
20 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On Global Types and Multi-Party Sessions

Publisher:

Published version:

DOI:10.1007/978-3-642-21461-5_1

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/85966 since 2019-10-28T12:28:41Z

This is an author version of the contribution published on:

GIUSEPPE CASTAGNA, MARIANGIOLA DEZANI, LUCA PADOVANI
On Global Types and Multi-Party Sessions

Editor: Springer
2011

ISBN: 9783642214615

in

Formal Techniques for Distributed Systems
1 - 28

13th IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems and 30th IFIP International Conference on

FORmal TEchniques for Networked and Distributed Systems
Reykjavik, Iceland

6-9 june 2011

The definitive version is available at:
http://www.springerlink.com/index/pdf/10.1007/978-3-642-21461-5_1

http://www.springerlink.com/index/pdf/10.1007/978-3-642-21461-5_1

On Global Types and Multi-Party Sessions?

Giuseppe Castagna1, Mariangiola Dezani-Ciancaglini2, and Luca Padovani2

1 CNRS, Université Paris Diderot – Paris 7
2 Dipartimento d’Informatica, Università degli Studi di Torino

Abstract. We present a new, streamlined language of global types equipped with
a trace-based semantics and whose features and restrictions are semantically jus-
tified. The multi-party sessions obtained projecting our global types enjoy a live-
ness property in addition to the traditional progress and are shown to be sound and
complete with respect to the set of traces of the originating global type. Our no-
tion of completeness is less demanding than the classical ones, allowing a multi-
party session to leave out redundant traces from an underspecified global type.
In addition to the technical content, we discuss some limitations of our language
of global types and provide an extensive comparison with related specification
languages adopted in different communities.

1 Introduction

Relating the global specification of a system of communicating entities with an imple-
mentation (or description) of the single entities is a great classic in many different areas
of computer science. The recent development of session-based computing has renewed
the interest in this problem. In this work we attack it from the behavioral type and
process algebra perspectives and briefly compare the approaches used in other areas.

A (multi-party) session is a place of interaction for a restricted number of partic-
ipants that communicate messages. The interaction may involve the exchange of ar-
bitrary sequences of messages of possibly different types. Sessions are restricted to
a (usually fixed) number of participants, which makes them suitable as a structuring
construct for systems of communicating entities. In this work we define a language to
describe the interactions that may take place among the participants implementing a
given session. In particular, we aim at a definition based on few “essential” assump-
tions that should not depend on the way each single participant is implemented. To give
an example, a bargaining protocol that includes two participants, “seller” and “buyer”,
can be informally described as follows:

Seller sends buyer a price and a description of the product; then buyer sends
seller acceptance or it quits the conversation.

? This work was presented as invited talk at FMOODS & FORTE 2011, joint 13th IFIP In-
ternational Conference on Formal Methods for Open Object-based Distributed Systems and
31th IFIP International Conference on FORmal TEchniques for Networked and Distributed
Systems. A short version is included in the proceedings, volume 6722 of Lecture Notes in
Computer Science, Springer, 2011.

2 Castagna, Dezani-Ciancaglini, Padovani

If we abstract from the value of the price and the content of the description sent
by the seller, this simple protocol describes just two possible executions, according to
whether the buyer accepts or quits. If we consider that the price and the description
are in distinct messages then the possible executions become four, according to which
communication happens first. While the protocol above describes a finite set of pos-
sible interactions, it can be easily modified to accommodate infinitely many possible
executions, as well as additional conversations: for instance the protocol may allow
“buyer” to answer “seller” with a counteroffer, or it may interleave this bargaining with
an independent bargaining with a second seller.

All essential features of protocols are in the example above, which connects some
basic communication actions by the flow control points we underlined in the text. More
generally, a protocol is a possibly infinite set of finite sequences of interactions be-
tween a fixed set of participants. We argue that the set of sequences that characterizes a
protocol—and thus the protocol itself—can be described by a language with one form
of atomic actions and three composition operators.

Atomic actions. The only atomic action is the interaction, which consists of one (or
more) sender(s) (eg, “seller sends”), the content of the communication (eg, “a
price”, “a description”, “acceptance”), and one (or more) receiver(s) (eg, “buyer”).

Compound actions. Actions and, more generally, protocols can be composed in three
different ways. First, two protocols can be composed sequentially (eg, “Seller sends
buyer a price. . . ; then buyer sends. . . ”) thus imposing a precise order between
the actions of the composed protocols. Alternatively, two protocols can be com-
posed unconstrainedly, without specifying any order (eg, “Seller sends a price and
(sends) a description”) thus specifying that any order between the actions of the
composed protocols is acceptable. Finally, protocols can be composed in alterna-
tive (eg, “buyer sends acceptance or it quits”), thus offering a choice between two
or more protocols only one of which may be chosen.

More formally, we use p a−→ q to state that participant p sends participant q a mes-
sage whose content is described by a, and we use « ; », «∧ », and «∨ » to denote se-
quential, unconstrained, and alternative composition, respectively. Our initial example
can thus be rewritten as follows:

(seller
descr−→ buyer∧seller price−→ buyer);

(buyer
accept−→ seller∨buyer quit−→ seller)

(1)

The first two actions are composed unconstrainedly, and they are to be followed by one
(and only one) action of the alternative before ending. Interactions of unlimited length
can be defined by resorting to a Kleene star notation. For example to extend the previous
protocol so that the buyer may send a counter-offer and wait for a new price, it suffices
to add a Kleene-starred line:

(seller
descr−→ buyer∧seller price−→ buyer);

(buyer
offer−→ seller;seller

price−→ buyer)*;

(buyer
accept−→ seller∨buyer quit−→ seller)

(2)

On Global Types and Multi-Party Sessions 3

The description above states that, after having received (in no particular order) the
price and the description from the seller, the buyer can initiate a loop of zero or more
interactions and then decide whether to accept or quit.

Whenever there is an alternative there must be a participant that decides which path
to take. In both examples it is buyer that makes the choice by deciding whether to send
accept or quit. The presence of a participant that decides holds true in loops too, since it
is again buyer that decides whether to enter or repeat the iteration (by sending offer) or
to exit it (by sending accept or quit). We will later show that absence of such decision-
makers gives protocols impossible to implement. This last point critically depends on
the main hypothesis we assume about the systems we are going to the describe, that is
the absence of covert channels. On the one hand, we try to develop a protocol descrip-
tion language that is as generic as possible; on the other hand, we limit the power of the
system and require all communications between different participants to be explicitly
stated. In doing so we bar out protocols whose implementation essentially relies on the
presence of secret/invisible communications between participants: a protocol descrip-
tion must contain all and only the interactions used to implement it.

Protocol specifications such as the ones presented above are usually called global
types to emphasize the fact that they describe the acceptable behaviors of a system
from a global point of view. In an actual implementation of the system, though, each
participant autonomously implements a different part of the protocol. To understand
whether an implementation satisfies a specification, one has to consider the set of all
possible sequences of synchronizations performed by the implementation and check
whether this set satisfies five basic properties:

1. Sequentiality: if the specification states that two interactions must occur in a given
order (by separating them by a « ; »), then this order must be respected by all pos-
sible executions. So an implementation in which buyer may send accept before
receiving price violates the specification (1) (and (2)).

2. Alternativeness: if the specification states that two interactions are alternative, then
every execution must exhibit one and only one of these two actions. So an imple-
mentation in which buyer emits both accept and quit (or none of them) in the same
execution violates the specification (1).

3. Shuffling: if the specification composes two sequences of interactions in an uncon-
strained way, then all executions must exhibit some shuffling (in the sense used
in combinatorics and algebra) of these sequences. So an implementation in which
seller emits price without emitting descr violates the specification (1).

4. Fitness: if the implementation exhibits a sequence of interactions, then this se-
quence is expected by (ie, it fits) the specification. So any implementation in which
seller sends buyer any message other than price and descr violates the specifi-
cation (1).

5. Exhaustivity: if some sequence of interactions is described by the specification,
then there must exist at least an execution of the implementation that exhibits these
actions (possibly in a different order). So an implementation in which no execution
of buyer emits accept violates the specification (1).

Checking whether an implemented system satisfies a specification by comparing
the actual and the expected sequences of interactions is non-trivial, for systems are

4 Castagna, Dezani-Ciancaglini, Padovani

usually infinite-state. Therefore, on the lines of [CHY07,HYC08], we proceed the other
way round: we extract from a global type the local specification (usually dubbed local
type or session type [THK94,HVK98]) of each participant in the system and we type-
check the implementation of each participant against the corresponding session type.
If the projection operation is done properly and the global specification satisfies some
well-formedness conditions, then we are guaranteed that the implementation satifies
the specification. As an example, the global type (1) can be projected to the following
behaviors for buyer and seller:

seller 7→ buyer!descr.buyer!price.(buyer?accept+buyer?quit)
buyer 7→ seller?descr.seller?price.(seller!accept⊕seller!quit)

or to

seller 7→ buyer!price.buyer!descr.(buyer?accept+buyer?quit)
buyer 7→ seller?price.seller?descr.(seller!accept⊕seller!quit)

where p!a denotes the output of a message a to participant p, p?a the input of a message
a from participant p, p?a.T +q?b.S the (external) choice to continue as T or S according
to whether a is received from p or b is received from q and, finally, p!a.T⊕q!b.S denotes
the (internal) choice between sending a to p and continue as T or sending S to q and
continue as T . We will call session environments the mappings from participants to their
session types. It is easy to see that any two processes implementing buyer and seller

will satisfy the global type (1) if and only if their visible behavior matches one of the
two session environments above (these session environments thus represent some sort of
minimal typings of processes implementing buyer and seller). In particular, both the
above session environments are fitting and exhaustive with respect to the specification
since they precisely describe what the single participants are expected and bound to do.

In this work we will discuss how to characterize a set of session environments (if
any) from participants to session types that is sound and complete, with respect to a
given global type. We will also show an algorithm that, in several practical cases, can
effectively perform the extraction of the session environment from a global type. We
conclude this introduction by observing that there are global types that are intrinsically
flawed, in the sense that they do not admit any implementation (without covert channels)
satisfying them. We classify flawed global types in three categories, according to the
seriousness of their flaws.

[No sequentiality] The mildest flaws are those in which the global type specifies some
sequentiality constraint between independent interactions, such as in (p

a−→ q;r b−→
s), since it is impossible to implement r so that it sends b only after that q has re-
ceived a (unless this reception is notified on a covert channel, of course). Therefore,
it is possible to find exhaustive (but not fitting) implementations that include some
unexepected sequences which differ from the expected ones only by a permutation
of interactions done by independent participants. The specification at issue can be
easily patched by replacing some « ; »’s by «∧ »’s.

[No knowledge for choice] A more severe kind of flaw occurs when the global type re-
quires some participant to behave in different ways in accordance with some choice

On Global Types and Multi-Party Sessions 5

it is unaware of. For instance, in the global type

(p
a−→ q;q a−→ r;r a−→ p) ∨ (p

b−→ q;q a−→ r;r b−→ p)

participant p chooses the branch to execute, but after having received a from q

participant r has no way to know whether it has to send a or b. Also in this case
it is possible to find exhaustive (but not fitting) implementations of the global type
where the participant r chooses to send a or b independently of what p decided to
do.

[No knowledge, no choice] In the worst case it is not possible to find an exhaustive
implementation of the global type, for it specifies some combination of incompati-
ble behaviors, such as performing and input or an output in mutual exclusion. This
typically is the case of the absence of a decision-maker in the alternatives such as
in

p
a−→ q∨q b−→ p

where each participant is required to choose between sending or receiving. There
seems to be no obvious way to patch these global types without reconsidering also
the intended semantics.

Contributions and outline. A contribution of this work is to introduce a streamlined
language of global specifications—that we dub global types (Section 2)—and to relate
it with session environments (Section 3), that is, with sets of independent, sequential,
asynchronous session types to be type-checked against implementations. Global types
are just regular expressions augmented with a shuffling operator and their semantics is
defined in terms of finite sequences of interactions. The semantics chosen for global
types ensures that every implementation of a global type preserves the possibility to
reach a state where every participant has successfully terminated. This implies that no
participant of a multi-party session starves waiting for messages that are never sent or
sends messages that no other participant will ever receive. This property is stronger
than the progress enforced by other theories of multi-party sessions, where it is enough
for two participants of a session to synchronize to state that the session has progress.
Technically, we make a strong fairness assumption on sessions by considering only fair
computations, those where infinitely often enabled transitions occur infinitely often.

In Section 4 we study the relationship between global types and sessions. We do
so by defining a projection operation that extracts from a global type all the (sets of)
possible session types of its participants. This projection is useful not only to check
the implementability of a global description (and, incidentally, to formally define the
notions of errors informally described so far) but, above all, to relate in a compositional
and modular way a global type with the sets of distributed processes that implement it.
We also identify a class of well-formed global types whose projections need no covert
channels. Interestingly, we are able to effectively characterize well-formed global types
solely in terms of their semantics.

In Section 5 we present a projection algorithm for global types. The effective gen-
eration of all possible projections is impossible. The reason is that the projectability
of a global type may rely on some global knowledge that is no longer available when

6 Castagna, Dezani-Ciancaglini, Padovani

Table 1. Syntax of global types.

G ::= Global Type
skip (skip) | π

a−→ p (interaction)
| G ;G (sequence) | G ∧G (both)
| G ∨G (either) | G ∗ (star)

working at the level of single session types: while in a global approach we can, say,
add to some participant new synchronization offers that, thanks to our global knowl-
edge, we know will never be used, this cannot be done when working at the level of
single participant. Therefore in order to work at the projected level we will use stronger
assumptions that ensure a sound implementation in all possible contexts.

In Section 6 we show some limitations deriving from the use of the Kleene star op-
erator in our language of global types, and we present one possible way to circumvent
them. Section 7 contains an extended survey of related work, with samples of the litera-
ture of session types and session choreography expressed in our syntax and an in-depth
comparison with our work. Few final considerations conclude the work in Section 8.
The Appendix contains proofs and some technical discussions.

2 Global Types

In this section we define syntax and semantics of global types. We assume a set A of
message types, ranged over by a, b, . . . , and a set Π of roles, ranged over by p, q, . . . ,
which we use to uniquely identify the participants of a session; we let π , . . . range over
non-empty, finite sets of roles.

