the method.

For instance, let us consider the replaceable RExample, the interfaces ISomeSequence and ISomeSequenceCom-
parator and the traits TExample1 and TExample2 in Listing 9: RExample is satisfied by both TExample1 and
TExample2.

Let EmptyR be a distinguished name for the replaceable defined by replaceable EmptyR is {•}〈• p • p •〉, which
is satisfied only by the empty set of methods. According to the above description, for every interface I, we will identify
the types I{EmptyR} and I.
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replaceable RPolicy is { void out(); Object get(); void in(Object o); } < List l; | | >

Listing 10: The replaceable RPolicy

Remark 3.1. While presenting the type system we will introduce the specificationof operator, which automatically
extracts a replaceable definition from a trait (see Definition 4.12). In a full language, this operator would relieve
programmers of the burden of writing all the details of replaceable declarations. For instance, the definition of the
replaceable RExample in Listing 9 could also be written as: replaceable RExample is specificationof(TExample1).

Now we can go back to the problem of developing the changePolicy1 method. Consider the replaceable RPolicy
in Listing 10. According to the above explanation, a variable s of type ISequence{RPolicy} can be assigned an
instance of any class that implements the interface ISequence and has the methods described by the replaceable
RPolicy (like the class Sequence in Listing 5). During the execution, the extraction policy of the sequence can be
changed into Lexicographical-ordering by means of the trait replacement operation s{TLoExtractionPolicy}. Once
the replacement has taken place, invoking the methods get and out will select the implementation of such methods
as provided by TLoExtractionPolicy. The insertion/extraction policy can be then changed to First-in-first-out by
executing the operation s{TFifoPolicy}. This is illustrated in the following code:

void changePolicy1(ISequence{RPolicy} s) {
s{TLoExtractionPolicy}; // (1’)
System.out.println(s.get());
s.out();
s{TFifoPolicy} // (2’)

}

The replaceable RPolicy describes both a subset of the methods of any class whose instances may be referenced
through a variable of type ISequence{RPolicy} and a superset of the methods of the traits used by the trait replacement
operations (1’) and (2’); and this is all that is required to make the above code correct. The variant of the methods
disableIn and enableIn of Section 3.2 that works on arguments of type ISequence{RPolicy} is as follows

void disableIn1(ISequence{RPolicy} s) {
s{TinDisabled}; // (3’)

}

void enableIn1(ISequence{RPolicy} s) {
s{TinEnabled}; // (4’)

}

Note that the trait replacement operations (1’), (2’), (3’) and (4’) work with both the versions of the class Sequence
given in Listings 5 and 8.

3.4. The Account Example
Let us come back to the example in Section 2.1. In a language with traits the code in Listing 1 would have been

written as in Listing 11, where the trait TAccount provides all the methods of account objects.1

The unanticipated need to classify bank accounts as Gold, Standard or Bad according to their reliability can be
addressed by adding the code in Listing 12. There are three additional traits: TStandardAccount, TBadAccount
and TGoldAccount that implement reliability-dependent methods. The replaceable RClassification is used to define
references of type IAccount{RClassification}: the referenced objects can replace the implementation of the methods
calculateInterests and sendSummary. Now let us implement method checkCustomer introduced in Section 2.1:

void checkCustomer(IAccount{RClassification} c) {
if (c.getBalance() < 0) c{TBadAccount};
else if (c.getBalance() >1000) c{TGoldAccount};

}

1In a language with traits it is good practice not to define methods in the body of classes, in order to maximize the opportunity for reuse.
9



interface IAccount ... // As in Listing 1

trait TAccount is { double balance; Address a;
double getBalance(){ return balance; }
double calculateInterests() {...}
void sendSummary() {...}

}

class CAccount implements IAccount by TAccount {
double balance;
Address a;

CAccount(...) {...}
}

Listing 11: The account example using traits

trait TStandardAccount is TAccount[exclude getBalance]

trait TGoldAccount is { double balance; Address a;
double calculateInterests() {...}
void sendSummary() {...}

}

trait TBadAccount is { double balance; Address a;
double calculateInterests() {...}
void sendSummary() {...}

}

replaceable RClassification is { double calculateInterests(); void sendSummary(); }
< double balance; Address a; | | >

Listing 12: Additional code for the evolved account example using traits and replaceables
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interface IAccount ... // as in Listing 1

trait TBaseAccount { double balance;
double getBalance(){ return balance; }

}

trait TStandardAccount is { double balance; Address a;
double calculateInterests() {...}
void sendSummary() {...}

}

trait TGoldAccount is ... // As in Listing 12

trait TBadAccount is ... // As in Listing 12

class CAccount implements IAccount by TBaseAccount + TStandardAccount {
... // As in Listing 11

}

replaceable RClassification is ... // as in Listing 12

Listing 13: A refactoring of the code of the evolved account example in Listings 11 and 12

The parameter of the method is of type IAccount{RClassification}. With respect to the implementation in Section 2.1
we just have to perform the replaceable operation c{TSomeAccount} instead of: (i) creating a new object representing
the state, and (ii) assign it to the corresponding c field through the method changeState. Later, to model online
accounts, we just have to add a trait implementing the new version of sendSummary:

trait TOnLine { void sendSummary() {} }

and then to declare the parameter of the setOnline method as IAccount{RClassification}:

void setOnline(IAccount{RClassification} c){
c{TOnLine};

}

Using traits and replaceables we do not have subclass explosion and we do not have to use instanceof tests in the body
of the method setOnline: we just have to write the replacement operation c{Online}. The benefits of our solution with
respect to the State pattern can be summarized as in the following:

• the management of the state associated to an object, that is a dedicated field and a method to change it, is no
more needed; and

• different sets of states depending on orthogonal features can be combined and added in a flexible way.

It is worth mentioning that the same unanticipated software evolution can be accomplished starting from the code
in Listing 1, that could be seen as legacy code developed in a version of the language that does not support traits. The
code to be added is essentially the same as in Listing 12, the only difference is that trait TStandardAccount has to be
defined from scratch by introducing a duplication of the code of the methods calculateInterests and sendSummary.

Finally, Listing 13 illustrates a refactoring of the code of the evolved bank account in Listings 11 and 12. The
trait TBaseAccount implements those methods that are independent from reliability (getBalance) while traits TStan-
dardAccount, TBadAccount and TGoldAccount implements reliability-dependent methods. The class CAccount
implements the behavior of standard accounts by traits TBaseAccount and TStandardAccount.
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ID ::= interface I extends I { S; } interfaces
S ::= U m (U x) method headers
U ::= I | I{R} source language types

RD ::= replaceable R is {S;}〈F; p S; p I;〉 replaceables

F ::= U f fields

TD ::= trait T is TE traits
TE ::= {F; S; M} | T trait expressions
M ::= S { return e; } methods
e ::= x | this.f | e.m(e) | new C(e) |e{T} expressions

CD ::= class C implements I by TE { F; K } classes
K ::= C(U f) { this.f = f; } constructors

Figure 1: FDTJ Syntax

4. A Calculus for Dynamic Traits

In this section we introduce FDTJ (FEATHERWEIGHT DYNAMIC TRAIT JAVA), a minimal core calculus, in
the spirit of FJ (FEATHERWEIGHT JAVA) [24], for interfaces, replaceables, traits, and classes. Since our goal is to
provide a foundation for flexible dynamic trait replacement within a JAVA-like nominal type system, FDTJ does not
model type casts, trait composition operations and class-based inheritance, which are orthogonal to dynamic trait
replacement. Moreover, to further simplify the calculus, fields can be selected only on this.

The distinguishing design choices of FDTJ are the following.

• The novel replaceable construct specifies methods that can be dynamically replaced in an object by other meth-
ods that satisfy the specification. It provides a means to decouple trait replacement operation code and class
declaration code, making it possible to refactor classes and performing unanticipated trait replacement opera-
tions without invalidating existing code. Replaceables are declared independently from interface declarations
and from other replaceable declarations.

• The type system supports the typechecking of traits in isolation from the trait replacement operations that use
them, so that it is possible to typecheck a method defined in a trait only once (instead of having to typecheck it
in every trait replacement operation using that trait).

• Class names and trait names are not source language types. This choice allows us to simplify the calculus and
to focus on the challenging problem of typing a dynamic trait replacement expression e{T} when the (compile-
time) type of the expression e is not a class (Chai3 [41] does not consider interfaces).

Extending the calculus with type casts and trait composition operations is straightforward. The corresponding rules
can be obtained by adapting those presented in [9], where dynamic trait replacement is not considered, to deal with
the richer types and constraints introduced in this paper. Moreover, adding class-based inheritance and allowing the
programmer to use class names and trait names as types should not pose particular technical problems (it would just
complicate the calculus).

4.1. Syntax

The syntax of FDTJ is presented in Figure 1. We use the overbar sequence notation according to [24]. For
instance, the pair “Ux” stands for “U1 x1, ...,Un xn”, and “Uf;” stands for “U1 f1; ...;Un fn;”. The empty sequence is
denoted by “•” and the length of a sequence S is denoted by |S|. Sequences of named elements (interface definitions,
method headers, method definitions, etc.) are assumed not to contain elements with the same name. Given a sequence
of named elements D, the sequence of the names of the elements of D is denoted by names(D), the subsequence of the
elements of D with the names n is denoted by choose(D,n), and exclude(D,n) denotes the sequence obtained from
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D by removing the elements with the names n. We use a set-based notation for operators over sequences of named
elements. In the union and in the intersection of sequences, denoted by S∪Z and S∩Z, respectively, it is assumed
that if n ∈ names(S) and n ∈ names(Z) then choose(S,n) = choose(Z,n). In the disjoint union of sequences, denoted
by S ·Z, it is assumed that names(S)∩names(Z) = •.

A trait definition trait T is TE associates a trait name T to a trait expression TE. A trait expression is either a
basic trait expression or a trait name. A basic trait expression {F; S; M} defines methods M and declares required
fields F and methods S (where names(S)∩ names(M) = •). Required fields and methods can be directly accessed
(i.e., selected on this) within the bodies of the methods M.

A class definition class C implements I by TE { F; K } defines its fields, F, and the constructor, K, which shows
how to initialize all the fields with the received arguments. The class does not directly define the methods of its
interface I: it relies on a trait expression TE for this (with the clause by).

The subset of FDTJ obtained by removing the portions of the syntax highlighted in gray maps to a subset of JAVA.
Namely, the FDTJ class class C implements I by {F; •; M} {G; K } (where the required field declarations F are a
subset of the provided field declarations G) can be understood as the JAVA class class C implements I { G; K M }.

The expression e{T} describes the dynamic replacement, in the object denoted by e, of the methods defined by
the trait T for the corresponding methods of the object. For instance, if T is defined by trait T is {F; S; M}, then the
methods of object e with names names(M) will be replaced by the methods M.

A replaceable definition replaceable R is {S;}〈F; p Z; p I;〉 defines a replaceable of name R.
A class table CT is a map from class names to class declarations. Similarly, an interface table IT, a trait table TT,

and a replaceable table RT map interface, trait, and replaceable names to interface, trait and replaceable declarations,
respectively. An FDTJ program is a 5-tuple (IT,TT,RT,CT,e), where e is the expression to be executed. Following
FJ [24], in presenting the type system and the operational semantics we assume fixed, global tables IT, TT, RT, and CT.
We also assume that these tables are well-formed, i.e., they contain an entry for each interface/trait/replaceable/class
mentioned in the program, and the interface subtyping and trait reuse graphs are acyclic. In the following, instead
of writing CT(C) = class C . . . we will simply write class C . . .; the same convention will be used for interfaces,
replaceables and traits.

4.1.1. Lookup Functions and Method Signatures
In order to define FDTJ well-formed source language types, typing rules, and reduction rules we need a few

lookup functions, given in Figure 2. The fields of a class C or required by a replaceable R are denoted by fields(C)
and fields(R), respectively. Given a source language type U = I{R}, we write fields(U) to denote the fields required
by R.

The interfaces implemented by the class C are denoted by interfaces(C). Given a source language type U = I{R},
we write interfaces(U) to denote the interface name I, while allInterfaces(U) denotes the sequence formed by the
interface name I and all the interface names listed in the replaceable R.

The methods of a class C or of a trait expression TE are denoted by methods(C) and methods(TE), respectively.
Method signatures, ranged over by σ and ζ , are method headers deprived of parameter names. The signature

associated to the method header S and the signature associated to the method definition M are denoted by mSig(S)
and mSig(M), respectively. We write mSig(C) and mSig(I) to denote the signatures of all the methods of the class
C and the signatures of all the methods of the interface I, respectively. Given a source language type U = I{R} we
write mSig(U) to denote the sequence containing the signatures of the interface I, the signatures of the method headers
occurring in R and the signatures of the interfaces whose names are listed in R. Note that the lookup function mSig(·)
is also defined on sequences.

Convention 4.1. Since, in the method headers listed in a replaceable definition replaceable R is {S;}〈G; p Z; p J;〉,
the names of the parameters of the methods are immaterial, in the following we will sometimes write replaceable
definitions by using method signatures instead of method headers.

4.1.2. Well-Formed Source Language Types
A source language type U is well-formed if and only if the lookup mSig(U) is defined, that is, there are no

conflicts in the collected method signatures (recall that: sequences of method signatures are assumed not to contain
13



Fields lookup (function fields):

fields(C) = F if class C · · · { F; C(F){· · ·} }
fields(R) = F if replaceable R is {· · ·}〈F; p · · · p · · ·〉
fields(I{R}) = fields(R)

Interfaces lookup (functions interfaces and allInterfaces):

interfaces(C) = I if class C implements I by · · ·
interfaces(I{R}) = I
allInterfaces(I{R}) = I∪J if replaceable R is {· · ·}〈· · · p · · · p J;〉

Methods lookup (function methods):

methods(C) = methods(TE) if class C · · · by TE { · · · }
methods(T) = methods(TE) if trait T is TE
methods({· · · ; · · · ; M}) = M

Method signatures lookup (function mSig):

mSig(Um(U1 x1, ...,Un xn)) = Um(U1, ...,Un)
mSig(S1...Sn) = mSig(S1) · ... ·mSig(Sn)
mSig(S {return e;}) = mSig(S)
mSig(M1...Mn) = mSig(M1) · ... ·mSig(Mn)
mSig(C) = mSig(methods(C))
mSig(C1, ...,Cn) = mSig(C1) · ... ·mSig(Cn)
mSig(I) = mSig(I)∪mSig(S) if interface Iextends I {S; }
mSig(I1, ..., In) = mSig(I1)∪ ...∪mSig(In)
mSig(I{R}) = mSig(I)∪mSig(S)∪mSig(Z)∪mSig(J) if replaceableR is{S;}〈G; p Z; p J;〉
mSig(U1, ...,Un) = mSig(U1)∪ ...∪mSig(Un)

Figure 2: FDTJ: Lookup functions

signatures with the same method name); in the union of sequences, σ ∪ ζ , it is assumed that if n ∈ names(σ) and
n ∈ names(ζ ) then choose(σ ,n) = choose(ζ ,n); and in the disjoint union of sequences, σ · ζ , it is assumed that
names(σ)∩names(ζ ) = •). We assume that all the source language types occurring in a program are well-formed.

4.2. Typing
In order to be useful in practice a JAVA-like nominal type system for static and dynamic traits has to support the

typechecking of traits in isolation from both the trait (static) composition and (dynamic) replacement operations that
use them, so that it is possible to typecheck a method defined in a trait only once (instead of having to typecheck it in
every trait composition or replacement operation using that trait).

The FDTJ type system supports the above property through the use of constraints and the use of a suitable
combination of nominal and structural typing. Within a basic trait expression, the uses of method parameters are
type-checked according to the nominal notion of typing defined by the interface hierarchy and to a structural notion
of typing for replaceables, while the uses of this are type-checked according to a structural notion of typing that takes
into account the fields and methods required by the trait and the methods provided by the trait.

4.2.1. Types and Constraints
The syntax of source language types, ranged over by U and V, has been already given in Figure 1. Pseudo-nominal

types, ranged over by π , are either class names or a source language types (remember that, as explained in Section 3.3,
for every interface I we identify the types I{EmptyR} and I).2 The syntax of pseudo-nominal types is as follows:

2The term “pseudo-nominal” aims to recall that these types include both nominal types and types of the shape I{R} (the source level types) that
are composed by a nominal type (the interface name I) and by another component (the replaceable name R) that is not a nominal type.
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π ::= C | U .

The syntax of the structural types for the this pseudo-variable, ranged over by τ , is as follows: τ ::= 〈 F p σ 〉 .

The pair 〈 F p σ 〉 specifies that this has the fields F and methods with signatures σ . The syntax of the types for
expressions, ranged over by θ , is as follows: θ ::= π | τ . That is, a type for expressions is either a pseudo-
nominal type or a structural type for this.

Besides assigning to each expression e a type describing the object yielded by the evaluation of e, the FDTJ type
system infers also the constraints on this imposed by its use within e (this-constraints) and the constraints on traits
imposed by the dynamic trait replacement expressions within e (trait-constraints).

• The syntax of this-constraints, ranged over by γ , is as follows: γ ::= 〈 F p σ p U 〉 . The triple 〈 F p σ p U 〉
specifies that the expression e selects the fields F and the methods σ on this, and requires that this has the types
U. In particular, the types U are the types of the method’s formal parameters to which this is passed inside the
expression e. We recall that this will assume a meaning according to the class where the traits will be used.

• Trait-constraints, ranged over by ∆, are sets of trait-replaceable inclusions. The syntax of trait-replaceable
inclusions, ranged over by δ , is as follows: δ ::= TlR . The pair TlR specifies that the set of methods
defined by the trait T satisfies (according to Definition 4.6) the replaceable R.

Method types, ranged over by µ , are triples ζ p γ p ∆ where ζ is the method’s signature and γ and ∆ are the constraints
inferred for the method’s body. The typing rule for classes will check that the this-constraints inferred for the bodies
of the methods of the class are satisfied. Trait-constraints will be checked after checking all the trait definitions in the
program, when the typings of all traits mentioned in the constraints will be available (see Definition 4.16).