Global types, ranged over by G , are the terms generated by the grammar in Table 1.
Their syntax was already explained in Section 1 except for two novelties. First, we
include a skip atom which denotes the unit of sequential composition (it plays the same
role as the empty word in regular expressions). This is useful, for instance, to express
optional interactions. Thus, if in our example we want the buyer to do at most one
counteroffer instead of several ones, we just replace the starred line in (2) by

(buyer
offer−→ seller;seller

price−→ buyer)∨ skip

which, using syntactic sugar of regular expressions, might be rendered as

(buyer
offer−→ seller;seller

price−→ buyer)?

Second, we generalize interactions by allowing a finite set of roles on the l.h.s. of
interactions. Therefore, π

a−→ p denotes the fact that (the participant identified by) p
waits for an a message from all of the participants whose tags are in π . We will write
p

a−→ q as a shorthand for {p} a−→ q. An example showing the usefulness of multiple
roles on the left-hand side of actions is the following one

(seller
price−→ buyer1∧bank mortgage−→ buyer2);

({buyer1,buyer2} accept−→ seller∧{buyer1,buyer2} accept−→ bank)

On Global Types and Multi-Party Sessions 7

which represents two buyers waiting for both the price from a seller and the mortgage
from a bank before deciding the purchase.

To be as general as possible, one could also consider interactions of the form π
a−→

π ′, which could be used to specify broadcast communications between participants. We
avoided this generalization since it cannot be implemented without covert channels. In
fact in a sound execution of

seller
price−→ {buyer1,buyer2},

the reception of price by buyer1 should wait also for the reception of price by buyer2
and vice versa, and this requires a synchonization between buyer1 and buyer2.

In general we will assume p 6∈ π for every interaction π
a−→ p occurring in a global

type, that is, we forbid participants to send messages to themselves. For the sake of
readability we adopt the following precedence of global type operators−→ ∗ ; ∧ ∨.

Global types denote languages of legal interactions that can occur in a multi-party
session. These languages are defined over the alphabet of interactions

Σ = {π a−→ p | π ⊂fin Π,p ∈ Π,p 6∈ π,a ∈A }

and we use α as short for π
a−→ p when possible; we use ϕ , ψ , . . . to range over strings

in Σ ∗ and ε to denote the empty string, as usual. To improve readability we will occa-
sionally use « ; » to denote string concatenation.

In order to express the language of a global type having the shape G1∧G2 we need
a standard shuffling operator over languages, which can be defined as follows:

Definition 2.1 (shuffling). The shuffle of L1 and L2, denoted by L1

∃

L2, is the language

defined by: L1

∃

L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}.

Observe that, in L1

∃

L2, the order of interactions coming from one language is
preserved, but these interactions can be interspersed with other interactions coming
from the other language.

Definition 2.2 (traces of global types). The set of traces of a global type is inductively
defined by the following equations:

tr(skip) = {ε}
tr(π a−→ p) = {π a−→ p}

tr(G1;G2) = tr(G1)tr(G2)
tr(G ∗) = (tr(G))?

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃

tr(G2)

where juxtaposition denotes concatenation and (·)? is the usual Kleene closure of reg-
ular languages.

Before we move on, it is worth noting that tr(G) is a regular language (recall that
regular languages are closed under shuffling). Since a regular language is made of finite
strings, we are implicitly making the assumption that a global type specifies interactions
of finite length. This means that we are considering interactions of arbitraty length, but
such that the termination of all the involved participants is always within reach. This
is a subtle, yet radical change from other multi-party session theories, where infinite
interactions are considered legal.

8 Castagna, Dezani-Ciancaglini, Padovani

By way of example, consider the global type

G = (p
a−→ q∧p b−→ q);(q c−→ p;p b−→ q)∗;(q d−→ p∨q e−→ p)

which represents the bargain protocol described in the introduction. Every long enough
string in tr(G) has either the form

ψ;q c−→ p;p b−→ q; · · · ;q d−→ p or ψ;q c−→ p;p b−→ q; · · · ;q e−→ p

for some appropriate ψ , meaning that the phase in which the buyer makes new offers
can be arbitrarily long, although it must eventually terminate with the decision to either
quit or accept.

3 Multi-Party Sessions

We devote this section to the formal definition of the behavior of the participants of a
multi-party session.

3.1 Session Types

We need an infinite set of recursion variables ranged over by X , Pre-session types,
ranged over by T , S, . . . , are the terms generated by the grammar in Table 2 such that
all recursion variables are guarded by at least one input or output prefix. We consider
pre-session types modulo associativity, commutativity, and idempotence of internal and
external choices, fold/unfold of recursions and the equalities

π!a.T ⊕π!a.S = π!a.(T ⊕S) π?a.T +π?a.S = π?a.(T +S)

Pre-session types are behavioral descriptions of the participants of a multi-party
session. Informally, end describes a successfully terminated party that no longer partic-
ipates to a session. The pre-session type p!a.T describes a participant that sends an a
message to participant p and afterwards behaves according to T ; the pre-session type
π?a.T describes a participant that waits for an a message from all the participants in π

and, upon arrival of the message, behaves according to T ; we will usually abbreviate
{p}?a.T with p?a.T . Behaviors can be combined by means of behavioral choices⊕ and
+: T ⊕S describes a participant that internally decides whether to behave according to
T or S; T +S describes a participant that offers to the other participants two possible be-
haviors, T and S. The choice as to which behavior is taken depends on the messages sent
by the other participants. In the following, we sometimes use n-ary versions of internal
and external choices and write, for example,

⊕n
i=1 pi!ai.Ti for p1!a1.T1⊕·· ·⊕pn!an.Tn

and ∑
n
i=1 πi?ai.Ti for π1?a1.T1+ · · ·+πn?an.Tn. As usual, terms X and rec X .T are used

for describing recursive behaviors. As an example, rec X .(p!a.X⊕p!b.end) describes a
participant that sends an arbitrary number of a messages to p and terminates by sending
a b message; dually, rec X .(p?a.X +p?b.end) describes a participant that is capable of
receiving an arbitrary number of a messages from p and terminates as soon a b message
is received.

On Global Types and Multi-Party Sessions 9

Table 2. Syntax of pre-session types.

T ::= Pre-Session Type
end (termination) | X (variable)

| p!a.T (output) | π?a.T (input)
| T ⊕T (internal choice) | T +T (external choice)
| rec X .T (recursion)

Session types are the pre-session types where internal choices are used to combine
outputs, external choices are used to combine inputs, and the continuation after every
prefix is uniquely determined by the prefix. Formally:

Definition 3.1 (session types). A pre-session type T is a session type if either:

– T = end, or
– T =

⊕
i∈I pi!ai.Ti and ∀i, j ∈ I we have that pi!ai = p j!a j implies i = j and each Ti

is a session type, or
– T = ∑i∈I πi?ai.Ti and ∀i, j ∈ I we have that πi ⊆ π j and ai = a j imply i = j and

each Ti is a session type.

3.2 Session Environments

A session environment is defined as the set of the session types of its participants, where
each participant is uniquely identified by a role. Formally:

Definition 3.2 (session environment). A session environment (briefly, session) is a fi-
nite map {pi : Ti}i∈I .

In what follows we use ∆ to range over sessions and we write ∆]∆′ to denote the
union of sessions, when their domains are disjoint.

To describe the operational semantics of a session we model an asynchronous form
of communication where the messages sent by the participants of the session are stored
within a buffer associated with the session. Each message has the form p

a−→ q describ-
ing the sender p, the receiver q, and the type a of message. Buffers, ranged over by B,
. . . , are finite sequences p1

a1−→ q1 :: · · · :: pn
an−→ qn of messages considered modulo the

least congruence ' over buffers such that

p
a−→ q :: p′ b−→ q′ ' p′

b−→ q′ :: p a−→ q

when p 6= p′ or q 6= q′, that is, we care about the order of messages in the buffer only
when these have both the same sender and the same receiver. In practice, this corre-
sponds to a form of communication where each pair of participants of a multi-party
session is connected by a distinct FIFO buffer.

There are two possible reductions of a session:

B #{p :
⊕

i∈I pi!ai.Ti}]∆ −→ (p
ak−→ pk)::B #{p : Tk}]∆ (k∈I)

B::(pi
a−→p)i∈I #{p : ∑ j∈J π j?a j.Tj}]∆

πk
a−→p−−−−→ B #{p : Tk}]∆

(
k∈J ak=a

πk={pi|i∈I}

)

10 Castagna, Dezani-Ciancaglini, Padovani

The first rule describes the effect of an output operation performed by participant p,
which stores the message p

ak−→ pk in the buffer and leaves participant p with a residual
session type Tk corresponding to the message that has been sent. The second rule de-
scribes the effect of an input operation performed by participant p. If the buffer contains
enough messages of type a coming from all the participants in πk, those messages are
removed from the buffer and the receiver continues as described in Tk. In this rule we
decorate the reduction relation with πk

a−→ p that describes the occurred interaction (as
we have already remarked, we take the point of view that an interaction is completed
when messages are received). This decoration will allow us to relate the behavior of
an implemented session with the traces of a global type (see Definition 2.2). We adopt
some conventional notation: we write =⇒ for the reflexive, transitive closure of−→; we
write α

=⇒ for the composition =⇒ α−→=⇒ and
α1···αn
===⇒ for the composition

α1=⇒ ··· αn=⇒.
We can now formally characterize the “correct sessions” as those in which, no mat-

ter how they reduce, it is always possible to reach a state where all of the participants
are successfully terminated and the buffer has been emptied.

Definition 3.3 (live session). We say that ∆ is a live session if ε #∆
ϕ

=⇒ B #∆′ implies
B #∆′

ψ
=⇒ ε #{pi : end}i∈I for some ψ .

We adopt the term “live session” to emphasize the fact that Definition 3.3 states a
liveness property: every finite computation ε,∆

ϕ
=⇒ B #∆′ can always be extended to a

successful computation ε #∆
ϕ

=⇒ B #∆′
ψ

=⇒ ε # {pi : end}i∈I . This is stronger than the
progress property enforced by other multi-party session type theories, where it is only
required that a session must never get stuck (but it is possible that some participants
starve for messages that are never sent). As an example, the session

∆1 = {p : rec X .(q!a.X⊕q!b.end) , q : rec Y.(p?a.Y +p?b.end)}

is alive because, no matter how many a messages p sends, q can receive all of them and,
if p chooses to send a b message, the interaction terminates successfully for both p and
q. This example also shows that, despite the fact that session types describe finite-state
processes, the session ∆1 is not finite-state, in the sense that the set of configurations
{(B #∆′) | ∃ϕ,B,∆′ : ε #∆1

ϕ
=⇒ B #∆′} is infinite. This happens because there is no

bound on the size of the buffer and an arbitrary number of a messages sent by p can
accumulate in B before q receives them. As a consequence, the fact that a session is
alive cannot be established in general by means of a brute force algorithm that checks
every reachable configuration. By contrast, the session

∆2 = {p : rec X .q!a.X , q : rec Y.p?a.Y}

which is normally regarded correct in other session type theories, is not alive because
there is no way for p and q to reach a successfully terminated state. The point is that
hitherto correctness of session was associated to progress (ie, the system is never stuck).
This is a weak notion of correctness since, for instance the session ∆2]{r : p?c.end}
satisfies progress even though role r starves waiting for its input. While in this example

On Global Types and Multi-Party Sessions 11

starvation is clear since no c message is ever sent, determining starvation is in general
more difficult, as for

∆3 = {p : rec X .q!a.q!b.X , q : rec Y.(p?a.p?b.Y +p?b.r!c.end) , r : q?c.end}

which satisfies progress, where every input corresponds to a compatible output, and
viceversa, but which is not alive.

We can now define the traces of a session as the set of sequences of interactions that
can occur in every possible reduction. It is convenient to define the traces of an incorrect
(ie, non-live) session as the empty set (observe that tr(G) 6= /0 for every G).

Definition 3.4 (session traces).

tr(∆)
def
=

{
{ϕ | ε #∆

ϕ
=⇒ ε #{pi : end}i∈I} if ∆ is a live session

/0 otherwise

It is easy to verify that tr(∆1) = tr((p a−→ q)∗;p b−→ q) while tr(∆2) = tr(∆3) = /0
since neither ∆2 nor ∆3 is a live session.

4 Semantic projection

In this section we show how to project a global type to the session types of its partic-
ipants —ie, to a session— in such a way that the projection is correct with respect to
the global type. Before we move on, we must be more precise about what we mean by
correctness of a session ∆ with respect to a global type G . In our setting, correctness
refers to some relationship between the traces of ∆ and those of G . In general, how-
ever, we cannot require that G and ∆ have exactly the same traces: when projecting
G1 ∧ G2 we might need to impose a particular order in which the interactions spec-
ified by G1 and G2 must occur (shuffling condition). At the same time, asking only
tr(∆) ⊆ tr(G) would lead us to immediately loose the exhaustivity property, since for

instance {p : q!a.end , q : p?a.end} would implement p a−→ q∨ p b−→ q even though
the implementation systematically exhibits only one (p a−→ q) of the specified alterna-
tive behaviors. In the end, we say that ∆ is a correct implementation of G if: first, every
trace of ∆ is a trace of G (soundness); second, every trace of G is the permutation of a
trace of ∆ (completeness). Formally:

tr(∆)⊆ tr(G)⊆ tr(∆)◦

where L◦ is the closure of L under arbitrary permutations of the strings in L:

L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

Since these relations between languages (of traces) play a crucial role, it is conve-
nient to define a suitable pre-order relation:

Definition 4.1 (implementation pre-order). We let L1 6 L2 if L1 ⊆ L2 ⊆ L◦1 and ex-
tend it to global types and sessions in the natural way, by considering the corresponding
sets of traces. Therefore, we write ∆6 G if tr(∆)6 tr(G).

12 Castagna, Dezani-Ciancaglini, Padovani

Table 3. Rules for semantic projection.

(SP-SKIP)
∆ ` skip . ∆

(SP-ACTION)
{pi : Ti}i∈I]{p : T}]∆ ` {pi}i∈I

a−→ p . {pi : p!a.Ti}i∈I]{p : {pi}i∈I?a.T}]∆

(SP-SEQUENCE)
∆ ` G2 . ∆′ ∆′ ` G1 . ∆′′

∆ ` G1;G2 . ∆′′

(SP-ALTERNATIVE)
∆ ` G1 . {p : T1}]∆′ ∆ ` G2 . {p : T2}]∆′

∆ ` G1∨G2 . {p : T1⊕T2}]∆′

(SP-ITERATION)
{p : T1⊕T2}]∆ ` G . {p : T1}]∆
{p : T2}]∆ ` G ∗ . {p : T1⊕T2}]∆

(SP-SUBSUMPTION)
∆ ` G ′ . ∆′ G ′ 6 G ∆′′ 6 ∆′

∆ ` G . ∆′′

It is easy to see that soundness and completeness respectively formalize the notions
of fitness and exhaustivity that we have outlined in the introduction. For what concerns
the remaining three properties listed in the introduction (ie, sequentiality, alternative-
ness, and shuffling), they are entailed by the formalization of the semantics of a global
type in terms of its traces (Definition 2.2). In particular, we have that soundness implies
sequentiality and alternativeness, while completeness implies shuffling. Therefore, in
the formal treatment that follows we will focus on soundness and completeness as to
the only characterizing properties connecting sessions and global types. The relation
∆6G summarizes the fact that ∆ is both sound and complete with respect to G , namely
that ∆ is a correct implementation of the specification G .