Remark 4.2. The FDTJ type system collects constraints on a per-method basis, rather than on a per-trait basis (as
usual in the nominal type systems that can be found in the literature). Collection constraints on a per-method basis
has been proposed, in a structurally typed setting, by Reppy and Turon [36], and subsequently, in connection with
a JAVA-like nominal type system, by Bono et al [9]. Both the proposals [36] and [9] do not consider dynamic trait
replacement. Collecting method dependencies on a per-method basis is needed in order to be able to deal with the
method exclusion operation (mentioned in Section 3.1). Since the FDTJ calculus does not include trait composition
operations, the type system could be safely modified to collect constraints on a per-trait basis and to avoid to collect
the constraints on fields and methods selected on this in the this-constraints inferred by the typing rules for expressions
and method definitions given in Figure 5 (the typing rule for basic trait expressions, given in Figure 6, could simply
take the declarations contained in the basic trait expressions). This would slightly simplify the presentation of the
system. However, we have decided to collect constraint on a per-method basis since this makes it straightforward to
extend the system to deal with trait composition operations by adapting the typing rules in [9].

4.2.2. Subtyping Rules
To simplify the presentation of the subtyping rules we introduce the specificationof operation for classes. That is,

a lookup function that, given a class name C, returns a replaceable declaration right-hand side that “characterizes” the
set of methods of C.

Definition 4.3. Let class C implements I by TE { F; K }. We define specificationof(C) as {mSig(C);}〈F; p • p I;〉.

Convention 4.4. For every class C, we write RC to denote a distinguished replaceable name (that cannot occur in
source programs) and assume the replaceable definition replaceableRC isspecificationof(C).

The subinterfacing relation, denoted by E, is the reflexive and transitive closure of the immediate subinterfacing
relation declared by the extends clauses in the interface table IT.

Replaceable inclusion and subtyping rules are given in Figure 3. The replaceable inclusion rule models the fact
that, if the replaceable R is included into the replaceable R′, then every set of methods that satisfies (according to
the explanation given in Section 3.3) R satisfies also R′. Note that the replaceable inclusion relation is reflexive and
transitive. In order to ensure that replaceable declarations are independent from other replaceable declarations, we
decided not to adopt a nominal inclusion relation between replaceables.
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Replaceable inclusion rule:
replaceable R is {S;}〈G; p Z; p J;〉 replaceable R′ is {S′;}〈G′; p Z′; p J′;〉
mSig(S)⊆ mSig(S′) G⊆G

′ mSig(S∪Z)⊆ mSig(S′∪Z′) ∀J ∈ J, ∃J′ ∈ J′, J′ E J
Rv R′

Subtyping rules:

C <: C
class C implements J by · · · ∃J ∈ J, J{RC}<: I{R}

C <: I{R}
IE I′ Rv R′

I{R′}<: I′{R}

Figure 3: FDTJ: Replaceable inclusion and subtyping

The subtyping relation is syntax directed. The first rule is the standard reflexivity rule for classes. Recall the
meaning of types of the form I{R} (illustrated in Section 3.3). The second rule exploits Definition 4.3 and Conven-
tion 4.4, and then relies on the third rule. The third rule exploits the subinterfacing and replaceable inclusion relations
(replaceable inclusion is exploited contra-variantly because replaceables are requirements, so a subtype cannot have
more requirements). Note that reflexivity and transitivity are admissible. Moreover, since the types I{EmptyR} and I
are identified, subtyping is an extension of subinterfacing.

The rules integrate nominal subtyping (expressed by the implements clauses in the class table CT and by the
subinterfacing relation) and structural subtyping (expressed by the replaceable inclusion relation, that exploits the
replaceable component R of a source language type I{R} to ensure that the subtype has all the fields/methods and
implements all the interfaces of the supertype).

Example 4.5. Consider the interface ISequence in Listing 3, the interface ISomeSequence in Listing 9, the re-
placeable RPolicy in Listing 10, and the following replaceable

replaceable RExtractionPolicy is { void out(); Object get(); } < List l; | | >

Both RExtractionPolicyv RPolicy and ISomeSequence{RPolicy}<: ISequence{RExtractionPolicy} hold.
Consider also the replaceable RExample in Listing 9 and the replaceable RAnotherExample in Example 4.7.

Both RAnotherExample v RExample and ISomeSequence{RExample} <: ISomeSequence{RAnotherExample}
hold.

4.2.3. On the Meaning of Replaceables and Replaceable Inclusion
A replaceable is a predicate over a set of methods (that is, over a trait), declared independently from any interface

declaration and from other replaceable declarations. The following definition describes in a precise way, by relying
on the subtyping relation defined in Figure 3, when a set of methods satisfies a replaceable (this definition has been
already illustrated in Section 3.3, when no definition of the subtyping relation was available).

Definition 4.6. A set of methods satisfies the replaceable replaceable R is {S;}〈G; p Z; p J;〉 if and only if the set
consists of methods whose signatures occur in mSig(S) and whose bodies

• select only the fields G on this,

• select only the methods S ·Z on this,

• assume only the interfaces J as nominal types for this, that is,

– pass this as argument to a method only if there exists J ∈ J such that J{R} is a subtype of the type of the
corresponding formal parameter of the method, and

– return this only if there exists J ∈ J such that J{R} is a subtype of the return type of the method.

Example 4.7. Both the trait TFifoPolicy in Listing 6 and TinDisabled in Listing 7 satisfy the replaceable RPolicy in
Listing 10. Instead, the trait TFifo in Listing 3 does not satisfy the replaceable RPolicy (because of method isEmpty).

Consider the replaceable RExample and the traits TExample1 and TExample2 in Listing 9. Both TExample1
and TExample2 satisfy RExample. The fact that TExample1 satisfies RExample relies on the fact that ISomeSe-
quence{RExample} is a subtype of ISomeSequence (according to the subtyping relation <: in Figure 3). The trait
TExample2 satisfies also the following replaceable
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Interface definition typing:

mSig(I) = · · ·
` interface I extends J { S } OK

(I-OK)

Replaceable definition typing:

names(S)∩names(Z) = • mSig(S∪Z)∪mSig(J) = · · ·
` replaceable R is {S;}〈G; p Z; p J;〉 OK

(R-OK)

Figure 4: FDTJ typing rules for interface definitions and replaceable definitions

replaceable RAnotherExample is { void outTwice(); boolean isNotEmpty(); boolean test(); }
< ISomeSequenceComparator c; | void out(); | >

Instead, the trait TExample1 does not satisfy RAnotherExample because the code of the method isNotEmpty selects
the method isEmpty on this and the code of the method test selects the field s on this and passes this as argument to
a method with formal parameter ISomeSequence.

The following proposition illustrates the meaning of Definition 4.3 and Convention 4.4 in terms of Definition 4.6
(the proof is straightforward).

Proposition 4.8. For every class C, if M is the set of methods of C, then M satisfies RC.

The following proposition states the soundness of the replaceable inclusion rule with respect to Definition 4.6 (the
proof is straightforward).

Proposition 4.9. If Rv R′, then every set of methods that satisfies R satisfies also R′.

4.2.4. Typing Rules
A type environment, Γ, is either a finite mapping from variable names (including this) to types, written “x : U, this :

τ”, or the empty mapping, written “•”. The typing rules for interface definitions, replaceable definitions, expressions,
method definitions, trait definitions and class definitions are syntax directed, with one rule for each form of term.

The typing judgment for interface definitions is ` interface I extends I {S; } OK , to be read: “the definition
of the interface I is well-typed”. The associated rule, (I-OK), is given in Figure 4. It exploits the lookup function
mSig(·) to check that there are no conflicts in the signatures of the methods declared in the interface and in all its
superinterfaces.

The typing judgment for replaceable definitions is ` replaceable R is {S;}〈G; p Z; p J;〉 OK , to be read: “the
definition of the replaceable R is well-typed”. The associated rule, (R-OK), is given in Figure 4. It checks that, within
a replaceable definition, the signatures of the methods that may be replaced (S) and the signatures of the methods that
may be used by the replaced methods but may not be replaced (Z) are disjoint, and that there are no conflicts in all the
the signatures of the methods declared in the trait (S∪Z) or belonging to the interfaces that may be used as types for
this (J).

The typing judgment for expressions is Γ ` e : θ p γ p ∆ to be read: “under the assumption in Γ, the expression
e is well-typed with type θ and constraints γ and ∆”. The associated rules are given in Figure 5. The type of the
pseudo-variable this is the structural type Γ(this). The type of an object creation expression new C(. . .) is the class
name C. The type of any other FDTJ expression e is a source language type, i.e., a type of the form I{R} for some
interface name I and replaceable name R. The most interesting rules are the following.