Table 3 presents our rules to build the projections of global types. Projecting a global
type basically means compiling it to an “equivalent” set of session types. Since the
source language (global types) is equipped with sequential composition while the tar-
get language (session types) is not, it is convenient to parameterize projection on a
continuation, ie, we consider judgments of the shape:

∆ ` G . ∆′

meaning that if ∆ is the projection of some G ′, then ∆′ is the projection of G ;G ′. This
immediately gives us the rule (SP-SEQUENCE). We say that ∆′ is a projection of G
with continuation ∆.

The projection of an interaction π
a−→ p adds p!a in front of the session type of

all the roles in π , and π?a in front of the session type of p (rule (SP-ACTION)). For
example we have:

{p : end,q : end} ` p a−→ q . {p : q!a.end, q : p?a.end}

An alternative G1 ∨G2 (rule (SP-ALTERNATIVE)) can be projected only if there
is a participant p that actively chooses among different behaviors by sending differ-
ent messages, while all the other participants must exhibit the same behavior in both
branches. The subsumption rule (SP-SUBSUMPTION) can be used to fulfil this require-
ment in many cases. For example we have ∆0 ` p

a−→ q . {p : q!a.end,q : p?a.end}

On Global Types and Multi-Party Sessions 13

and ∆0 ` p
b−→ q . {p : q!b.end,q : p?b.end}, where ∆0 = {p : end,q : end}. In or-

der to project p a−→ q∨ p b−→ q with continuation ∆0 we derive first by subsumption
∆0 ` p

a−→ q . {p : q!a.end , q : T} and ∆0 ` p
b−→ q . {p : q!b.end , q : T} where

T = p?a.end+p?b.end. Then we obtain

∆0 ` p
a−→ q∨p b−→ q . {p : q!a.end⊕q!b.end , q : T}

Notice that rule (SP-ALTERNATIVE) imposes that in alternative branches there must be
one and only one participant that takes the decision. For instance, the global type

{p,q} a−→ r ∨ {p,q} b−→ r

cannot be projected since we would need a covert channel for p to agree with q about
whether to send to r the message a or b.

To project a starred global type we also require that one participant p chooses be-
tween repeating the loop or exiting by sending messages, while the session types of
all other participants are unchanged. If T1 and T2 are the session types describing the
behavior of p when it has respectively decided to perform one more iteration or to ter-
minate the iteration, then T1⊕T2 describes the behavior of p before it takes the decision.
The projection rule requires that one execution of G followed by the choice between
T1 and T2 projects in a session with type T1 for p. This is possible only if T1 is a recur-
sive type, as expected, and it is the premise of rule (SP-ITERATION). For example if
T1 = q!a.rec X .(q!a.X⊕q!b.end), T2 = q!b.end, and S = rec Y.(p?a.Y +p?b.end) we
can derive {p : T1⊕T2,q : S} ` p a−→ q . {p : T1,q : S} and then

{p : T2,q : S} ` (p a−→ q)∗ . {p : T1⊕T2, q : S}

Notably there is no rule for “∧”, the both constructor. We deal with this constructor
by observing that all interleavings of the actions in G1 and G2 give global types G such
that G 6 G1 ∧G2, and therefore we can use the subsumption rule to eliminate every
occurrence of ∧. For example, to project the global type p a−→ q∧r b−→ s we can use
p

a−→ q;r b−→ s: since the two actions that compose both global types have disjoint
participants, then the projections of these global types (as well as that of r b−→ s;p a−→
q) will have exactly the same set of traces.

Other interesting examples of subsumptions useful for projecting are

r
b−→ p;p a−→ q 6 (p

a−→ q;r b−→ p)∨ (r b−→ p;p a−→ q) (3)

r
b−→ p;(p a−→ q∨p b−→ q) 6 (r

b−→ p;p a−→ q)∨ (r b−→ p;p b−→ q) (4)

In (3) the 6-larger global type describes the shuffling of two interactions, therefore
we can project one particular ordering still preserving completeness. In (4) we take
advantage of the flat nature of traces to push the ∨ construct where the choice is actually
being made.

We are interested in projections without continuations, that is, in judgments of the
shape {p : end | p ∈ G } ` G . ∆ (where p ∈ G means that p occurs in G) which we
shortly will write as

` G . ∆

14 Castagna, Dezani-Ciancaglini, Padovani

The mere existence of a projection does not mean that the projection behaves as
specified in the global type. For example, we have

` p a−→ q;r a−→ s . {p : q!a.end, q : p?a.end, r : s!a.end, s : r?a.end}

but the projection admits also the trace r
a−→ s;p a−→ q which is not allowed by the

global type. Clearly the problem resides in the global type, which tries to impose a
temporal ordering between interactions involving disjoint participants. What we want,
in accordance with the traces of a global type G1;G2, is that no interaction in G2 can be
completed before all the interactions in G1 are completed. More in details:

– an action π
a−→ p is completed when the participant p has received the message a

from all the participants in π;

– if ϕ;π
a−→ p;π ′

b−→ p′;ψ is a trace of a global type, then either the action π ′
b−→ p′

cannot be completed before the action π
a−→ p is completed, or they can be exe-

cuted in any order. The first case requires p to be either p′ or a member of π ′, in the
second case the set of traces must also contain the trace ϕ;π ′

b−→ p′;π
a−→ p;ψ .

This leads us to the following definition of well-formed global type.

Definition 4.2 (well-formed global type). We say that a set of traces L is well formed if
ϕ;π

a−→ p;π ′
b−→ p′;ψ ∈ L implies either p∈ π ′∪{p′} or ϕ;π ′

b−→ p′;π
a−→ p;ψ ∈ L.

We say that a global type G is well formed if so is tr(G).

It is easy to decide well-formedness of an arbitrary global type G by looking at the
automaton that recognizes the language of traces generated by G .

Projectability and well-formedness must be kept separate because it is sometimes
necessary to project ill-formed global types. For example, the ill-formed global type
p

a−→ q;r a−→ s above is useful to project p a−→ q∧r a−→ s which is well formed.
Clearly, if a global type is projectable (ie, `G . ∆ is derivable) then well-formedness

of G is a necessary condition for the soundness and completeness of its projection (ie,
for ∆ 6 G). It turns out that well-formedness is also a sufficient condition for having
soundness and completeness of projections, as stated in the following theorem, whose
proof is the content of Appendix A.

Theorem 4.1. If G is well formed and ` G . ∆, then ∆6 G .

In summary, if a well-formed global type G is projectable, then its projection is a live
projection (it cannot be empty since tr(G) ⊆ tr(∆)◦) which is sound and complete wrt
G and, therefore, satisfies the sequentiality, alternativeness, and shuffling properties
outlined in the introduction.

We conclude this section by formally characterizing the three kinds of problematic
global types we have described earlier. We start from the least severe problem and
move towards the more serious ones. Let L# denote the smallest well-formed set such
that L⊆ L#.

On Global Types and Multi-Party Sessions 15

No sequentiality. Assuming that there is no ∆ that is both sound and complete for G , it
might be the case that we can find a session whose traces are complete for G and sound
for the global type G ′ obtained from G by turning some « ; »’s into «∧ »’s. This means
that the original global type G is ill formed, namely that it specifies some sequentiality
constraints that are impossible to implement. For instance, {p : q!a.end, q : p?a.end, r :
s!b.end, s : r?b.end} is a complete but not sound session for the ill-formed global type

p
a−→ q;r b−→ s (while it is a sound and complete session for p a−→ q∧r b−→ s). We

characterize the global types G that present this error as:

@∆ : ∆6 G and ∃∆ : tr(G)⊆ tr(∆)⊆ tr(G)# .

No knowledge for choice. In this case every session ∆ that is complete for G invariably
exhibits some interactions that are not allowed by G despite the fact that G is well
formed. This happens when the global type specifies alternative behaviors, but some
participants do not have enough information to behave consistently. For example, the
global type

(p
a−→ q;q a−→ r;r a−→ p)∨ (p b−→ q;q a−→ r;r b−→ p)

mandates that r should send either a or b in accordance with the message that p sends
to q. Unfortunately, r has no information as to which message q has received, because
q notifies r with an a message in both branches. A complete implementation of this
global type is

{p : q!a.(r?a.end+r?b.end)⊕q!b.(r?a.end+r?b.end),
q : p?a.r!a.end+p?b.r!a.end,r : q?a.(q!a.end⊕q!b.end)}

which also produces the traces p a−→ q;q a−→ r;r b−→ p and p
b−→ q;q a−→ r;r a−→ p.

We characterize this error as:

@∆ : tr(G)⊆ tr(∆)⊆ tr(G)# and ∃∆ : tr(G)⊆ tr(∆) .

No knowledge, no choice. In this case we cannot find a complete session ∆ for G .
This typically means that G specifies some combination of incompatible behaviors.
For example, the global type p

a−→ q∨ q a−→ p implies an agreement between p and
q for establishing who is entitled to send the a message. In a distributed environment,
however, there can be no agreement without a previous message exchange. Therefore,
we can either have a sound but not complete session that implements just one of the two
branches (for example, {p : q!a.end,q : p?a.end}) or a session like {p : q!a.q?a.end,q :
p?a.p!a.end} where both p and q send their message but which is neither sound nor
complete. We characterize this error as:

@∆ : tr(G)⊆ tr(∆) .

5 Algorithmic projection

We now attack the problem of computing the projection of a global type. We are looking
for an algorithm that “implements” the projection rules of Section 4, that is, that given a

16 Castagna, Dezani-Ciancaglini, Padovani

session continuation ∆ and a global type G , produces a projection ∆′ such that ∆ ` G :
∆′. In other terms this algorithm must be sound with respect to the semantic projection
(completeness, that is, returning a projection for every global type that is semantically
projectable, seems out of reach, yet).

The deduction system in Table 3 is not algorithmic because of two rules: the rule
(SP-ITERATION) that does not satisfy the subformula property since the context ∆ used
in the premises is the result of the conclusion; the rule (SP-SUBSUMPTION) since it is
neither syntax-directed (it is defined for a generic G) nor does it satisfy the subformula
property (the G ′ and ∆′′ in the premises are not uniquely determined).3 The latter rule
can be expressed as the composition of the two rules

(SP-SUBSUMPTIONG)
∆ ` G ′ . ∆′ G ′ 6 G

∆ ` G . ∆′

(SP-SUBSUMPTIONS)
∆ ` G . ∆′ ∆′′ 6 ∆′

∆ ` G . ∆′′

Splitting (SP-SUBSUMPTION) into (SP-SUBSUMPTIONG) and (SP-SUBSUMPTIONS)
is useful to explain the following problems we have to tackle to define an algorithm:

1. How to eliminate (SP-SUBSUMPTIONS), the subsumption rule for sessions.
2. How to define an algorithmic version of (SP-ITERATION), the rule for Kleene star.
3. How to eliminate (SP-SUBSUMPTIONG), the subsumption rule for global types.

We address each problem in order and discuss the related rule in the next sections.

5.1 Session subsumption

Rule (SP-SUBSUMPTIONS) is needed to project alternative branches and iterations
(a loop is an unbound repetition of alternatives, each one starting with the choice of
whether to enter the loop or to skip it): each participant different from the one that
actively chooses must behave according to the same session type in both branches.
More precisely, to project G1∨G2 the rule (SP-ALTERNATIVE) requires to deduce for
G1 and G2 the same projection: if different projections are deduced, then they must
be previously subsumed to a common lower bound. The algorithmic projection of an
alternative (see the corresponding rule in Table 4) allows premises with two differ-
ent sessions, but then merges them. Of course not every pair of projections is merge-
able. Intuitively, two projections are mergeable if so are the behaviors of each partic-
ipant. This requires participants to respect a precise behavior: as long as a participant
cannot determine in which branch (ie, projection) it is, then it must do the same ac-
tions in all branches (ie, projections). For example, to project G = (p

a−→ q;r c−→
q; . . .)∨ (p b−→ q;r c−→ q; . . .) we project each branch separately obtaining ∆1 = {p :
q!a . . . ,q : p?a.r?c . . . ,r : q!c . . .} and ∆2 = {p : q!b . . . ,q : p?b.r?c . . . ,r : q!c . . .}.
Since p performs the choice, in the projection of G we obtain p : q!a . . .⊕ q!b . . . and
we must merge {q : p?a.r?c . . . ,r : q!c . . .} with {q : p?b.r?c . . . ,r : q!c . . .}. Regarding

3 The rule (SP-ALTERNATIVE) is algorithmic: in fact there is a finite number of participants
in the two sessions of the premises and at most one of them can have different session types
starting with outputs.

On Global Types and Multi-Party Sessions 17

q, observe that it is the receiver of the message from p, therefore it becomes aware of
the choice and can behave differently right after the first input operation. Merging its
behaviors yields q : p?a.r?c . . .+p?b.r?c Regarding r, it has no information as to
which choice has been made by p, therefore it must have the same behavior in both
branches, as is the case. Since merging is idempotent, we obtain r : q!c In sum-
mary, mergeability of two branches of an «∨ » corresponds to the “awareness” of the
choice made when branching (see the discussion in Section 4 about the “No knowledge
for choice” error), and it is possible when, roughly, each participant performs the same
internal choices and disjoint external choices in the two sessions.

Special care must be taken when merging external choices to avoid unexpected in-
teractions that may invalidate the correctness of the projection. To illustrate the problem
consider the session types T = p?a.q?b.end and S = q?b.end describing the behavior of
a participant r. If we let r behave according to the merge of T and S, which intuitively is
the external choice p?a.q?b.end+q?b.end, it may be possible that the message b from
q is read before the message a from p arrives. Therefore, r may mistakenly think that
it should no longer participate to the session, while there is still a message targeted to
r that will never be read. Therefore, T and S are incompatible and it is not possible to
merge them safely. On the contrary, p?a.p?b.end and p?b.end are compatible and can
be merged to p?a.p?b.end+p?b.end. In this case, since the order of messages coming
from the same sender is preserved, it is not possible for r to read the b message coming
from p before the a message, assuming that p sent both. More formally:

Definition 5.1 (compatibility). We say that an input p?a is compatible with a session
type T if either

(i) p?a does not occur in T , or
(ii) T =

⊕
i∈I pi!ai.Ti and p?a is compatible with Ti for all i ∈ I, or

(iii) T = ∑i∈I πi?ai.Ti and for all i ∈ I either p ∈ πi and a 6= ai or p 6∈ πi and p?a is
compatible with Ti.