• Rule (T-INVKTHIS) checks method invocation when the receiver is the this pseudo-variable. First the signature
of m (Um(U1, ...,Un) = ζ ) is extracted from the sequence σ associated to this. Then, the types of the actual pa-
rameters e1, ...,en are checked. For the arguments that are different from this (ei such that i <T ) the subtyping
check between actual and formal parameter types is performed (θi <: Ui). This check is not performed when
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Expression typing:
Γ ` x : Γ(x) p 〈 • p • p • 〉 p /0 (T-VAR)

Γ ` this : 〈 F p ... 〉 p 〈 • p • p • 〉 p /0 choose(F, f) = Uf
Γ ` this.f : U p 〈 Uf p • p • 〉 p /0

(T-FIELD)

Γ ` this : 〈 ... p σ 〉 p 〈 • p • p • 〉 p /0 ∀i ∈ 1..n, Γ ` ei : θi p 〈 F(i) p σ
(i) p V(i) 〉 p ∆(i)

Um(U1, ...,Un) = choose(σ ,m) = ζ

T = {i | i ∈ 1..n and θi = Γ(this)} ∀i ∈ 1..n−T , θi <: Ui

Γ ` this.m(e1, ...,en) : U p 〈 ∪i∈1..nF(i) p ζ ∪ (∪i∈1..nσ
(i)) p (∪i∈1..nV(i)

)∪ (∪i∈T Ui) 〉 p ∪i∈1..n∆(i)
(T-INVKTHIS)

e0 , this ∀i ∈ 0..n, Γ ` ei : θi p 〈 F(i) p σ
(i) p V(i) 〉 p ∆(i)

Um(U1, ...,Un) = choose(mSig(interfaces(θ0)),m)
T = {i | i ∈ 1..n and θi = Γ(this)} ∀i ∈ 1..n−T , θi <: Ui

Γ ` e0.m(e1, ...,en) : U p 〈 ∪i∈0..nF(i) p ∪i∈0..nσ
(i) p (∪i∈0..nV(i)

)∪ (∪i∈T Ui) 〉 p ∪i∈0..n∆(i)
(T-INVKNONTHIS)

fields(C) = U1 f1; ...;Un fn; ∀i ∈ 1..n, Γ ` ei : θi p 〈 F(i) p σ
(i) p V(i) 〉 p ∆(i)

T = {i | i ∈ 1..n and θi = Γ(this) = 〈 F p σ 〉} ∀i ∈ 1..n−T , θi <: Ui

Γ ` new C(e1, ...,en) : C p 〈 ∪i∈1..nF(i) p ∪i∈1..nσ
(i) p (∪i∈1..nV(i)

)∪ (∪i∈T Ui) 〉 p ∪i∈1..n∆(i)
(T-NEW)

Γ ` e : I{R} p 〈 F p σ p U 〉 p ∆ trait T is . . .

Γ ` e{T} : I{R} p 〈 F p σ p U 〉 p ∆∪{TlR}
(T-REPL)

Method definition typing:

this : τ, x : V ` e : θ p 〈 F p σ p U 〉 p ∆

θ = τ implies U′ = U∪V
θ , τ implies ( θ <: V and U′ = U )

this : τ ` V m (V x){return e;} : V m (V) p 〈 F p σ p U′ 〉 p ∆
(M-OK)

Figure 5: FDTJ typing rules for expressions and method definitions

the actual parameter is this (ei such that i ∈ T ) since no assumption about the nominal types of this can be
made; instead the source language types used as types for this (Ui for i ∈T ) are included in the this-constraints
collected in the conclusion of the rule. Then, the this-constraints and the trait-constraints imposed by the ex-
pressions involved in method invocation (the actual parameters ei) are collected in the conclusion. Also the
constraint that this must have a method m with signature ζ is collected.

• Rule (T-INVKNONTHIS) checks method invocation when the receiver is not this is similar. First the signature of
m (Um(U1, ...,Un)) is extracted from by the type θ0 of the receiver e0. Then, the types of the actual parameters
e1, ...,en are checked. and the this-constraints and the trait-constraints imposed by the expressions involved in
method invocation (the receiver e0 and the actual parameters e1, ...en) are collected in the conclusion.

• Rule (T-NEW), for instance creation, is similar (but it uses the fields declared in the class to check the arguments
of the constructor).

• Rule (T-REPL) checks the dynamic replacement e{T}. In the conclusion the trait-constraints are updated with
{TlR} since the trait T is used for a dynamic replacement on e of type I{R}.

Example 4.10. Consider the interface ISequence in Listing 3, the trait TFifoPolicy in Listing 6, the replaceable
RPolicy in Listing 10, and the trait replacement expression s{TFifoPolicy}. We have:

this : ..., s:ISequence{RPolicy} ` s{TFifoPolicy} :
ISequence{RPolicy} p 〈 • p • p • 〉 p {TFifoPolicylRPolicy}
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Trait expression typing:

mSig(S) = σ mSig(M1...Mp) = ζ1...ζp p≥ 0

∀i ∈ 1..p, this : 〈 F p σ ·ζ1...ζp 〉 `Mi : µi µi = ζi p 〈 F(i) p ζ
(i) p U(i) 〉 p ∆(i)

F = F(1)∪· · ·∪F(p)
σ = exclude((ζ

(1)∪· · ·∪ζ
(p)

),names(ζ1...ζp))

F∪fields(U(1)
)∪· · ·∪fields(U(p)

) = · · · ζ1...ζp∪ζ
(1)∪· · ·∪ζ

(p)∪mSig(U(1)
)∪· · ·∪mSig(U(p)

) = · · ·
` {F; S; M1...Mp } : µ1...µp

(T-TEBASIC)

` trait T · · · : µ

` T : µ
(T-TENAME)

Trait definition typing:

` TE : µ

` trait T is TE : µ
(T-OK)

Class definition tying:

` TE : µ1...µp p≥ 0 ∀i ∈ 1..p, µi = ζi p 〈 F(i) p σ
(i) p U(i) 〉 p . . .

V g ⊇ F(1) · · ·∪F(p)∪fields(U(1)
)∪· · ·∪fields(U(p)

)

ζ1...ζp ⊇ σ
(1)∪· · ·∪σ

(p)∪mSig(U(1)
)∪· · ·∪mSig(U(p)

)∪mSig(I)

∀I′ ∈ ∪i∈1..pallInterfaces(U(i)
), ∃I ∈ I, IE I′

` class C implements I by TE { V g; C(V g) { this.g = g; } } OK
(C-OK)

Figure 6: FDTJ typing rules for trait expressions, trait definitions and class definitions

Consider the interface ISomeSequence and the trait TExample2 in Listing 9, the replaceable RAnotherExample in
Example 4.7, and the trait replacement expression x{TExample2}. We have:

this : ..., x:ISomeSequence{RAnotherExample} ` x{TExample2} :
ISomeSequence{RAnotherExample} p 〈 • p • p • 〉 p {TExample2lRAnotherExample}

The typing rule judgement for method definitions is this : τ ` V m (V x){return e;} : µ , where µ = ζ p γ p ∆ .
To be read: “under the assumption that this has type τ , the definition of method m is well-typed with type µ”. That is,
the method m has signature ζ (= V m (V)) and its body is type correct if the enclosing class satisfies the constraints γ

and ∆. The associated rule, (M-OK), is given in Figure 5. There are two cases:

• If the type of the method body is τ (i.e., the method simply returns this), then the sequence of source language
types required for this is updated adding V (i.e., the return type of the method).

• Otherwise, the type of the body must be a subtype of the return type of the method.

The typing judgement for trait expressions is ` TE : µ where µ = µ1...µn (n ≥ 0). To be read: “the trait
expression TE is well-typed with type µ”. That is, TE provides n methods with types µ1, ...,µn, respectively. The
associated rules, (T-TEBASIC) and (T-TENAME), are given in Figure 6.

• Rule (T-TEBASIC) checks that each method Mi defined by the trait has a type µi. The check is performed
by assuming for this a type consisting of all the fields required by the trait (F) and of all the signatures of
the methods required by the trait (σ = mSig(S)) and all the signatures of the methods defined by the trait
(ζ1...ζp). Then, it checks that all the methods together requires all the field requirements declared in the trait

(F = F
(1) ∪ · · · ∪F

(p)
), and that all the methods together requires all the method requirements declared in the

trait (σ = exclude((ζ
(1)∪ · · ·∪ζ

(p)
),names(ζ1...ζp))). Finally, it checks that there are no conflicts among the

fields/signatures declarations of the trait and the this-constraints inferred for the methods.
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• Rule (T-TENAME) just assigns to the trait name T the type inferred for the definition of the trait T.

The typing judgement for trait definitions is ` trait T is TE : µ , to be read: “the definition of trait T is well-
typed with type µ”. The associated rule, (T-OK), is given in Figure 6. It assigns to the the trait T the type inferred for
the trait expression TE (remember that the trait reuse graph is acyclic).

Example 4.11. Consider the trait TExample1 in Listing 9. Let

F = ISomeSequence s; ISomeSequenceComparator c;

be the required fields; let σout and σisEmpty be the signatures of the required methods; let σoutTwice, σisNotEmpty, σtest and
MoutTwice, MisNotEmpty and Mtest be the signatures and the definitions of the provided methods, respectively; and let

σ = σout σisEmpty σoutTwice σisNotEmpty σtest

We have:
this : 〈 F p σ 〉 `MoutTwice : µoutTwice

this : 〈 F p σ 〉 `MisNotEmpty : µisNotEmpty

this : 〈 F p σ 〉 `Mtest : µtest

` TExample : µoutTwice µisNotEmpty µtest

where
µoutTwice = σoutTwice p 〈 • p void out() p • 〉 p /0
µisNotEmpty = σisNotEmpty p 〈 • p boolean isEmpty() p • 〉 p /0
µtest = σtest p 〈 F p • p ISomeSequence 〉 p /0

The typing judgement for class definitions is ` class C implements I by TE { F; K } OK , to be read: “the
definition of the class C is well-typed”. The associated typing rule, (C-OK), is given in Figure 6. It checks that
the this-constraints inferred for the methods provided by the trait expression TE are satisfied. That is: that the class
provides all the fields expected by the trait; that the trait provides all the methods that the class needs to correctly
implement the interfaces I; and that, for each interface in the this-constraints of the trait, there is a subinterface
implemented by the class.