We say that an input π?a is compatible with a session type T if p?a is compatible
with T for some p ∈ π .

Finally, T =∑i∈I πi?ai.Ti+∑ j∈J π j?a j.Tj and S=∑i∈I πi?ai.Si+∑h∈H πh?ah.Sh are
compatible if π j?a j is compatible with S for all j ∈ J and πh?ah is compatible with T
for all h ∈ H.

The merge operator just connects sessions with the same output guards by internal
choices and with compatible input guards by external choices:

Definition 5.2 (merge). The merge of T and S, written T !S, is defined coinductively
and by cases on the structure of T and S thus:

– if T = S = end, then T !S = end;
– if T =

⊕
i∈I pi!ai.Ti and S =

⊕
i∈I pi!ai.Si, then T !S =

⊕
i∈I pi!ai.(Ti !Si);

– if T = ∑i∈I πi?ai.Ti+∑ j∈J π j?a j.Tj and S = ∑i∈I πi?ai.Si+∑h∈H πh?ah.Sh are com-
patible, then T !S = ∑i∈I πi?ai.(Ti !Si)+∑ j∈J π j?a j.Tj +∑h∈H πh?ah.Sh.

We extend merging to sessions so that ∆!∆′ = {p : T !S | p : T ∈ ∆ & p : S ∈ ∆′}.

18 Castagna, Dezani-Ciancaglini, Padovani

Table 4. Rules for algorithmic projection.

(AP-SKIP)
∆ `a skip . ∆

(AP-ACTION)
{pi : Ti}i∈I]{p : T}]∆ `a {pi}i∈I

a−→ p . {pi : p!a.Ti}i∈I]{p : {pi}i∈I?a.T}]∆

(AP-SEQUENCE)
∆ `a G2 . ∆′ ∆′ `a G1 . ∆′′

∆ `a G1;G2 . ∆′′

(AP-ALTERNATIVE)
∆ `a G1 . {p : T1}]∆1 ∆ `a G2 . {p : T2}]∆2

∆ `a G1∨G2 . {p : T1⊕T2}] (∆1 !∆2)

(AP-ITERATION)
{p : X}]{pi : Xi}i∈I `a G . {p : S}]{pi : Si}i∈I

{p : T}]{pi : Ti}i∈I]∆ `a G ∗ . {p : rec X .(T ⊕S)}]{pi : rec Xi.(Ti !Si)}i∈I]∆

Rules (AP-ALTERNATIVE) and (AP-ITERATION) of Table 4 are the algorithmic
versions of (SP-ALTERNATIVE) and (SP-ITERATION), but instead of relying on sub-
sumption they use the merge operator to compute common behaviors.

The merge operation is a sound but incomplete approximation of session subsump-
tion insofar as the merge of two sessions can be undefined even though the two sessions
completed with the participant that makes the decision have a common lower bound
according to 6. This implies that there are global types which can be semantically but
not algorithmically projected.
Take for example G1 ∨ G2 where G1 = p

a−→ r;r a−→ p;p a−→ q;q b−→ r and G2 =

p
b−→ q;q b−→ r. The behavior of r in G1 and G2 respectively is T = p?a.p!a.q?b.end

and S = q?b. Then we see that G1 ∨G2 is semantically projectable, for instance by in-
ferring the behavior T +S for r. However, T and S are incompatible and G1∨G2 is not
algorithmically projectable. The point is that the 6 relation on projections has a com-
prehensive perspective of the whole session and “realizes” that, if p initially chooses to
send a, then r will not receive a b message coming from q until r has sent a to p. The
merge operator, on the other hand, is defined locally on pairs of session types and ig-
nores that the a message that r sends to p is used to enforce the arrival of the b message
from q to r only afterwards. For this reason it conservatively declares T and S incom-
patible, making G1 ∨G2 impossible to project algorithmically. Appendix B discusses
further examples illustrating merge and compatibility.

5.2 Projection of Kleene star

Since an iteration G ∗ is intuitively equivalent to skip∨G ;G ∗ it comes as no surprise that
the algorithmic rule (AP-ITERATION) uses the merge operator. The use of recursion
variables for continuations is also natural: in the premise we project G taking recursion
variables as session types in the continuation; the conclusion projects G ∗ as the choice
between exiting and entering the loop. There is, however, a subtle point in this rule that
may go unnoticed: although in the premises of (AP-ITERATION) the only actions and
roles taken into account are those occurring in G , in its conclusion the projection of G ∗

On Global Types and Multi-Party Sessions 19

may require a continuation that includes actions and roles that precede G ∗. The point
can be illustrated by the global type

(p
a−→ q;(p b−→ q)∗)∗;p c−→ q

where p initially decides whether to enter the outermost iteration (by sending a) or
not (by sending c). If it enters the iteration, then it eventually decides whether to also
enter the innermost iteration (by sending b), whether to repeat the outermost one (by
sending a), or to exit both (by sending c). Therefore, when we project (p b−→ q)∗,
we must do it in a context in which both p

c−→ q and p
a−→ q are possible, that is a

continuation of the form {p : q!a . . .⊕ q!c.end} even though no a is sent by an action

(syntactically) following (p
b−→ q)∗. For the same reason, the projection of (p b−→ q)∗

in (p
a−→ q;p a−→ r;(p b−→ q)∗)∗;p c−→ q;q c−→ r will need a recursive session type

for r in the continuation.

5.3 Global type subsumption

Elimination of global type subsumption is the most difficult problem when defining the
projection algorithm. While in the case of sessions the definition of the merge oper-
ator gives us a sound—though not complete—tool that replaces session subsumption
in very specific places, we do not have such a tool for global type containment. This is
unfortunate since global type subsumption is necessary to project several usage patterns
(see for example the inequations (3) and (4)), but most importantly it is the only way
to eliminate ∧-types (neither the semantic nor the algorithmic deduction systems have
projection rules for ∧). The minimal facility that a projection algorithm should provide
is to feed the algorithmic rules with all the variants of a global type obtained by replac-
ing occurrences of G1∧G2 by either G1;G2 or G2;G1. Unfortunately, this is not enough
to cover all the occurrences in which rule (SP-SUBSUMPTIONG) is necessary. Indeed,
while G1;G2 and G2;G1 are in many cases projectable (for instance, when G1 and G2
have distinct roles and are both projectable), there exist G1 and G2 such that G1∧G2 is
projectable only by considering a clever interleaving of the actions occurring in them.

Consider for instance G1 = (p
a−→ q;q c−→ s;s e−→ q)∨ (p b−→ r;r d−→ s;s

f−→ r)

and G2 = r
g−→ s;s h−→ r;s i−→ q. The projection of G1 ∧G2 from the environment

{q : p!a.end,r : p!b.end} can be obtained only from the interleaving

r
g−→ s;G1;s h−→ r;s i−→ q.

The reason is that q and r receive messages only in one of the two branches of the
«∨ », so we need to compute the merge of their types in these branches with their types
in the continuations. The example shows that to project G1 ∧G2 it may be necessary
to arbitrarily decompose one or both of G1 and G2 to find the particular interleaving of
actions that can be projected. As long as G1 and G2 are finite (no non-trivial iteration
occurs in them), we can use a brute force approach and try to project all the elements
in their shuffle, since there are only finitely many of them. In general —ie, in pres-
ence of iteration— this is not an effective solution. However, we conjecture that even

20 Castagna, Dezani-Ciancaglini, Padovani

in the presence of infinitely many traces one may always resort to the finite case by
considering only zero, one, and two unfoldings of starred global types. To give a rough
idea of the intuition supporting this conjecture consider the global type G ∗ ∧G ′: its
projectability requires the projectability of G ′ (since G can be iterated zero times), of
G ∧G ′ (since G can occur only once) and of G ;G (since the number of occurences of
G is unbounded). It is enough to require also that either G ;(G ∧G ′) or (G ∧G ′);G can
be projected, since then the projectability of either G n;(G ∧G ′) or (G ∧G ′);G n for an
arbitrary n follows (see Appendix C).

So we can —or, conjecture we can— get rid of all occurences of ∧ operators auto-
matically, without losing in projectability. However, examples (3) and (4) in Section 4
show that rule (SP-SUBSUMPTIONG) is useful to project also global types in which the
∧-constructor does not occur. A fully automated approach may consider (3) and (4) as
right-to-left rewriting rules that, in conjunction with some other rules, form a rewriting
system generating a set of global types to be fed to the algorithm of Table 4. The choice
of such rewriting rules must rely on a more thorough study to formally characterize the
sensible classes of approximations to be used in the algorithms. An alternative approach
is to consider a global type G as somewhat underspecified, in that it may allow for a
large number of different implementations (exhibiting different sets of traces) that are
sound and complete. Therefore, rule (SP-SUBSUMPTIONG) may be interpreted as a
human-assisted refinement process where the designer of a system proposes one partic-
ular implementation G 6 G ′ of a system described by G ′. In this respect it is interesting
to observe that checking whether L1 6 L2 when L1 and L2 are regular is decidable, since
this is a direct consequence of the decidability of the Parikh equivalence on regular lan-
guages [Par66].4

5.4 Properties of the algorithmic rules

Every deduction of the algorithmic system given in Table 4, possibly preceeded by
the elimination of ∧ and other potential sources of failures by applying the rewrit-
ings/heuristics outlined in the previous subsection, induces a similar deduction using
the rules for semantic projection (Table 3). For the proof see Appendix D.

Theorem 5.1. If `a G . ∆, then ` G . ∆.

As a corollary of Theorems 4.1 and 5.1, we immediately obtain that the projection ∆ of
a well-formed G returned by the algorithm is sound and complete with respect to G .

REMARK. Although every projection of a global type G produced by the algo-
rithm is sound and complete with respect to G , let us stess once more that
the algorithm itself is sound but not complete with respect to the semantic
projection system defined in Figure 3: while every algorithmic projection is
a semantic projection as well, there exist global types which are projectable
semantically but not algorithmically.

4 Whether two regular languages have the same Parikh image is decidable. The Parikh image of
a word w maps each letter of the alphabet to the number of times it appears in w, the Parikh
image of a language is the set of Parikh images of all words in the language. By checking
Parikh images one can check equivalence of languages modulo permutations.

On Global Types and Multi-Party Sessions 21

6 k-Exit iterations

The syntax of global types (Table 1) includes that of regular expressions and there-
fore is expressive enough for describing any protocol that follows a regular pattern.
Nonetheless, the simple Kleene star prevents us from projecting some useful protocols.
To illustrate the point, suppose we want to describe an interaction where two partici-
pants p and q alternate in a negotiation in which each of them may decide to bail out.
On p’s turn, p sends either a bailout message or a handover message to q; if a bailout
message is sent, the negotiation ends, otherwise it continues with q that behaves in a
symmetric way. The global type

(p
handover−→ q;q handover−→ p)∗;(p bailout−→ q∨p handover−→ q;q bailout−→ p)

describes this protocol as an arbitrarily long negotiation that may end in two possible
ways, according to the participant that chooses to bail out. This global type cannot be
projected because of the two occurrences of the interaction p

handover−→ q, which make it
ambiguous whether p actually chooses to bail out or to continue the negotiation. In gen-
eral, our projection rules (SP-ITERATION) and (AP-ITERATION) make the assumption
that an iteration can be exited in one way only, while in this case there are two pos-
sibilities according to which participant bails out. This lack of expressiveness of the
simple Kleene star used in a nondeterministic setting [Mil84] led researchers to seek
for alternative iterative constructs. One proposal is the k-exit iteration [BBP93], which
is a generalization of the binary Kleene star and has the form

(G1, . . . ,Gk)
k∗ (G ′1, . . . ,G

′
k)

indicating a loop consisting of k subsequent phases G1, . . . ,Gk. The loop can be exited
just before each phase through the corresponding G ′i . Formally, the traces of the k-exit
iteration can be expressed thus:

tr((G1, . . . ,Gk)
k∗ (G ′1, . . . ,G

′
k))

def
= tr((G1; . . . ;Gk)

∗;(G ′1∨G1;G ′2∨·· ·∨G1; . . . ;Gk−1;G ′k))

and, for example, the negotiation above can be represented as the global type

(p
handover−→ q,q

handover−→ p) 2∗ (p
bailout−→ q,q

bailout−→ p) (5)

while the unary Kleene star G ∗ can be encoded as (G) 1∗ (skip).
In our setting, the advantage of the k-exit iteration over the Kleene star is that it

syntactically identifies the k points in which a decision is made by a participant of
a multi-party session and, in this way, it enables more sophisticated projection rules
such as that in Table 5. Albeit intimidating, rule (SP-k-EXIT ITERATION) is just a
generalization of rule (SP-ITERATION). For each phase i a (distinct) participant pi is
identified: the participant may decide to exit the loop behaving as Si or to continue
the iteration behaving as Ti. While projecting each phase Gi, the participant p(i mod k)+1
that will decide at the next turn is given the continuation T(i mod k)+1⊕S(i mod k)+1, while
the others must behave according to some Ri that is the same for every phase in which

22 Castagna, Dezani-Ciancaglini, Padovani

Table 5. Semantic projection of k-exit iteration.

(SP-k-EXIT ITERATION)
∆ ` G ′i . {pi : Si}]{p j : R j} j=1,...,i−1,i+1,...,k]∆′ (i∈{1,...,k})

{p2 : T2⊕S2}]{pi : Ri}i=1,3,...,k]∆′ ` G1 . {p1 : T1}]{pi : Ri}i=2,...,k]∆′
{p3 : T3⊕S3}]{pi : Ri}i=1,2,4,...,k]∆′ ` G2 . {p2 : T2}]{pi : Ri}i=1,3,...,k]∆′

...
{p1 : T1⊕S1}]{pi : Ri}i=2,...,k]∆′ ` Gk . {pk : Tk}]{pi : Ri}i=1,...,k−1]∆′

∆ ` (G1, . . . ,Gk)
k∗ (G ′1, . . . ,G

′
k) . {p1 : T1⊕S1}]{pi : Ri}i=2,...,k]∆′

they play no active role. Once again, rule (SP-SUBSUMPTION) is required in order to
synthesize these behaviors. For example, the global type (5) is projected to

{p : rec X .(q!handover.(q?handover.X +q?bailout.end)⊕q!bailout.end),
q : rec Y.(p?handover.(p!handover.Y ⊕p!bailout.end)+p?bailout.end)}

as one expects.

7 Related work

The formalization and analysis of the relation between a global description of a dis-
tributed system and a more machine-oriented description of a set of components that
implements it, is a problem that has been studied in several contexts and by different
communities. In this setting, important properties that are considered are the verifi-
cation that an implementation satisfies the specification, the implementability of the
specification by automatically producing an implementation from it, and the study of
different properties of the specification that can then be transposed to each (possibly
automatically produced) implementation satisfying it. In this work we focused on the
implementability problem, and we tackled it from the “Web service coordination” per-
spective developed by the community that works on behavioral types and process al-
gebrae. We are just the latest ones to attack this problem. So many other communities
have been considering it before us that even a sketchy survey has no chance to be ex-
haustive. In what follows we describe two alternative approaches studied by important
communities with a large amount of different and important contributions, namely the
“automata” and “cryptographic protocols” approaches, and then focus on surveying our
“behavioral types/process algebra” approach stressing the relations with the two other
approaches and its peculiarities.

7.1 Automata approach

Probably the most extensive research on this problem is pursued by the “automata/model-
checking” (particularly, finite state automata) community where a special care is paid to
software engineering specification problems. In particular, a lot of research effort has fo-
cused on two specification languages standardized in telecommunications, the Message

On Global Types and Multi-Party Sessions 23

sellerbuyer

descr
price

sellerbuyer

offer

price
sellerbuyer

accept

sellerbuyer

quit

Fig. 1. MSG of the seller-buyer protocol

Sequence Charts (MSCs, ITU Z.120 standard) and the Specification and Description
Language (SDL, ITU Z.100 standard). These respectively play the roles of our global
types and session types. MSCs have become popular in software development thanks
to their graphical representation that depicts every process by a vertical line and each
message as an arrow from the sender to the receiver process fired according to their top-
down ordering. This standard, included in UML, can also represent other features, such
as timers, atomic events, local/global conditions, but it can represent neither iterations
nor branching. This is why it has been extended to Message Sequence Graphs (MSGs,
a special case of the High-Level Message Sequence Charts included in the Z.120 stan-
dard, with equivalent expressivity [MR97]) which consists of finite transition systems
whose states encapsulate a single MSC: reaching a given state starts the execution of
the embedded MSC whose termination makes the control move to another state. MSGs
play the same role as our global types.

In particular the global type (2) of the introduction corresponds to the MSG in Fig-
ure 1. The MSG is formed by four states that embed a MSC each. The middle state can
loop on itself or branch in one of the two possible final states.

While a MSG specifies the behavior of a distributed system in terms of interac-
tions, Communicating Finite-State Machines (CFSMs) —the core theoretical model of
SDL— describe it in terms of its single components. They are systems of finite state
automata that communicate via asynchronous unbounded FIFO channels. The automata
transitions are labeled by communication primitives which specify the message and the
sender or receiver of it and their execution triggers a read or write action on the cor-
responding buffer. A run is successful if each automata ends its execution in a final
state and all buffers are empty. An example is depicted in Figure 2 which implements
the protocol described by the MSG of Figure 1. The automaton on the top implements
the seller while the one on the bottom the buyer. They communicate by two directional
buffers depicted in the middle of the figure. It is clear that every run of these machines
places at most 2 messages in the buffers and that buffers of length 1 would suffice to
implement this protocol without causing deadlocks.

CFSMs essentially are our pre-session types: nothing prevents two transitions re-
spectively labeled by an input and an output operation to spring from the same state.
As in our case the interest is in relating MSGs with CFSMs so that the latter are imple-

24 Castagna, Dezani-Ciancaglini, Padovani

q0start q1 q2

q3

q4

buyer!descr

buyer!price

buyer?offer

buyer?accept

buyer?quit

buyer→seller seller→buyer

q0start q1 q2

q3

q4

seller?descr

seller?price

seller!offer

seller!accept

seller!quit

Fig. 2. CFSMs implementing the seller-buyer protocol.

mentations of the former. It comes as no surprise that the two formalisms are in general
incomparable. As pointed out in [GMP03,GM05] this depends on two fundamental pa-
rameters: control and state. In MSGs (as well as in our global types) the control of
branching is essentially global since it affects all the roles that occur in future execu-
tions, whereas in CFSMs (as well as in session types) it is inherently local, since it
corresponds to the local transition function. Consequently, there are MSGs that are not
implementable by CFSMs, insofar as the latter cannot implement global choices (in this
work we further distinguished three degrees of “non implementability”: no sequential-
ity, no knowledge for choice and no knowledge no choice). Viceversa, the unbounded
buffers of CFSMs provide them with infinite states and this gives them a Turing equiv-
alent expressivity [BZ83]. MSGs, instead, are finitely generated, in the sense that for
every MSG G there exists a finite set S of finite MSCs such that any execution of G
can be written as the juxtaposition of the execution of elements in S . It is then clear
that MSGs cannot specify all CFSMs systems (an example of this is the alternating
bit protocol in which a sender resends a message to a receiver since the acknowledg-
ment arrived too late: to be specified, this protocol needs MSCs of arbitrary length,
see [GMP03]). The relative expressive powers of the two formalisms (finitely generated
vs. Turing complete) makes it patent that the static verification of properties should be
much “easier” on MSGs than on CFSMs. Indeed, the expressivity of CFSMs is used
to justify the use of MSGs as an early specification tool to then be implemented (ie,
projected) into CFSMs: since CFSMs are Turing complete, all nontrivial behavioral
properties – termination, reachability (ie, is a given control state reachable?), deadlock-
freedom, boundedness (ie, is there some bound n such that every reachable configura-
tion has buffers of size at most n?) – are undecidable. Even if some of these properties
can be made decidable by some restrictions (eg, reachability and safety properties be-
come decidable with lossy channels, even though liveness properties and boundedness
remain undecidable, see [Sch04]) it is believed that a satisfactory set of decidable prop-
erties can be obtained only with trivial CFSMs (eg, with only two processes or with

On Global Types and Multi-Party Sessions 25

bounded buffers). MSGs instead have potentially much better properties, since they are
finitely generated. For instance, MSGs have existentially-bounded channels, that is, is
it possible to determine the maximum size of the buffers that each MSC that composes
an MSG has to use in order to execute it. Such properties combined with the fact that
the global semantics of CFSMs/SDL specifications is much more difficult to understand
than that of MSGs, explain why it is very sensible to start with a MSG, model-check
its properties and then implement it as a set of CFSMs. However, MSGs do not have
robust closure properties as, say, regular languages (the choice we did for our global
types). As a consequence, many variant of MSGs have been proposed in the literature
to make verification and projection effectively and efficiently implementable (an ex-
tensive list of references can be found in [GM05] and a more reasoned comparison is
given in [GMP03]). In particular if one considers the restrictions we imposed on our
global types, namely that branching is controlled by one process (they are called local-
choice MSGs), then properties can be model-checked in polynomial or tractable time
(while in the general setting of MSGs many variants of model-checking are undecid-
able [AY99,MPS98]). MSGs can also be restricted to the class of regular MSGs that
have robust properties and for which the implementability by deadlock-free CFSMs is
decidable. In this context however implementability means generating the same set of
traces [AEY00,AEY01]. So we are in the presence of quite a strict definition of im-
plementability. Other notions of implementability have been studied yielding different
decidability results: among these we can cite the case in which the implementation may
produce messages not described by the MSG (ie, unfit implementation, in the terminol-
ogy used in our introduction), or the use of internal communications with messages on
a distinct alphabet to synchronize the system (we barred out such a case which corre-
sponds to authorizing covert channels), or in which the implementation is allowed to
admit deadlocks, which improves decidability (eg, see [AEY00,AEY01]). The reader
can refer to [GMP03] for an extensive survey. However we are not aware of weaker
implementability definitions such as the notions of soundness and completeness we in-
troduced here. These, besides being an original contribution of our work, are also the
main point that makes algorithmic projection difficult.

7.2 Cryptographic protocols

Another domain in which much research on this topic has been done is the verification
of cryptographic protocols. In this context protocol narrations, which describe protocols
in terms of conversations between “roles”, must be matched against or implemented
into a set of specifications for the single roles. However the goals pursued in this area
are quite different from the one we outlined in the previous section, which yields global
specification languages with characteristics different from the one considered by the au-
tomata approach. A first important difference is the content of messages. While in the
automata based research the content of communications is of lesser importance since
it is usually drawn from a finite set of messages, in the domain of cryptographic pro-
tocols messages are defined by expressive languages that at least include cryptographic
primitives. Whereas message content is richer, the communication pattern is somewhat
simpler since security protocols are always of finite length, which is why MSCs rather

26 Castagna, Dezani-Ciancaglini, Padovani

than MSGs are used. However one has to be very precise about the way an agent pro-
cesses its messages (which parts of a message should be extracted and checked by
an agent and how an answer should be computed). This is why MSCs are annotated
or enriched with mechanisms that express the internal actions to be performed by the
agents. This gives raise to different flavors of formalisms (Figure 3 gives three samples
of such languages: for more examples and a list of references see [CR10]). These global
specifications are then used to verify security properties and, in some cases, to generate
specifications for the roles composing them. Local specifications are much finer-grained
and lower-level than those used in the automata approach. The details of internal exe-
cutions of each agent are exposed and precisely defined since the overlook of small
details may lead to dramatic flaws. This explains why the palette of languages used to
describe the local behavior appears to be more variegated than in the previous area:
the pioneering work on compilation by Carlsen [Car94] compiles protocol narrations
into a modal logic of communication; the system Casper produces CSP descriptions of
protocols that are suitable to be model-checked [Low98] while CAPSL [MD02] and
CASRUL [JRV00] translate global specifications of protocols, such as those given in
Figure 3 (HLPSL is the protocol specification language used by CASRUL), into rewrit-
ing systems; in [CVB06] MSCs are interpreted into systems of pattern matching spi-
calculus processes [AG99,HJ06]. Recent work has shown that most of the annotation
and extensions of MSCs aimed at describing internal computations, can be computed
automatically from the protocol narration, and thus compile lightly annotated MSCs
into an operational semantics that describes the necessary internal actions [CR10].

The degree of detail about local behavior present both in global and local specifi-
cation languages is not the only difference with the previous automata based approach.
The other fundamental difference is the dynamism of the scenari that both compilation
and analysis must account for. Each role is not necessarily implemented by a single
agent or process but the concurrent presence of several agents that interpret the same
role must be allowed in the system. The system may include intruder agents that are
not described by the the global specification and that may interfere with it; in particular,
they may intercept, read, destroy and forge messages and, more generally, change the
topology of the communications. Furthermore different executions of the protocol may
be not independent as attackers can store and detour information in one execution to
use it in a later one.

In this context the works closest to our approach are [MK08] and [BCD+09]. Mc-
Carthy and Krishnamurthi [MK08] describe WPPL, a global description language which
besides the basic communication action of MSCs provides actions for role definition
and trust management. WPPL specifications are then projected in local behaviors de-
fined in CPPL, a domain specific language that describes cryptographic protocol roles
with trust annotations. In their work they give a nice comparison of their approach with
the one used in Web services that we describe next. In particular, cryptography intro-
duces information asymmetries (eg, because of the presence of an intruder the message
received by a role may be different from the one that was sent to it, or a encrypted
message can be received only if the partner has the corresponding key) that are not
handled by existing end-point projection systems. In a nutshell, in Web services global
description formalisms as well as in the automata approach the focus is on commu-

On Global Types and Multi-Party Sessions 27

1 (spec ([a (a b s kas) (kab)]
2 [b (b s kbs) (kab)] [s (a b s kas kbs) ()])
3 [a -> s : a, b, na:nonce]
4 [s -> b : |a, b, na, kab| kas, |a, b, na, kab| kbs]
5 [b -> a : |a, b, na, kab| kas, |na| kab, nb:nonce]
6 [a -> b : |nb| kab] .)

PROTOCOL KaoChow;
VARIABLES
S : Server;
A, B : Client;
Na, Nb: Nonce;
Kab: Skey, CRYPTO, FRESH;
F : Field;
Kas,Kbs : Skey;
DENOTES
Kas = csk(A): A;
Kas = ssk(S,A): S;
Kbs = csk(B): B;
Kbs = ssk(S,B): S;
ASSUMPTIONS
HOLDS A: B,S;
MESSAGES
1. A -> S: A, B, Na;
2. S -> B: S, A, B, Na, KabKas%F, A, B, Na, KabKbs;
3. B -> A: B, F%A, B, Na, KabKas, NaKab, Nb;
4. A -> B: NbKab;
GOALS
SECRET Kab;
PRECEDES A: B | Na;
PRECEDES B: A | Nb, Kab;
END;

Protocol KaoChow ;
Identifiers

A,B,S : user ;
Na,Nb : number;
Kas,Kbs,Kab : symmetric_key;

knowledge
A : S,B,Kas ;
B : A, S, Kbs ;
S : A, B, Kas, Kbs;

Messages
1. A -> S : A,B,Na
2. S -> B : A,B,Na,KabKas,A,B,Na,KabKbs
3. B -> A : A,B,Na,KabKas,NaKab,Nb
4. A -> B : NbKab

Session_instances
[A:a ; B:b ; S:se ; Kas:kas ; Kbs:kbs];
Intruder divert , impersonate;
Intruder_knowledge a,b,se;
Goal Short_Term_secret Kab;
Goal B authenticate A on Nb;

Fig. 3. Kao Chow protocol in WPPL (top), CAPSL (bottom left), and HLPSL (bottom right)

nication patterns and the communication content is neglected, while in the realm of
cryptographic protocols it is the combination of the two that really matters.

Bhargavan et al. describe in [BCD+09] a compiler from high-level multi-party ses-
sion descriptions to custom cryptographic protocols coded as ML modules. In the gen-
erated code each participant has strong security guarantees for all her/his messages
against any adversary that may control both the network and some participants to the
session.