4.2.5. Trait-Constraint Checking and Well-Typed Programs
In order to simplify the presentation of the trait-constraints checking rule and of the notion of well typed

program we introduce the specificationof operation and the traitconstraintsof operation. Given a trait name T:
specificationof(T) returns a replaceable definition right-hand side that “characterizes” the set of methods defined
by T, and and traitconstraintsof(T) returns the trait-constraints for the methods defined by T. In the following defini-
tion we will use two lookup functions: fields (that given a source language type I{R} returns the sequence of the fields
required by the replaceable R) and allInterfaces (that given I{R} returns the sequence formed by the interface name I
and all the interfaces names listed in R) defined in Section 4.1.1.

Definition 4.12. Let `T : µ1...µp where (for all i ∈ 1..p) µi = ζi p 〈 F
(i) p σ

(i) p U
(i) 〉 p ∆(i).

1. We define specificationof(T) as {ζ ;}〈F; p σ ; p I;〉, where ζ = ζ1 . . .ζp, F = (∪i∈1..pF
(i)
)∪ (∪i∈1..pfields(U(i)

)),

σ = ζ ∪ (∪i∈1..pσ
(i))∪ (∪i∈1..pmSig(U(i)

)), and I = allInterfaces(∪i∈1..pU
(i)
).

2. We define traitconstraintsof(T) as ∪i∈1..p∆(i).

Observe that, while the specificationof operation for classes (in Definition 4.3) does not rely on the typing rules, the
value of specificationof(T) and traitconstraintsof(T) can be computed only when the typing of the trait T is available.

Example 4.13. Consider the replaceable RExample and the trait TExample1 in Listing 9. We have that specifica-
tionof(TExample1) yields the left-hand side of the definition of the replaceable RExample.
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` trait T is TE : µ1...µp replaceable R is {S;}〈G; p Z; p J;〉 RT v R
` TlR OK

(l-OK)

Figure 7: FDTJ checking rule for trait-constraints

Convention 4.14. For every trait T, we write RT to denote a distinguished replaceable name (that cannot occur in
source programs) and assume the replaceable definition replaceable RT is specificationof(T).

The following proposition illustrates the meaning of Definition 4.12 and Convention 4.14 in terms of Definition 4.6
(the proof is straightforward).

Proposition 4.15. For every trait T, if M is the set of methods of T, then M satisfies RT.

The judgement for trait-constraint checking is ` TlR OK to be read: “the constraint TlR is satisfied”. The
associated typing rule, (l-OK), is given in Figure 7. The rule exploits Definition 4.12 and Convention 4.14. It checks
that the trait T can actually replace the methods specified in the replaceable R by relying on the replaceable inclusion
relation of Figure 3.

Definition 4.16 (Well-typed FDTJ programs). We write `FDTJ (IT,TT,RT,CT,e) : π , to be read:
“the program (IT,TT,RT,CT,e) is well-typed with type π”, to mean that

• the interfaces in IT, the replaceables in RT, the traits in TT and the classes in CT are well-typed,

• all the trait-constraints for the methods defined by the traits in TT are satisfied (that is, for all trait T in TT and
for all δ in traitconstraintsof(T) the judgement ` δ OK holds), and

• the expression e is well typed with type π , empty this-constraints and some satisfied trait-constraints ∆, under
the empty set of assumptions (that is, the judgment • ` e : π p 〈 • p • p • 〉 p ∆ holds and, for all δ ∈ ∆, the
judgment ` δ OK holds).

Note that the expression to be executed, e, is closed (that is, it does not contain variables).

4.3. Reduction

Dynamic trait replacement is an imperative operation working on a per-object basis. That is, while the methods
associated to the object’s class remain unchanged, the object must keep track of the methods that have been introduced
by means of dynamic replacements.

In order to model object identities and dynamic replacements we need to model the notions of address, object and
heap. Addresses, ranged over by the metavariable ι , are the elements of the denumerable set I. An object is a triple
〈C, f : ι , M〉, where C is the object’s class, f : ι is a mapping from the names of the object’s fields to their values (i.e.,
addresses) and M are the object’s methods that have been introduced by means of dynamic replacements (therefore,
immediately after object creation this set will be empty). A heap, H , is a mapping from addresses to objects. The
empty heap will be denoted by /0.

The states of a computation are represented by means of configurations. A configuration is a pair “e,H ”, where
e is a runtime expression (i.e., the code under evaluation) and H is a heap. Runtime expressions, ranged over by e,
are obtained from source language expressions by removing variables, adding addresses ι (i.e., values) and replacing
field selections this.f by ι .f.

The reduction relation has the form e,H −→ e′,H ′ , read “configuration e,H reduces to configuration e′,H ′

in one step”. We write −→∗ for the reflexive and transitive closure of −→. The reduction rules, given in Figure 8,
ensure that the computation is carried on according to a call-by-value reduction strategy by using the standard notions
of computation rules and congruence rules.

The most interesting rules are the computation rules. The rule for field selection, (R-FIELD), returns the value as-
sociated to the selected field. The rule for object creation, (R-NEW), stores the newly created object at a fresh address
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Computation rules:

H (ι) = 〈C, . . . , fi : ιi, . . . , M〉
ι .fi,H −→ ιi,H

(R-FIELD)

H (ι) = 〈C, f : ι , M〉 U m (U x){ return e; } ∈ exclude(methods(C),names(M))∪M
ι .m(ι),H −→ e[ι/this, ι/x],H

(R-INVK)

ι < Dom(H ) fields(C) = F f
new C(ι),H −→ ι ,H ∪{ι 7→ 〈C, f : ι , •〉}

(R-NEW)

H (ι) = 〈C, f : ι , M〉 methods(T) = M′

ι{T},H −→ ι ,H [ι 7→ 〈C, f : ι , exclude(M,names(M′))∪M′〉]
(R-REPL)

Congruence rules:

e,H −→ e′,H ′

e.f,H −→ e′.f,H ′
e,H −→ e′,H

e{T},H −→ e′{T},H
e,H −→ e′,H ′

e.m(e),H −→ e′.m(e),H ′

ei,H −→ e′i,H
′

ι0.m(ι ,ei,e),H −→ ι0.m(ι ,e′i,e),H
′

ei,H −→ e′i,H
′

new C(ι ,ei,e),H −→ new C(ι ,e′i,e),H
′

Figure 8: FDTJ reduction rules

of the heap and returns the address. Object’s fields are initialized as specified by the class constructor. The rule for
method invocation, (R-INVK), searches for the method definition for m in the set of replaced methods M, and if it can-
not find it then it relies on the method definition that is found in the original object (exclude(methods(C),names(M))∪
M). Note that this lookup will always succeed in a well-typed program. Rule (R-REPL) performs method replace-
ment; since replacements can be performed many times on an object, we must take care of removing methods that
were previously replaced.

5. Properties

The type soundness result for the FDTJ calculus is as follows.

Theorem 5.1 (FDTJ Type Soundness). Let • ` e0 : π p 〈 • p • p • 〉 p ∆ and ` δ OK for all δ ∈ ∆. If e0, /0→? e,H
with e a normal form, then the heap H is well formed and e is an address ι such that H (ι)= 〈C, · · · , · · ·〉 and C<: π .

To prove the type soundness result we will introduce a suitable notion of typing for configurations (that is, runtime
expressions and heaps). The objects in the heap may contain methods introduced by means of dynamic replacement,
therefore typing a configuration may involve typing method bodies (that is, source language expressions). We address
this issue by introducing the notion of open runtime expressions, that is, runtime expressions containing variables
(which encompass both source language expressions and runtime expressions). The notion of open runtime expres-
sions allowed us to simplify the structure of the proof of the properties that relate source language typing with runtime
typing. In particular, it makes it possible to relate the source language typing of a method method body e (which may
contain variables) to the runtime typing of e and then to rely on the substitution lemma for open runtime expression
typing (Lemma A.3 in the appendix).

A runtime type environment Σ is a finite (possible empty) mapping that: either (i) maps addresses to class names;
or (ii) maps this to a class name and maps variable names (different from this) to source language types (that are types
of the form I{R}).