7.3 Web services

Our work springs from the research done to formally describe and verify compositions
of Web services. This research has mainly centered on using process algebras to de-
scribe and verify visible local behavior of services and just recently (all the references
date of the last five years) has started to consider global choreographic descriptions of
multiple services and the problem of their projection. This yielded the three layered
structure depicted in Figure 4 (courtesy of P.-M. Deniélou) where a global type de-
scribing the choreography is projected into a set of session types that are then used to
type-check the processes that implement it (as well as guide their implementation). The
study thus focuses on defining the relation between the different layers. Implementabil-
ity is the relation between the first and second layer. Here the important properties are
that projection produces systems that are sound and complete with respect to the global

28 Castagna, Dezani-Ciancaglini, Padovani

G Global Type G = alice nat−→ bob;
bob nat−→ carol

Talice Tbob Tcarol Session Types Tbob = alice?nat.
carol!nat.
end

Palice Pbob Pcarol Processes Pbob = receive x from alice;
send x+42 to carol;
end

Projection

Type checking

Fig. 4. Global types and multi-party sessions in a nutshell.

description (in the sense stated by Theorem 4.1) and deadlock free (eg, we bar out spec-
ifications as p a−→ q∨p a−→ r when it has no continuation, since whatever the choice
either q or r will be stuck). Typeability is the relation between the second and third
layer. Here the important properties are subject reduction (well-typed processes reduce
only to well-typed processes) and progress (which in this context implies deadlock free-
dom).

Although in this work we disregarded the lower layer of processes, it is neverthe-
less an essential component of this research. In particular, it explains the nature of the
messages that characterize this approach, which are types. One of the principal aims
of this research, thus, is to find the right level of abstraction that must be expressed
by types and session types. Consider again Figure 4. The process layer clearly shows
the relation between the message received by bob and the one it sends to carol, but
this relation (actually, any relation) is abstracted away both in the session and the global
type layers. The level of abstraction is greater than that of cryptographic protocols since
values are not tracked by global descriptions. Although tracking of values could be par-
tially recovered by resorting to singleton types, there is a particular class of values that
deserves special care and whose handling is one of the main future challenges of this
research, that is, channels. The goal is to include higher order types in global specifica-
tions thus enabling the transmission of session channels and therefore the reification of
dynamic reconfiguration of session topology. We thus aim at defining reconfiguration
in the specification itself, as opposed to the case of cryptographic protocols where the
reconfiguration of the communication topology is considered at meta-level for verifi-
cation purposes. As a matter of fact, this feature has already been studied in the litera-
ture. For instance, the extension of WS-CDL [WSC05] with channel passing is studied
in [CZ08] (as the automata approach has the MSC as their reference standard, so the
Web service community refers to the WS-CDL standard whose implementability has
been studied in [QZCY07]); the paper that first introduced global descriptions for ses-
sion types [CHY07] explicitly mentions channels in messages that can be sent to other
participants to open new sessions on them. In our opinion the existing works on session
types are deeply syntactic in nature and suffer from the fact that their global types are

On Global Types and Multi-Party Sessions 29

defined in function of the languages used to define processes and session types. The
consequence is that the design choices done in defining session types are amplified in
the passage to global types yielding a somewhat unnatural syntax for global types and
restrictive conditions devoid of semantic characterizations. Here we preferred to take a
step back and to start by defining global descriptions whose restrictions are semantically
justified. So we favored a less rich language with few semantically justified features and
leave the addition of more advanced features for a later time.

Coming back to the comparison of the three approaches, the Web service-oriented
approach shares several features in common with the other two. As for the automata
approach we (in the sense of the Web service community) focus on the expressiveness
of the control, the possibility of branching and iterate, and the effective implementabil-
ity into deadlock-free local descriptions. However the tendency for Web services is to
impose syntactic restrictions from the beginning rather than study the general case and
then devise appropriate restrictions with the sought properties (in this respects our work
and those of Bravetti, Zavattaro and Lanese [BZ07,BZ08,BLZ08] are few exceptions
in the panorama of the Web service approach). Commonalities with the cryptographic
protocol approach are more technical. In particular we share the dynamism of the com-
munication topology (with the caveat about whether this dynamism is performed at the
linguistic or meta-linguistic level) and the robustness with respect to reconfiguration
(the projected session types should ensure that well-typed process will be deadlock free
even in the presence of multiple interleaved sessions and session delegation, though
few works actually enforce this property [BCD+08,DCdLY08]). As for cryptographic
protocols, this dynamism is also accounted at level of participants since recent work
in session types studies global descriptions of roles that can then be implemented by
several different agents [DY11]. Finally, we take into account the internal behavior of
processes (similarly to what happens for cryptographic protocols) without giving a pre-
cise specification of it but using precise enough (session) types to prevent any possible
internal behavior to disrupt the properties of systems. There are also some characteris-
tics that are specific to our approach such as the exploration of new linguistic features
(for instance in this work we introduced actions with multi-senders) and a pervasive use
of compositional deduction systems that we inherit from type theory. We conclude this
section with a more in-depth description of the main references in this specific area so
as to give a more detailed comparison with our work.

Multi-party session types. Global types were introduced in [CHY07] for dyadic ses-
sions and in [HYC08] for multi-party sessions. Channels are present in the global types
of both [CHY07] and [HYC08]. However the language of global types of [CHY07]
includes control structures and messages of complex form, since it was intended to be
an executable language to describe Web-service interactions and, as such, it is directly
projected into a language of processes. Thus it lacks the intermediate layer of Figure 4
which is bypassed by providing a more concrete upper layer. The three-layered struc-
ture of Figure 4 faithfully describes the work in [HYC08] which, nevertheless, presents
several differences with the work presented here. In the syntax of our work, the global

30 Castagna, Dezani-Ciancaglini, Padovani

types of [HYC08] can essentially be described by the following grammar:

G ::= end (end) | p k〈a〉−→ q.G (interaction)
| G ∨G (branching) | G ∧G (parallel)
| X (variable) | µX .G (recursion)

In a nutshell, sequencing is replaced by prefix actions (terminated by “end”), labels are
decorated by channels (ranged over by k), and general µ-recursive definitions replace
the (less expressive) Kleene star. Session types (called “local types” in [HYC08]) are
even more similar to those presented here, the only difference being that input/output
actions, which have the form k?a.T and k!a.T , specify channel names rather than par-
ticipant names.

While the syntactic differences are minimal, it is not so for semantic ones. A first
important difference is that the global types of [HYC08] must satisfy several restric-
tions:

1. The set of participants of two global types composed in parallel must be disjoint.
While this clearly simplifies the algorithmic projection (with such a condition,
G1;G2 suffices to check the projectability of G1 ∧G2, cf. Section 5.3) this bars out
simple protocols such as (1), the very first we presented in this work.

2. The first actions of global types composed by branchings must specify the same
channel, the same sender, the same receiver, and distinct messages (actually, la-
bels). Furthermore every participant that is neither the first sender nor the first re-
ceiver must behave the same in all branches. The use of the same channel and, to a
lesser extent, of the same senders and receivers, for branching is a consequence of
having adopted the original syntax of labeled branching used in the session types
of [HVK98]. This first restriction forces the adoption of the second one: since ses-
sion type communication specifies channels rather than participants, and since the
channel is the same in all branches, then the only way for the (unique) receiver
to distinguish the branches is to receive distinct messages on each of them. These
restrictions, of syntactic origin, are more constraining than ours which just require
the presence of a single “decision maker”. The restriction for “passive” participants
to have the same behavior in all branches is quite coarse a condition to enforce
what in our system is called “mergeability” (a similar notion of merge was already
introduced in [YDBH10,DY11]).

If on the syntactic side the system [HYC08] is more constraining than ours, on the
semantic side it is more permissive since the constraints on the semantics of sequential

composition are much weaker. In particular two interactions like p
k〈a〉−→ q.r

k′〈b〉−→ s.end
are required to happen in the same order as they occur in the global types only if k and k′

are the same channel. Thus if k 6= k′ the participants p, q, r, and s can be unrelated. The
reason of such a choice is, once more, due to the fact that global types are designed in
function of the session types as defined by [HVK98] where different channels are typed
independently and, thus, sequentiality constraints can be enforced only between com-
munications on a same channel. It is interesting to notice that the situation is somehow
dual to the one presented here. While we demand the sequentiality of « ; » be strictly

On Global Types and Multi-Party Sessions 31

enforced, we accept any order on actions composed in parallel by a «∧ ». In [HYC08]
instead, while actions composed in parallel are forced to be independent (by demanding
disjoint participants), any order of the “sequential” composition is accepted as long as
it happens on distinct channels.

In order to appreciate the usage of global types of [HYC08] and their projection let
us revisit the paradigmatic example given in [HYC08], according to which two buyers,
buyer1 and buyer2, wish to collaborate to buy an item from a seller seller: buyer1
asks the item to seller, which sends a price to both buyers; buyer1 communicates to
buyer2 its participation and buyer2 decides either to quit (by sending quit to seller)
or to accept the price by communicating ok and the delivery address to the seller, and
expecting a delivery date. This compound protocol is expressed as the following global
type:

buyer1
h〈string〉−−−−→ seller.

seller
k〈int〉−−−−→ buyer1.

seller
k′〈int〉−−−−→ buyer2.

buyer1
l〈int〉−−−−→ buyer2.

∨(buyer2 h〈quit〉−−−−→ seller.end)

∨(buyer2 h〈ok〉−−−−→ seller.buyer2
h〈string〉−−−−→ seller.seller

k′〈date〉−−−−→ buyer2.end)

(6)

Notice that in the final branching of the protocol each action starting a branch is a
communication from buyer2 to seller on the same channel h of two different labels
ok and quit (strictly speaking, two singleton types whose only value is, respectively, ok
and quit). As expected the above global type is projected into

seller 7→ h?string.k!int.k′!int.(h?quit.end+h?ok.h?string.k′!date.end)
buyer1 7→ h!string.k?int.l!int.end
buyer2 7→ k′?int.l?int.(h!quit.end+h!ok.h!string.k′?date.end)

Notice how participants are replaced by channels. In particular this implies that buyer2
can distinguish the receptions from seller and buyer1 only because they happen on
distinct channels. But if the same channel were used then there would be no way for
buyer2 to ensure that the first communication was with seller and the second with
buyer1. Thus the use of explicit channels instead of explicit participants in session
types makes projection more difficult. This explains why such a feature has been aban-
doned in [DY11] (the latest follow up of the multi-party sessions work) where global
types no longer specify channels and session types use participants instead of channels
(see later on).

We said that [HYC08] enforces sequentiality only on a per channel basis. Con-
cretely, this means that for every projection the interactions on h in the first and fifth
or sixth lines of the protocol in (6) must happen in the same relative order as they ap-
pear in the global types, and the same must hold for interactions on k′ in the third and
sixth lines. A rough way to ensure this property would be to prune all actions that are
not on a given channel and then impose a well-formedness condition akin to the one
we introduced in Definition 4.2. In [HYC08] much a finer-grained technique is used:

32 Castagna, Dezani-Ciancaglini, Padovani

it performs a global analysis of the dependency relation of a global type and ensures
sequentiality on a given channel by exploiting synchronization information on inter-
actions occurring also on different channels. In [CHY07] a strictier condition (dubbed
“well-threadedness”) is described for dyadic sessions, and it enforces a sequentiality
condition similar to our well-formedness.

Finally, we already saw that messages in the global types of [HYC08] can be either
types (to describe value of the communication) or labels (to perform branching), but
they can also be channels such as in

· · · .buyer1 l〈k〉−→ buyer2. · · · ,

which allows global types to describe delegation. Delegation was introduced in [HYC08]
for multi-party sessions and is directly inherited from the homonym feature of dyadic
sessions [HVK98]. A participant can delegate another agent to play his role in a ses-
sion in a way that is transparent for all the remaining participants of the session. In
the example above buyer1 delegates to buyer2 the task to continue the conversation
with seller on k. By allowing higher-order channels, the concrete topology of com-
munications may dynamically evolve. To ensure projectability in the presence of such
a feature, further restrictions are required [HYC08].

If we focus on semantically justified restrictions, the presence of channels requires
types to be “well-threaded” (to avoid that the use of different channels disrupts the
sequentiality constraints of the specification) and message structures to be used “coher-
ently” in different threads (to assure that a fixed server offers the same services to differ-
ent clients), as discussed in [CHY07]. We did not include such features in our treatment
since we wanted to study the problems of sequentiality (which yielded Definition 4.2
of well-formed global type) and of coherence (which is embodied by the subsession
relation whose algorithmic counterpart is the merge operator) in the simplest setting
without further complexity induced by extra features. As a consequence of this choice,
our merge between session types is a generalization of the merge in [YDBH10,DY11]
since we allow inputs from different senders (this is the reason why our compatibility
is more demanding than the corresponding notion in [YDBH10]). Since our framework
does not include channels, we naturally disregarded any issue arising from delegation.

Our crusade for simplification did not restrict itself to exclude features that seemed
inessential or too syntax dependent, but it also used simpler forms of existing con-
structs. In particular an important design choice was to use Kleene star instead of more
expressive recursive global types used in [CHY07,HYC08,DY11]. As an example, the
global type describing an arbitrary long interaction between participants p and q that p
may terminate at any time can be described as

(p
a−→ q)∗;p b−→ q

in our calculus and as
µX .(p

k〈a〉−→ q.X ∨p k〈b〉−→ q.end)

in [HYC08]. The main advantage of the star over recursion is that it gives us a fair
implementation of the projected specification almost for free. Fairness seems to us an

On Global Types and Multi-Party Sessions 33

important —though neglected by current literature— requirement for (multi-party) ses-
sions. In particular, it allows us to develop a theory where multi-party sessions preserve
a stronger liveness property, namely the potential to successfully terminate (termination
under fairness assumption). A direct consequence of our choice is that we are capable
of projecting global types where the progress of some participants crucially relies on
the eventual termination of arbitrarily long interactions involving other participants. For
example, the global type

(p
a−→ q)∗;p b−→ q;q c−→ r

is projectable in our theory but its equivalent

µX .(p
a−→ q.X ∨p b−→ q.q

c−→ r.end)

is not in [HYC08]. The point is that participant r is waiting for a c message that will be
sent only if p stops sending a messages to q. This is guaranteed in our theory but not
in [HYC08] where, in principle, p may send a messages to q forever.

In general recursion is more expressive than iteration. For example, we cannot ex-
press non-terminating interactions such as µX .p

a−→ q.X . In the present work we regard
this global type as wrong and take the point of view that a session eventually terminates,
although there can be no upper bound to its duration. Recursion is more flexible when
it comes to specifying iterations with multiple exit paths. For example, the global type

µX .(p
handover−→ q.(q

handover−→ p.X ∨q bailout−→ p.end)∨p bailout−→ q.end)

is a straightforward modeling of the global type that requires 2-exit iteration to be pro-
jected in our framework (Section 6).

The exploration of a whole palette of different paradigms for global and local types
and of variations thereof is another element that distinguishes the research done in the
Web service communities from that in other communities. In particular, the Web service
community does not hesitate to borrow features from other communities and, in this re-
spect, a remarkable work is the one on dynamic multirole session types by Deniélou
and Yoshida [DY11]. Consider again very first example (1) of the introduction. It con-
sists of just a single seller and a single buyer. While it seems reasonable to describe the
protocol for a particular seller, it is restrictive to think that it will handle just one buyer
at the time. The idea is that the seller will interact with a variable number of buyers,
all implementing the same protocol, that will dynamically join and leave the session.
Mutatis mutandis, Deniélou and Yoshida propose to describe the protocol as follows:

∀x : buyer. (seller descr−→ x∧seller price−→ x);

(x
accept−→ seller∨ x

quit−→ seller)
(7)

Here buyer no longer denotes a single participant but rather a role that can be played
by different participants (or processes) ranged over by x. The notion of role is exten-
sively used in the research on the verification of cryptographic protocols, especially at
a meta-linguistic level. Remarkably, Deniélou and Yoshida have internalized it, making

34 Castagna, Dezani-Ciancaglini, Padovani

it possible to precisely express the multi-role aspects of an interaction protocol both in
global and in local types. Indeed, the possible projections of the global type above are:

seller 7→ ∀x : buyer.x!descr.x!price.(x?accept+ x?quit)
buyer 7→ seller?descr.seller?price.(seller!accept⊕seller!quit)

and

seller 7→ ∀x : buyer.x!price.x!descr.(x?accept+ x?quit)
buyer 7→ seller?price.seller?descr.(seller!accept⊕seller!quit)

Note that session types use participants instead of channels (global types such as (7) no
longer specify channels). This yields projections that, apart from the quantifications in
seller, are the same as those we gave in the introduction for example (1). Deniélou
and Yoshida develop a theory that ensures communication safety (received messages
are of the expected type) and progress (communications do not get stuck) of sessions in
the presence of dynamically joining and leaving participants.

Finally, although we aimed at simplifying as much as possible, we still imposed
few restrictions that seemed unavoidable. Foremost, the sequentiality condition of Sec-
tion 4, that is, that any two actions that are bound by a semicolon must always ap-
pear in the same order in all traces of (sound and complete) implementations. Surpris-
ingly, in all current literature of multi-party session types we are aware of, just one
work [CHY07] enforces the sequential semantics of « ; ». In [CHY07] the sequentiality
condition, called connectedness, is introduced (albeit in a simplified setting since—as
in [HVK98,HYC08]— instead of sequential composition the authors consider the sim-
pler case of prefixed actions) and identified as one of three basic principles for global
descriptions under which a sound and complete implementation can be defined. All
other (even later) works admit to project, say, q a−→ p;r a−→ p in implementations in
which p receives from r before having received from q. While the technical interest
of relaxing the sequentiality constraint in the interpretation of the « ; » operator is clear
—it greatly simplifies projectability— we really cannot see any semantically plausible
reason to do it.

Our simpler setting allows us to give a semantic justification of the formalism and of
the restrictions and the operators we introduced in it. For these reasons many restrictions
that are present in other formalisms are pointless in our framework. For instance, two
global types whose actions can be interleaved in an arbitrary way (ie, composed by «∧ »
in our calculus) can share common participants in our global types, while in [HYC08]
(which use the parallel operator for «∧ ») this is forbidden. So these works fail to project
(actually, they reject) protocols as simple as the first line of the example given in the
specification (1) in the introduction. Likewise we can have different receivers in a choice
like, for example, the case in which two cooperating buyers wait for a price from a given
seller:

seller
price−→ buyer1;buyer1

price−→ buyer2∨seller price−→ buyer2;buyer2
price−→ buyer1

while such a situation is forbidden in [HYC08].
Another situation possible in our setting but forbidden in [HYC08,DY11] is to have

different sets of participants for alternatives, such as in the following case where a buyer

On Global Types and Multi-Party Sessions 35

is notified about a price by the broker or directly by the seller, but in both cases gives
an answer to the broker:

(seller
agency−→ broker;broker

price−→buyer

∨sellerprice−→buyer);
buyeranswer−→ broker

(8)

A similar situation may arise when choosing between repeating or exiting a loop:

seller
agency−→ broker;(broker

offer−→ buyer;buyer
counteroffer−→ broker)∗;

(broker result−→ seller∧broker result−→ buyer)
(9)

which is again forbidden in [HYC08,DY11]. Note that the interaction following « ; »
in (8) can be distributed on the two branches, yielding a global type

seller
agency−→ broker;broker

price−→ buyer;buyer answer−→ broker

∨ seller
price−→ buyer;buyer answer−→ broker

where the two branches involve exactly the same set of participants. This form is com-
patible with respect to the notion of projection in [HYC08,DY11]. However, the same
transformation is not possible for (9) because in this case projectability relies on the
fairness assumption. Indeed while we can consider a Kleene star as an infinite union of
finite branches and thus, semantically, add the continuation to each of these branches,
the finiteness of each branch is guarateed in our framework but not in [HYC08,DY11].

Choreographies. Global types can be seen as choreographies [WSC05] describing
the interaction of some distributed processes connected through a private multi-party
session. Therefore, there is a close relationship between our work and those by Zavat-
taro and his colleagues [BZ07,LGMZ08,BZ08,BLZ08], which concern the projection
of choreographies into the contracts of their participants. The choreography language
in these works coincides with our language of global types (including the use of it-
eration instead of recursion). Basically, the only difference at syntactic level is that
interactions have the form ap→q instead of p a−→ q. Just like in our case, a choreog-
raphy is correct if it preserves the possibility to reach a state where all of the involved
Web services have successfully terminated. There are some relevant differences though,
starting from choreographic interactions that invariably involve exactly one sender and
one receiver, while in the present work we allow for multiple senders. Other differences
concern the communication model and the projection procedure. In particular, the com-
munication model is synchronous in [BZ07], based on FIFO buffers associated with
each participant of a choreography in [BZ08], and partially asynchronous in [BLZ08]
(output actions can fire, and thus drive the choice of an internal choice, also in the
absence of a dual active receiving action, but their continuation is blocked until the
message is consumed by the receiver). Our model (Section 3) closely follows the ones
adopted for multi-party sessions, where there is a single buffer and we consider the
possibility for a receiver to specify the participant from which a message is expected.

36 Castagna, Dezani-Ciancaglini, Padovani

In [BZ07,LGMZ08,BZ08,BLZ08] the projection procedure is basically an homomor-
phism from choreographies to the behavior of their participants, which is described
by a contract language equipped with parallel composition, while our session types
are purely sequential. [BZ07,BZ08] give no conditions to establish which choreogra-
phies produce correct projections. In contrast, [BLZ08,LGMZ08] define three connect-
edness conditions that guarantee correctness of the projection for various (synchronous
and asynchronous) semantics. The interesting aspect is that these conditions are solely
stated on the syntax of the choreography, while we need the combination of projectabil-
ity (Table 3) and well-formedness (Definition 4.2). Depending on the communica-
tion semantics, which can be synchronous or asynchronous in [BLZ08,LGMZ08], the
connectedness conditions may impose different constraints if compared to our well-
formedness. For example, the choreography

p
a−→ q;r b−→ p

is connected for sequence according to [BLZ08] but is not well formed according to
Definition 4.2. This is a consequence of the different communication models adopted
in [BLZ08] and in the present work. In [BLZ08] it is not possible for p to receive the
b message from r before q has received the a message from p because p will block on
the output of a until q receives the message. In our model, output messages are inserted
within the buffer associated with the session, so the sender can immediately proceed.
This corresponds to the receiver semantics in [LGMZ08].

The connectedness conditions for alternative choreographies in [BLZ08,LGMZ08]
impose stricter constraints since they require that the roles in both branches be the
same. Therefore, the two global types involving the broker participant described by
examples (8) and (9) are not connected. Additionally, the fact that these conditions are
stated by looking at the syntax of choreographies may discriminate between equivalent
choreografies. For example, the choreographies

(p
a−→ q∧r a−→ s)∨ (p a−→ q∧r b−→ s) and p

a−→ q∧ (r a−→ s∨r b−→ s)

are equivalent (they generate the same set of traces), but only the second one is con-
nected. Our definition of well-formedness, being based on the set of traces generated
by a global type rather than its syntax, does not distinguish between the two. As we
have shown, a careful projection procedure does not need these requirements for the
projection to respect the choreography.

In [BZ07] the projection of choreographies with iteration is taken into account and
in [LGMZ08] it is argued that the connected conditions scale without problems to this
more general scenario. The authors do not address the limited expressiveness of single-
exit iterations. For example, the first global type at the beginning of Section 6 yields a
deadlocking projection also for [BZ07]. Given the similarities between choreographies
and global types it is reasonable to expect that the adoption of k-exit iterations might
resolve the issue in their setting as well.

While discussing MSGs we argued that requiring the specification and its projection
produce the same set of traces (called standard implementation in [GMP03]) seemed
overly constraining and advocated a more flexible solution such as the definitions of

On Global Types and Multi-Party Sessions 37

soundness and completeness introduced in the present work. Interestingly, Bravetti,
Lanese and Zavattaro [BLZ08] take the opposite viewpoint, and make this relation even
more constraining by requiring the relation between a choreography and its projection
to be a strong bisimulation.

The problem of analyzing choreographies and characterizing their properties has
been addressed also by the community studying multiagent systems. In particular, Bal-
doni et al. [BBC+09] propose a notion of interoperable choreography which basically
coincides with our notion of liveness: the interaction between the parties must preserve
the ability to reach a state in which every party has successfully completed its task.
Interoperability induces a notion of conformance between parties that is similar to our
implementation pre-order and to other refinement relations. The main difference with
respect to our work and those cited above is that in [BBC+09] a choreography is di-
rectly represented as the composition of its participants and their behavior is described
by means of finite-state automata rather than terms of a process algebra. It appears that
the techniques of choreography projection described in the present paper can be eas-
ily adapted to the context of [BBC+09] and that multiagent systems might provide an
additional playground to further explore and validate the whole approach.

Other calculi. In this brief overview we focused on works that study the relation be-
tween global specifications and local machine-oriented implementations. However in
the literature there is an important effort to devise new description paradigms for ei-
ther global descriptions or local descriptions. In the latter category we wish to cite
[HVK98,BBDNL08], while [CP09] seems a natural candidate in which to project an
eventual higher order extension of our global types. For what concerns global descrip-
tions, the Conversation Calculus [CV09] stands out for the originality of its approach.

8 Conclusion

We think that the design-by-contract approach advocated in [CHY07,HYC08] and ex-
panded in later works is a very reasonable way to implement distributed systems that
are correct by construction. In this work we have presented a theory of global types
in an attempt of better understanding their properties and their relationship with multi-
party session types. We summarize the results of our investigations in the remaining
few lines. First of all, we have defined a proper algebra of global types whose operators
have a clear meaning. In particular, we distinguish between sequential composition,
which models a strictly sequential execution of interactions, and unconstrained com-
position, which allows the designer to underspecify the order of possibly dependent
interactions. The semantics of gobal types is expressed in terms of regular languages.
Aside from providing an accessible intuition on the behavior of the system being spec-
ified, the most significant consequence is to induce a fair theory of multi-party session
types where correct sessions preserve the ability to reach a state in which all the partic-
ipants have successfully terminated. This property is stronger than the usual progress
property within the same session that is guaranteed in other works. We claim that even-
tual termination is both desirable in practice and also technically convenient, because
it allows us to easily express the fact that every participant of a session makes progress

38 Castagna, Dezani-Ciancaglini, Padovani

(this is non-trivial, especially in an asynchronous setting). We have defined two pro-
jection methods from global to session types, a semantic and an algorithmic one. The
former allows us to reason about which are the global types that can be projected, the
latter about how these types are projected. This allowed us to define three classes of
flawed global types and to suggest if and how they can be amended. Most notably, we
have characterized the absence of sequentiality solely in terms of the traces of global
types, while we have not been able to provide similar trace-based characterizations for
the other flaws. Finally, we have defined a notion of completeness relating a global type
and its implementation which is original to the best of our knowledge. In other theories
we are aware of, this property is either completely neglected or it is stricter, by requir-
ing the equivalence between the traces of the global type and those of the corresponding
implementation.

Acknowledgments. We are indebted to several people from the LIAFA lab: Ahmed
Bouajjani introduced us to Parikh’s equivalence, Olivier Carton explained us subtle
aspects of the shuffle operator, Mihaela Sighireanu pointed us several references to
global specification formalisms, while Wiesław Zielonka helped us with references on
trace semantics. Anca Muscholl helped us on surveying MSCs and Martín Abadi and
Roberto Amadio with the literature on security protocols. Finally, Nobuko Yoshida,
Roberto Bruni, and Ivan Lanese gave us serveral useful suggestions to improve the final
version of this work. This work was partially supported by the ANR Codex project, by
the MIUR Project IPODS, by a visiting researcher grant of the “Fondation Sciences
Mathématiques de Paris”, and by a visiting professor position of the Université Paris
Diderot.

References

[AEY00] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message se-
quence charts. In Proceedings of ICSE’00, pages 304–313. ACM Press, 2000.

[AEY01] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability and verifi-
cation of msc graphs. In Proceedings of ICALP’01, LNCS 2076, pages 797–808.
Springer, 2001.

[AG99] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148:36–47, 1999.

[AY99] Rajeev Alur and Mihalis Yannakakis. Model checking of message sequence charts.
In Proceedings of CONCUR’99, LNCS 1664, pages 114–129. Springer, 1999.

[BBC+09] Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti, and
Munindar P. Singh. Choice, interoperability, and conformance in interaction proto-
cols and service choreographies. In Proceedings of AAMAS’09, pages 843–850.
International Foundation for Autonomous Agents and Multiagent Systems, 2009.

[BBDNL08] Michele Boreale, Roberto Bruni, Rocco De Nicola, and Michele Loreti. Sessions
and pipelines for structured service programming. In Proceedings of FMOODS’08,
LNCS 5051, pages 19–38. Springer, 2008.

[BBP93] Jan A. Bergstra, Inge Bethke, and Alban Ponse. Process algebra with iteration.
Technical Report Report CS-R9314, Programming Research Group, University of
Amsterdam, 1993.

On Global Types and Multi-Party Sessions 39

[BCD+08] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically inter-
leaved multiparty sessions. In Proceedings of CONCUR’08, LNCS 5201, pages
418–433. Springer, 2008.