The typing judgement for (runtime or source language) expressions is Σ `′ e : π to be read: “under the assump-
tions in Σ, the (runtime or source language) expression e is well-typed with type π”. Note that the conclusion of the
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Open runtime expression typing:

Σ `′ x : Σ(x) (RT-VAR)

Σ `′ ι : Σ(ι) (RT-ADDR)

Σ `′ e : C fields(C) = F Uf ∈ F
Σ `′ e.f : U

(RT-FIELD)

Σ `′ e : π Um(U1, ...,Un) = choose(mSig(π),m) ∀i ∈ 1..n, Σ `′ ei : πi πi <: Ui

Σ `′ e.m(e1, ...,en) : U
(RT-INVK)

fields(C) = U1 f1; ...;Un fn; ∀i ∈ 1..n, Σ `′ ei : πi πi <: Ui

Σ `′ new C(e1, ...,en) : C
(RT-NEW)

Σ `′ e : π ∃ I{R}, π <: I{R} ` TlR OK
Σ `′ e{T} : π

(RT-REPL)

Well-formed heap:

Dom(H ) = Dom(Σ)
∀ι ∈ Dom(H ), H (ι) = 〈C, f1 : ι1, . . . , fn : ιn, M〉 implies

Σ(ι) = C fields(C) = U1 f1; ...;Un fn;
∀i ∈ 1..n, Σ(ιi)<: Ui
mSig(M)⊆ mSig(C)
∀ V m (V x){ return e; } ∈M, ∃ V′, this : C, x : V `′ e : V′ V′ <: V

Σ H
(WF-HEAP)

Figure 9: FDTJ: Typing rules for runtime expressions and heaps

typing judgement does not contain constraints (as we will see, in order to prove the type soundness result, it is not
necessary to infer constraints on runtime expressions or on methods introduced by means of dynamic replacement).

The associated typing rules, given at the top of Figure 9, make use of the subtyping judgement π1 <: π2 introduced
in Section 4 (Figure 3). As for the typing rules for source language expressions (in Figure 5) also the typing rules for
runtime expressions are syntax directed, with one rule for each form of expression. Note that, in rule (RT-FIELD),
the expression e can be either this or ι (this is enforced by the first premise of the rule). The most interesting rule is
the one for dynamic trait replacement, (RT-REPL). It relies on the fact that, if the runtime expression e{T} has been
generated starting from a well-typed program (see Definition 4.16), then the type inferred for e must be a subtype of
some source program type I{R} such that the validity of the judgement ` TlR OK has been already established (at
compile-time) when typing the source program (see Theorem 5.2).

The judgment for well formed heap has the form Σ H , read “heap H is well formed with respect to the
environment Σ”. The associated rule, given at the bottom of Figure 9, ensures that the environment Σ maps all the
addresses defined in the heap into the type of the corresponding objects. It also ensures that, for every object stored
in the heap, the fields of the object contain appropriate values and the methods of the object introduced by dynamic
replacements are well-typed.

The FDTJ type soundness result (Theorem 5.1) comes in two parts: first the notion of well-typed program (see
Definition 4.16) is related with the typing of runtime expressions (Theorem 5.2), then the type soundness for runtime
expressions is given (Theorem 5.5). Theorem 5.2 can be proved by straightforward induction on the type derivation,
while Theorem 5.5 follows immediately from subject reduction and progress (Theorems 5.3 and 5.4 — the proofs are
given in Appendix A).

Theorem 5.2 (`-typed closed expressions are `′-typed). If • ` e : π p 〈 • p • p • 〉 p ∆ and ` δ OK for all δ ∈ ∆,
then • `′ e : π .
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Theorem 5.3 (Subject reduction). If Σ H , Σ `′ e : π and e,H −→ e′,H ′, then there exists Σ′ ⊇ Σ such that
Σ′ H ′, Σ′ `′ e′ : π ′, for some π ′ such that π ′ <: π .

Theorem 5.4 (Progress). Let ΣH and Σ `′ e : π , where e is a runtime expression. Then either e is a value or there
exist e′ and H ′ such that e,H −→ e′,H ′.

Theorem 5.5 (Type Soundness). If • `′ e0 : π and e0, /0→? e,H with e a normal form, then e is an address ι and
there exist Σ and C such that Σ H , Σ `′ ι : C and C <: π .

6. Related Work

Some of the literature related to traits and dynamic trait replacement has already been quoted through the paper.
Here we present a more detailed comparison between FDTJ and Chai3, and briefly discuss some other languages
and calculi that provide type systems integrating nominal and structural subtyping or mechanisms for changing the
behavior of objects at runtime.

The language Chai3 [41] does not have interfaces and therefore does not consider the issue of performing dynamic
trait replacement when the static type of the target expression is an interface, that we have addressed by introducing
types of the shape I{R}. The trait replacement operation of Chai3 must be applied to expressions whose static type is
a class. The trait to be replaced must correspond to a trait T that was used in the class implementation and to replace
a trait in an object it is necessary to specify such name. In particular, it is not possible to write a trait replacement
operation that replaces a proper subset of the methods of T. For instance, the trait replacement operations (1), (2), (3)
and (4) in Section 3.2 cannot be written in Chai3 since each of them replaces a proper subset of the methods in the
trait TFifo used in the definition of the class Sequence in Listing 5. In some cases, the replacement of a proper subset
of the methods of a trait used in the definition of a class can be encoded by replacing more methods. For instance,
let TLo be the trait obtained from TLoExtractionPolicy by adding the methods in and isEmpty of trait TFifo, then the
following Chai3 method changePolicy2 would behave like the method changePolicy1 in Section 3.3

void changePolicy2(Sequence s) {
s<TFifo −> TLo>; // (1’’)
System.out.println(s.get());
s.out();
s<TFifo −> TFifo> // (2’’)

}

However, while the method changePolicy1 in Section 3.3 works for both the versions of the class Sequence in
Listings 5 and 8, the Chai3 method changePolicy2 works only for the versions of the class Sequence in Listing 5.
In fact, in Chai3, when replacing a trait in an object it is necessary to specify the name of the trait used in the object’s
class definition. Therefore, modifying a class definition by changing the name of one of the traits used in the class
implementation invalidates all the trait replacement operations associated to the changed trait. For instance, if the
class Sequence in Listing 5 is changed as in Listing 8, so that it uses trait TLifo (i.e., sequences would be created
as Last-in-first-out sequences), the code for the trait replacement operations (1”) and (2”) above should be changed
into s<TLifo −> TLo> and s<TLifo −> TFifo>, respectively. Moreover, by replacing more methods, it is not
possible to encode the methods disableIn and enableIn of Section 3.2 that accept as argument a sequence object and
disable/enable the method in without affecting the methods out and get. In order to encode the methods disableIn and
enableIn into Chai3, it is needed to consider a different strategy of encoding: for instance, by rewriting all the traits
to contain just one provided method each, and then by expressing all the dynamic updates one method at time.

Dynamic method replacement is a basic feature of the Abadi-Cardelli imperative object calculus [1], a formalism
aiming to encode (as many as possible) features of object-oriented languages. In this paper we have a different aim,
that is, to formalize dynamic trait replacement within a JAVA-like nominal type system in order to foster its adoption
(together with traits) in mainstream programming languages.

The FDTJ type system has a flavor of both structural and nominal systems. Integration of nominal and structural
subtyping has recently received a considerable deal of interest (see, e.g., [29, 22, 34]). The shape of FDTJ source
language types, I{R}, is similar to the shape of the types of Unity [29], β (m : τ) where β is a brand name and m : τ is
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a sequence of method signatures. However, there are crucial differences. Brands are closer to JAVA classes rather than
to JAVA interfaces: a brand declaration may contain the code of methods and the sub-branding inheritance hierarchy
must be a tree. Moreover, Unity does not address issues of implementation inheritance, while traits provide a solution
to these issues, and Unity (which is a pure functional calculus) is not able to (and does not aim to) express dynamic
method replacement.

In [19] a dynamic inheritance mechanism for dynamic specialization of objects, is presented for the GBETA lan-
guage. The proposed mechanism is quite flexible, however it is not type safe. Moreover, it relies on the submethoding
feature supported by BETA, therefore its integration into JAVA-like languages would first require the integration of the
submethoding feature.

Primitives for changing at runtime the class membership of an object are present, for instance, in the dynamic
languages SMALLTALK and CLOS. The paper [17] presents, through the FickleII, language features for changing at
runtime the class membership of an object within a JAVA-like nominal type system. In FickleII only objects belonging
to special classes, called root and state classes, can be reclassified and the type system restricts the use of these
classes (in particular, state classes may not be used as types for fields). This makes the flexibility/expressivity of
FickleII similar to the one of Chai3 [41]. We refer to [17] for a brief overview of approaches related to dynamic
object reclassification. The Fickle3 calculus [15] eliminates the need to declare explicitly the classes of the objects
that may be re-classified. Re-classification may be decided by the client of a class, allowing unanticipated object
re-classification. Still, the type system restricts the use of the classes of the objects that may be re-classified. In
particular, let us consider classes C, C′ and C′′ where C′ is a subclass of C while C′′ is not. If there are objects
belonging to C′ that may be re-classified to C′′ then C may not be used as type for fields. More recently, typestate-
oriented programming [2, 38], a proposal very similar in spirit to the FickleII/Fickle3 proposal, has overcome some of
the limitations in FickleII/Fickle3, e.g., the inability to track the states of fields. Both dynamic object reclassification
and typestate-oriented programming rely on standard class-based inheritance, while the replaceable construct has been
designed to work synergically with trait composition.

There are some similarities between our trait-based dynamic method replacement and approaches based on dele-
gation [26, 43], which rely on object composition and method delegation as a more flexible and runtime version of
class inheritance and method overriding: every object has a list of parent objects and when an object cannot answer
a message it forwards it to its parents until there is an object that can process the message. However, a drawback of
delegation is that runtime type errors (“message-not-understood”) can arise when no delegates are able to process the
forwarded message [44]. For this reason, some linguistic approaches were studied to deal with with delegation and
type safety properties; we refer to Kniesel [25] for an overview of problems when combining delegation with a static
type discipline.

Note that sometime, the term delegation is used with the simpler concept of method forward or consultation (see,
e.g., [21, 11]). With delegation, when A delegates to B the execution of a message m, this is bound to the sender (A),
thus, if in the body of the method m (defined in B) there is a call to a method n, then also this call will be executed
binding this to A; while with consultation, during the execution of the body, the implicit parameter is always bound
to the receiver B. Delegation is more powerful as it enables dynamic method redefinition. On the contrary, with
consultation we lose the transparent redirection [35]; when we manually implement object composition and method
forwarding we will not achieve a real dynamic object inheritance and dynamic method redefinition. For instance,
when implementing decorator pattern [21], we will surely experience the anomaly known as self problem [26], i.e.,
broken delegation [23]. In the following we briefly describe some approaches that propose linguistic mechanisms
based on delegation in a statically-typed setting.

In [33] a model based on delegation layers is presented where all the features that are typical of class-based lan-
guages (inheritance, delegation, late binding and subtype polymorphism) automatically apply to sets of collaborating
classes and objects. In [35] compound references are introduced, a new abstraction for object references, which pro-
vides explicit linguistic support for combining different composition properties on-demand. The model is statically
typed and allows the programmer to express several kinds of composition semantics in the interval between object
composition and inheritance. More recently, in [5, 6] an extension of FJ with object composition and delegation is
presented. In that calculus methods can be changed dynamically at runtime on an existing object as a consequence of
object composition and “redefining” methods (a runtime version of standard method overriding).

We share with the above works on delegation the view that new fine grained linguistic features, that can be
combined, can increase the flexibility in object oriented languages thus avoiding the need of many design patterns
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originally proposed to overcome lack of adequate constructs in a language. However, delegation based approaches
rely on object-based features, mainly object composition (to this aim classes defining delegator objects usually have an
explicit reference to the delegate object as in the State pattern), which are distant from our setting, especially because
instead of relying on class inheritance, we are based on traits as the main mechanism for code reuse. In particular
we focus on the unanticipated aspects that we detailed throughout the paper, so that we can smoothly change the
behavior of existing objects in a safe way (using the concept of replaceable as the main contract ensuring type safety).
Summarizing, in our setting of dynamic trait replacement, method substitutions are unanticipated in the sense that we
do not have to structure the code in advance using composition of objects to be able to change subsets of methods.
Note that in our approach we also achieve transparent redirection [35], thus avoid the before mentioned self problem
[26] and broken delegation [23] problems.

It would be interesting, and subject of future work, to investigate how the approaches based on delegation could
be merged into our dynamic trait settings, in particular, to study whether the trait approach, as opposed to class-based
inheritance, could be a good setting for delegation and object composition.

7. Conclusion and Future Work

We proposed statically typed language features that decouple trait replacement operation code and class decla-
ration code. These features support to refactor classes and/or performing unanticipated trait replacement operations
without invalidating existing code. We illustrated these features through examples and proved the soundness of the
associated typing rules by means of the FDTJ calculus.

Further work includes developing a prototypical implementation and validating the usability of the approach
through examples. A possible implementation could consist in a preprocessor that generates JAVA code that relies
on JAVA reflection, for selecting dynamically the replaced methods. Note that reflection might also be used to achieve
method replacement manually, but in that case, type safety could not be checked statically.

We are also planning to strengthen the integration between nominal and structural subtyping and to add gener-
ics. Finally, it could be interesting to investigate method replacement in connection with classes/methods having
invariants/contracts.

Acknowledgments. We thank the anonymous SCP referees and the referees of earlier versions of these paper for
insightful comments and suggestions to improve the presentation.
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A. Proofs of Theorems 5.3 and 5.4

Definition A.1. We define the following auxiliary functions on trait expressions:

• mRequired(T) = mRequired(TE) if trait T is TE

mRequired({· · · ; S; . . .}) = S

• fRequired(T) = fRequired(TE) if trait T is TE

fRequired({F; . . . ; . . .}) = F

A.1. Proof of Theorem 5.3

Remember that the rules for system `′ (Figure 9) are syntax directed.
In order to prove Theorem 5.3 we first prove some auxiliary lemmas: Lemma A.2 (weakening), Lemma A.3

(substitution), Lemmas A.4 and A.5 (used to deal with method invocation) and Lemmas A.6 and A.7 (used to deal
with trait replacement).

Lemma A.2 (Weakening). If Σ `′ e : π , then Σ, ι : C `′ e : π .
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PROOF. Straightforward induction on the derivation of Σ `′ e : π . �
�

Lemma A.3 (Substitution). If Σ,x : π `′ e : π and Σ `′ v : C, where C <: π , then Σ `′ e[v/x] : π ′, for some π ′ <: π .

PROOF. By induction on the derivation of Σ,x : π `′ e : π . We show only the most interesting cases.

Case e0.m(e). Then Σ,x : π `′ e0.m(e) : π , where π = U, and

Σ `′ e0 : π ′0 ∀i ∈ 1..n, Σ `′ ei : π ′i π ′i <: Ui
Um(U1, ...,Un) = choose(mSig(π ′0),m)

for some U, π ′0, π ′1, . . ., π ′n,U1, . . .,Un. By induction we have ∀i ∈ 0..n,Σ `′ ei[v/x] : π ′′i for some π ′′i such that
π ′′i <: π ′i . By the subtyping relation, mSig(π ′0)⊆mSig(π ′′0 ). Therefore, Um(U1, ...,Un)∈ choose(mSig(π ′′0 ),m).
Applying rule (RT-INVK) we get Σ `′ (e0.m(e))[v/x] : U which proves the result.

Case new C(e). Similar to the previous one.

Case e0{T}. Then Σ `′ e0{T} : π and

Σ `′ e0 : π ∃ I{R}, π <: I{R} ` TlR OK

By induction Σ `′ e0[v/x] : π ′ for some π ′ such that π ′ <: π and by transitivity π ′ <: π <: I{R}. Applying rule
(RT-REPL) we get Σ `′ e[v/x] : π ′ which proves the result. �

�

Lemma A.4. If

• ` class C implements I by TE { V g; C(V g) {. . .} } OK

• fRequired(TE)= F and methods(TE)=M

• this : 〈 F p mSig(M) 〉, x : U ` e : θ p γ p ∆

then this : C,x : U `′ e : π for some π such that:
if θ = 〈 F p mSig(M) 〉 then π = C, else π <: θ .

PROOF. Assume (without loss of generality) that TE is a basic trait expression. By rules (C-OK) and (T-TEBASIC)
we have mRequired(TE) = • . Then the result follows by straightforward induction on the derivation

this : 〈 F p mSig(M) 〉, x : U ` e : θ p γ p ∆. �
�

Lemma A.5. If

• ` class C implements I by TE{ V g; C(V g) {. . .}} OK

• W m (W x){return e;} ∈ methods(TE)

then this : C,x : W `′ e : π for some π such that π <: W.

PROOF. Assume (without loss of generality) that TE is a basic trait expression {F; S; M} then methods(TE) = M.
By rules (C-OK) and (T-TEBASIC) we have S = •. From hypothesis and rule (C-OK) we have

` {F; •; M} : µ1...µp p≥ 0

∀i ∈ 1..p, µi = ζi p 〈 F
(i) p σ

(i) p U
(i) 〉 p ∆(i)

V g⊇ (∪i∈1..pF
(i)
)∪ (∪i∈1..pfields(U(i)

)) (∗)
ζ1...ζp ⊇ (∪i∈1..pσ

(i))∪ (∪i∈1..pmSig(U(i)
))∪mSig(I) (∗∗)

∀I′ ∈ ∪i∈1..pallInterfaces(U(i)
), ∃I ∈ I, IE I′ (∗∗∗)
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Let ζ j = W m (W) for some j ∈ 1..p. From rule (T-TEBASIC) we have

mSig(S) = • mSig(M1...Mp) = ζ1...ζp p≥ 0
this : 〈 F p ζ1...ζp 〉 `W m (W x) { return e; } : µ j

µ j = ζ j p 〈 F
( j) p ζ

( j)
p U

( j) 〉 p ∆( j)

From rule (M-OK) we have

this : 〈 F p ζ1...ζp 〉, x : W ` e : θ p 〈 F
( j) p σ

( j) p U
′( j) 〉 p ∆

( j)

where:

• if θ = 〈 F p ζ1...ζp 〉 then U
( j)

= U
′( j) ∪W. Then by Lemma A.4, we have this : C, x : W `′ e : C. Let

W = I0{R0}:

– from (***) ∃I ∈ I, IE I0
– by definition of RC and (*), (**), (***) we have R0 v RC

then by definition of subtyping we have C <: W.

• if θ , 〈 F p ζ1...ζp 〉 then θ <: W and U
( j)

= U
′( j).

Then by Lemma A.4, we have this : C, x : W `′ e : π with π <: θ <: W. �
�

Lemma A.6. If

• ` class C implements I by TE { V g; C(V g) {. . .} } OK

• ` trait T is TE′ : µ

• ∃ I{R}, C <: I{R} ` TlR OK

• fRequired(T)= F, mRequired(T)= S and methods(T)=M

• this : 〈 F p mSig(M)∪mSig(S) 〉, x : U ` e : θ p γ p ∆

then this : C,x : U `′ e : π for some π such that:
if θ = 〈 F p mSig(M)∪mSig(S) 〉 then π = C, else π <: θ .

PROOF. By straightforward induction on the derivation
this : 〈 F p mSig(M)∪mSig(S) 〉, x : U ` e : θ p γ p ∆. �

�

Lemma A.7. If

• ` class C implements I by TE { V g; C(V g) {. . .} } OK

• ` trait T is TE′ : µ

• ∃ I{R}, C <: I{R} ` TlR OK

• W m (W x){return e;} ∈ methods(T)

then this : C,x : W `′ e : π for some π such that π <: W.
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PROOF. Assume (without loss of generality) that TE is a basic trait expression {F; S; M}. By rules (C-OK) and
(T-TEBASIC) we have S = •. From hypothesis and rule (C-OK) we have

` {F; •; M} : µ1...µp p≥ 0

∀i ∈ 1..p, µi = ζi p 〈 F
(i) p σ

(i) p U
(i) 〉 p ∆(i)

V g⊇ (∪i∈1..pF
(i)
)∪ (∪i∈1..pfields(U(i)

))

ζ1...ζp ⊇ (∪i∈1..pσ
(i))∪ (∪i∈1..pmSig(U(i)

))∪mSig(I)

∀I′ ∈ ∪i∈1..pallInterfaces(U(i)
), ∃I ∈ I, IE I′

Assume (without loss of generality) that TE′ is a basic trait expression {F
′; S

′; M
′ }. From rule (T-TEBASIC) we

have
mSig(S′) = σ

′ mSig(M′1...M
′
p′) = ζ ′1...ζ

′
p′ p′ ≥ 0

∀i ∈ 1..p′ this : 〈 F
′ p σ

′ ·ζ ′1...ζ ′p′ 〉 `W m (W x) { return e; } : µ ′i

µi = ζ ′j p 〈 F
′(i) p ζ

′(i)
p U
′(i) 〉 p ∆′(i)

Let ζ ′j = W m (W) for some j ∈ 1..p′. From rule (M-OK) we have

this : 〈 F
′ p σ

′ ·ζ ′1...ζ ′p′ 〉, x : W ` e : θ p 〈 F
′( j) p σ

′( j) p U
′′( j) 〉 p ∆

′( j)

where:

• If θ = 〈 F
′ p σ

′ · ζ ′1...ζ ′p 〉 then U
′( j)

= V′′( j) ∪W. By Lemma A.6, we have this : C, x : W `′ e : C. Let
W = I0{R0}. By definition of RT we have R0 v RT. From ` TlR OK by rule (l-OK) we have RT v R.
From C <: I{R} and subtyping rule we have Rv RC. Then:

– By transitivity we have RT v RC and since I0 ∈ RT by replaceable inclusion rule we have ∃I ∈ I : IE I0
– By transitivity we also have R0 v RC

Therefore by definition of subtyping we have C <: W

• If θ , 〈 F
′ p σ

′ ·ζ ′1...ζ ′p 〉 then θ <: W and U
′( j)

= U.

Then by Lemma A.6, we have this : C, x : W `′ e : π with π <: θ <: W. �
�

Proof of Theorem 5.3 (Subject Reduction). The proof is by induction on a derivation of e,H −→ e′,H ′, with a case
analysis on the reduction rule used. We show only the most interesting cases for computation rules; for congruence
rules simply use the induction hypothesis.

Case (R-INVK). The last applied rule is
ι .m(ι),H −→ e[ι/this, ι/x],H

where H (ι) = 〈C, f : ι , M〉 and U m (U x){ return e; } ∈ exclude(methods(C),names(M))∪M. From rule
(RT-INVK) we have

Σ `′ ι : C′ ∀i ∈ 1..n, Σ `′ ιi : Ci Ci <: Ui
Um(U1, ...,Un) = choose(mSig(C′),m)

where Σ H implies C′ = C. There are two cases:

1. V m (V x){ return e; } ∈ M then from Σ H we have mSig(M) ⊆ mSig(C) thus V = U, V = U, this :
C, x : U `′ e : V′ and V′ <: U. Therefore, by Lemma A.3 and A.2, we have that Σ `′ e[ι/this, ι/x] : π , where
π <: V′ <: U which proves the result.
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2. U m (U x){ return e; } ∈ methods(C). Since class C is well-formed, then method m is well-typed and
then, from Lemma A.5, we have that this : C, x : U `′ e : π , where π <: U. Therefore, by Lemma A.3 and
A.2, we have that Σ `′ e[ι/this, ι/x] : π ′, where π ′ <: π <: U.

Case (R-NEW). We have that
new C(ι),H −→ ι ,H ∪{ι 7→ 〈C, f : ι , •〉},

where ι < Dom(H ). From rule (RT-NEW) we have

fields(C) = U1 f1; ...;Un fn; ∀i ∈ 1..n,Σ `′ ei : πi πi <: Ui

Let Σ′ be such that Σ′ = Σ ∪ {ι : C}. Then Σ′ ` ι : C and Σ′ H ′, where H ′ = H ∪{ι 7→ 〈C, f : ι , •〉}.
Case (R-REPL). We have that

ι{T},H −→ ι ,H [ι 7→ 〈C, f : ι , exclude(M,names(M′))∪M
′〉]

where H (ι) = 〈C, f : ι , M〉 and methods(T) = M
′. From rule (RT-REPL) we have:

Σ `′ ι : C′ ∃ I{R}, C′ <: I{R} ` TlR OK

where Σ H implies C′ = C, thus C <: I{R}. To prove that Σ H ′ we have to show that:

1. mSig(exclude(M,names(M′)))∪M
′ ⊆ mSig(C)

2. ∀ V m (V x){ return e; } ∈ exclude(M,names(M′))∪M
′ ∃ V′ such that this : C, x : V `′ e : V′ with V′ <: V.

Point (1). By hypothesis we have mSig(M) ⊆ mSig(C) we just have to show mSig(M′) ⊆ mSig(C). From rule
(l-OK) and (T-TEBASIC) we have

` trait T is TE : µ1...µp p≥ 0

∀i ∈ 1..p, µi = ζi p 〈 F
(i) p σ

(i) p U
(i) 〉 p ∆(i)

replaceable R is {S}〈G p Z p J〉
RT v R which implies mSig(S)⊇ (∪i∈1..pζ (i))

thus (∪i∈1..pζ (i)) = mSig(M′)⊆ mSig(S). Let

class C implements I by TE′ { F; K }
M
′′
= methods(TE′)

then from subtyping rule C <: I{R} we have that Rv RC which implies

mSig(M′′)⊇ mSig(S∪Z)

Thus mSig(C) = mSig(M′′)⊇ mSig(S∪Z)⊇ mSig(S) which proves the result.
Point (2). By hypothesis we have ∀ V m (V x){ return e; } ∈ M,∃ V′ such that this : C, x : V `′ e : V′ with
V′ <: V. By Lemma A.7 we have ∀ V m (V x){ return e; } ∈M

′
,∃ V′ s. t. this : C, x : V `′ e : V′ with V′ <: V

which proves the result. �

A.2. Proof of Theorem 5.4
Lemma A.8. Given the configuration e,H such that Σ H and Σ `′ e : π , then

1. If e = ι .fi then H (ι) = 〈C, f : ι , . . . , M〉 for some C, f, ι and M such that fi ∈ f ;
2. If e = ι .m(ι ′) then H (ι) = 〈C, f : ι , M〉 for some C, f, ι and M such that

U m (U x){ return e′; } ∈ exclude(methods(C),names(M))∪M and |x|= |ι ′|
3. If e = new C(ι) then fields(C) = U f for some U, f and |f|= |ι |
4. If e = ι{T} then H (ι) = 〈C, f : ι , M〉 and methods(T)=M’ for some C, f, ι , M and M’.
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PROOF.

1. Follows directly from well-formedness of heap.
2. From rule (RT-INVK) we have that

Σ `′ ι : C′ ∀i ∈ 1..n, Σ `′ ι ′i : Ci Ci <: Ui
Um(U1, ...,Un) = choose(mSig(C′),m)
where Σ H implies C’ = C

There are two cases:
(a) U′m (U

′
x){ return e′; } ∈M then from ΣH we have mSig(M)⊆mSig(C) and thus U=U′ and U=U

′.
(b) U m (U x){ return e′; } ∈ methods(C). Since C is well typed it easy to verify that such definition exists,

i.e. methods(C) = methods(TE) for some TE if class C implements I by TE { F; K }.
Note that |x|= |ι | derives from rule (RT-INVK) since |ι |= |U|.

3. Follows directly from rule (RT-NEW).
4. From rule (RT-REPL) and well formedness of the heap we have H (ι) = 〈C, f : ι , M〉 for some C, f, ι and M.

From rule (RT-REPL) we have ` TlR OK then from rules (l-OK) and (T-OK) we have methods(T) = M
′

for some M
′. �

�

Proof of Theorem 5.4 (Progress). The proof is by straightforward induction on the derivation of Σ `′ e : π using
Lemma A.8 in the basic cases. �
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