[BCD+09] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and
James J. Leifer. Cryptographic Protocol Synthesis and Verification for Multiparty
Sessions. In Proceedings of CSF’09, pages 124–140. IEEE Computer Society, 2009.

[BLZ08] Mario Bravetti, Ivan Lanese, and Gianluigi Zavattaro. Contract-driven implemen-
tation of choreographies. In Proceedings of TGC’08, LNCS 5474, pages 1–18.
Springer, 2008.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Jour-
nal of the ACM, 30:323–342, 1983.

[BZ07] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography
conformance and contract compliance. In Proceedings of SC’07, LNCS 4829, pages
34–50. Springer, 2007.

[BZ08] Mario Bravetti and Gianluigi Zavattaro. Contract compliance and choreography
conformance in the presence of message queues. In Proceedings of WS-FM’08,
LNCS 5387, pages 37–54. Springer, 2008.

[Car94] Ulf Carlsen. Generating formal cryptographic protocol specifications. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pages 137–146. IEEE Com-
puter Society, 1994.

[CHY07] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In Proceedings of ESOP’07, LNCS 4421,
pages 2–17. Springer, 2007.

[CP09] Giuseppe Castagna and Luca Padovani. Contracts for mobile processes. In Proceed-
ings of CONCUR’09, LNCS 5710, pages 211–228. Springer, 2009.

[CR10] Yannick Chevalier and Michaël Rusinowitch. Compiling and securing cryptographic
protocols. Information Processing Letters, 110:116–122, 2010.

[CV09] Luís Caires and Hugo Torres Vieira. Conversation types. In Proceedings of
ESOP’09, LNCS 5502, pages 285–300. Springer, 2009.

[CVB06] Carlos Caleiro, Luca Viganò, and David Basin. On the semantics of Alice&Bob
specifications of security protocols. Theoretical Computer Science, 367:88–122,
2006.

[CZ08] Cai Chao and Qiu Zongyan. An approach to check choreography with channel
passing in WS-CDL. In Proceedings of ICWS’08, pages 700–707. IEEE Computer
Society, 2008.

[DCdLY08] Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida. On
progress for structured communications. In Proceedings of TGC’07, LNCS 4912,
pages 257–275. Springer, 2008.

[DY11] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In
Proceedings of POPL’11, pages 435–446. ACM Press, 2011.

[GM05] Blaise Genest and Anca Muscholl. Message sequence charts: A survey. In Proceed-
ings of ACSD’05, pages 2–4. IEEE Computer Society, 2005.

[GMP03] Blaise Genest, Anca Muscholl, and Doron Peled. Message sequence charts. In
Lectures on Concurrency and Petri Nets, LNCS 3098, pages 537–558, 2003.

[HJ06] Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus. Information and
Computation, 204:1195–1263, 2006.

[HVK98] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type
disciplines for structured communication-based programming. In Proceedings of
ESOP’98, LNCS 1381, pages 22–138. Springer, 1998.

40 Castagna, Dezani-Ciancaglini, Padovani

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous ses-
sion types. In Proceedings of POPL’08, pages 273–284. ACM Press, 2008.

[JRV00] Florent Jacquemard, Michaël Rusinowitch, and Laurent Vigneron. Compiling and
verifying security protocols. In Proceedings of LPAR’00, LNCS 1955, pages 131–
160. Springer, 2000.

[LGMZ08] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridging
the gap between interaction- and process-oriented choreographies. In Proceedings
of SEFM’08, pages 323–332. IEEE Computer Society, 2008.

[Low98] Gavin Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6:53–84, 1998.

[MD02] J. Millen and G. Denker. CAPSL and MuCAPSL. Journal of Telecommunications
and Information Technology, 4:16–27, 2002.

[Mil84] Robin Milner. A complete inference system for a class of regular behaviours. Jour-
nal of Computer and System Sciences, 28(3):439–466, 1984.

[MK08] Jay A. McCarthy and Shriram Krishnamurthi. Cryptographic protocol explication
and end-point projection. In Proceedings of ESORICS’08, LNCS 5283, pages 533–
547. Springer, 2008.

[MPS98] Anca Muscholl, Doron Peled, and Zhendong Su. Deciding properties for message
sequence charts. In Proceedings of FOSSACS’98, LNCS 1378, pages 226–242.
Springer, 1998.

[MR97] S. Mauw and M. A. Reniers. High-level message sequence charts. In SDL’97: Time
for Testing - SDL, MSC and Trends, Proceedings of the Eighth SDL Forum, pages
291–306. Elsevier, 1997.

[Par66] Rohit J. Parikh. On context-free languages. Journal of the Association for Comput-
ing Machinery, 13(4):570–581, 1966.

[QZCY07] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoretical
foundation of choreography. In Proceedings WWW’07, pages 973–982. ACM Press,
2007.

[Sch04] P. Schnoebelen. The verification of probabilistic lossy channel systems. In Vali-
dation of Stochastic Systems – A Guide to Current Research, LNCS 2925, pages
445–465. Springer, 2004.

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language
and its typing system. In Proceedings of PARLE’94, LNCS 817, pages 398–413.
Springer, 1994.

[WSC05] Web services choreography description language version 1.0. W3C Candidate Rec-
ommendation, available at http://www.w3.org/TR/ws-cdl-10/, 2005.

[YDBH10] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Param-
eterised multiparty session types. In Proceedings of FOSSACS’10, LNCS 6014,
pages 128–145. Springer, 2010.

On Global Types and Multi-Party Sessions 41

A Proof of Theorem 4.1

For the sake of readability we recall some definitions which will be largely used.

Definition A.1.

1. L◦
def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}.

2. L# is the smallest well-formed set such that L⊆ L#.

The properties stated in the following lemma are easily shown from Definitions A.1,
4.1 and 3.4.

Lemma A.1. 1. (L1L#
2)

= (L1L2)
#.

2. L#
1 ⊆ L◦2 implies L◦1 ⊆ L◦2.

3. If L1 6 L2 then
(a) L2 6 L3 implies L1 6 L3;
(b) L3 6 (L4L1)

implies L3 6 (L4L2)
#;

(c) L3 6 (L1L4)
implies L3 6 (L2L4)

#;
(d) L3 6 L4 implies L1∪L3 6 L2∪L4;

4. tr({p : T1⊕T2}]∆) = tr({p : T1}]∆)∪ tr({p : T2}]∆).

Proof (Theorem 4.1). We show:

If ∆ ` G . ∆′, then tr(∆′)6 (tr(G)tr(∆))#.

The theorem follows immediately, since by definition if G is well formed, then tr(G) =
tr(G)#.

The proof is by induction on the deduction of ∆ ` G . ∆′ and by cases on the last
applied rule.

Rule (SP-SKIP): ∆ ` skip . ∆ Immediate.

Rule (SP-ACTION):

{pi : Ti}i∈I]{p : T}]∆ ` π
a−→ p . {pi : p!a.Ti}i∈I]{p : π?a.T}]∆

where π = {pi | i ∈ I}. We get tr(π a−→ p) = {π a−→ p} by definition, and

tr({pi : p!a.Ti}i∈I]{p : π?a.T}]∆)⊆ ({π a−→ p}tr({pi : Ti}i∈I]{p : T}]∆))#

since all actions not involving p commute with π
a−→ p, and

({π a−→ p}tr({pi : Ti}i∈I]{p : T}]∆))# ⊆ tr({pi : p!a.Ti}i∈I]{p : π?a.T}]∆)◦

by Definition A.1.

Rule (SP-SEQUENCE):
∆ ` G2 . ∆′ ∆′ ` G1 . ∆′′

∆ ` G1;G2 . ∆′′

By induction tr(∆′′)6 (tr(G1)tr(∆′))# and tr(∆′)6 (tr(G2)tr(∆))#, which imply

– tr(∆′′)6 (tr(G1)(tr(G2)tr(∆))#)# by Lemma A.1(3b);

42 Castagna, Dezani-Ciancaglini, Padovani

– tr(∆′′)6 (tr(G1)tr(G2)tr(∆))# by Lemma A.1(1);
– tr(∆′′)6 (tr(G1;G2)tr(∆))# by Definition 2.2.

Rule (SP-ALTERNATIVE):
∆ ` G1 . {p : T1}]∆′ ∆ ` G2 . {p : T2}]∆′

∆ ` G1∨G2 . {p : T1⊕T2}]∆′

By induction tr({p : T1}]∆′)6 (tr(G1)tr(∆))# and tr({p : T2}]∆′)6 (tr(G2)tr(∆))#,
which imply

– tr({p : T1}]∆′)∪ tr({p : T2}]∆′) 6 (tr(G1)tr(∆))# ∪ (tr(G2)tr(∆))# by Lemma
A.1(3d);

– tr({p : T1}]∆′)∪ tr({p : T2}]∆′) 6 (tr(G1)tr(∆)∪ tr(G2)tr(∆))# by Definition
A.1(2);

– tr({p : T1⊕T2}]∆′)6 (tr(G1)tr(∆)∪ tr(G2)tr(∆))# by Lemma A.1(4);
– tr({p : T1⊕T2}]∆′)6 (tr(G1∨G2)tr(∆))# by Definition 2.2.

Rule (SP-ITERATION):
{p : T1⊕T2}]∆ ` G . {p : T1}]∆
{p : T2}]∆ ` G ∗ . {p : T1⊕T2}]∆

By induction tr({p : T1}]∆)6 (tr(G)tr({p : T1⊕T2}]∆))#, ie:
1. tr({p : T1}]∆)⊆ (tr(G)tr({p : T1⊕T2}]∆))#

2. (tr(G)tr({p : T1⊕T2}]∆))# ⊆ tr({p : T1}]∆)◦.
We get by repeatedly using 1. and Lemma A.1(4):

tr({p : T1⊕T2}]∆)
= tr({p : T1}]∆)∪ tr({p : T2}]∆)
⊆ (tr(G)tr({p : T1⊕T2}]∆))#∪ tr({p : T2}]∆)
= (tr(G)tr({p : T1}]∆))#∪ (tr(G)tr({p : T2}]∆))#∪ tr({p : T2}]∆)
⊆ (tr(G)tr(G)tr({p : T1⊕T2}]∆))#∪ (tr(G)tr({p : T2}]∆))#∪ tr({p : T2}]∆)
. . .
⊆ (tr(G m+1)tr({p : T1⊕T2}]∆))#∪ (tr(G m)tr({p : T2}]∆))#∪
. . .∪ (tr(G)tr({p : T2}]∆))#∪ tr({p : T2}]∆)
⊆ (tr(G ∗)tr({p : T2}]∆))#

Since (tr(G ∗)tr({p : T2}]∆))# =
⋃

m≥0(tr(G m)tr({p : T2}]∆))# we show by in-
duction on m that (tr(G m+1)tr({p : T2}]∆))# ⊆ (tr({p : T1⊕T2}]∆))◦. For m = 0 we
immediately get (tr({p : T2}]∆))# ⊆ (tr({p : T1⊕ T2}]∆))◦ by Lemma A.1(4) and
Definition A.1. For m+1:

(tr(G m+1)tr({p : T2}]∆))# = (tr(G)tr(G m)tr({p : T2}]∆))# by Definition 2.2
⊆ (tr(G)tr({p : T1⊕T2}]∆))◦ by induction and Definition A.1
⊆ (tr({p : T1}]∆))◦ by 2. and Lemma A.1(2).
⊆ (tr({p : T1⊕T2}]∆))◦ by Lemma A.1(4).

Rule (SP-SUBSUMPTION):
∆ ` G ′ . ∆′ G ′ 6 G ∆′′ 6 ∆′

∆ ` G . ∆′′

By induction tr(∆′)6 (tr(G ′)tr(∆))#, so by Lemma A.1(3a) tr(∆′′)6 (tr(G ′)tr(∆))#.
From G ′ 6 G we conclude tr(∆′′)6 (tr(G)tr(∆))# by Lemma A.1(3c). ut
Corollary A.1. If ∆ is safe and ∆ ` G . ∆′, then ∆′ is safe.

On Global Types and Multi-Party Sessions 43

B More on merge and compatibility

We start with an example showing the utility of the compatibility condition. Let ∆1 =
{q : p?a.r!b.end,r : q?b.end} and ∆2 = {q : p?c.p!d.r!b.end,r : p?e.q?b.end}. The
merge of ∆1 and ∆2 is undefined, since the session types of r in ∆1 and ∆2 are not
compatible: the problem is that the input q?b is not compatible with the session type
p?e.q?b.end. Let ∆ be the session obtained by adding role p with the expected ses-
sion type to the merge of ∆1 and ∆2 (ignoring the compatibility condition), that is,
∆ = {p : q!a.end⊕ q!c.q?d.r!e.end,q : p?a.r!b.end+ p?c.p!d.r!b.end,r : q?b.end+
p?e.q?b.end}. Starting from the empty buffer and ∆ we can reach the stuck configura-
tion in which the buffer contains the action p

e−→ r and all roles in the session are typed
by end. More precisely if ϕ = p

c−→ q;q d−→ p:

ε #∆
ϕ

=⇒ q
b−→ r :: p e−→ r #{p : end,q : end,r : q?b.end+p?e.q?b.end}

q
b−→r

=⇒ p
e−→ r #{p : end,q : end,r : end}

ie, participant r chooses the wrong session type, since he is not aware in which branch
he is. Notice that ∆1]{p : q!a.end} and ∆2]{p : q!c.q?d.r!e.end} can be obtained

as algorithmic projections of the well-formed global types G1 = p
a−→ q;q b−→ r and

G2 = p
c−→ q;(q d−→ p;p e−→ r∧ q b−→ r), when to project G2 we use the ill-formed

global type p c−→ q;q d−→ p;p e−→ r;q b−→ r (see Subsection 5.3). Using p c−→ q;q b−→
r;q d−→ p;p e−→ r to project G2 and reasoning as before we get ∆′ = {p : q!a.end⊕
q!c.q?d.r!e.end,q : p?a.r!b.end+p?c.r!b.p!d.end,r : q?b.end+p?e.q?b.end}. Also ∆′

is not a live session, and since we eliminated ∧ from G2 in all possible ways we see no
way to semantically projecting G1∨G2.

We can semantically but not algorithmically project a slight variation of previous
example. Let ∆3 = {q : p?c.p!d.r? f .r!b.end,r : p?e.q! f .q?b.end}. Notice that the ses-
sion types of r in ∆1 and ∆3 are not compatible. It is easy to verify that choosing
∆′′ = {q : p?a.r!b.end+p?c.p!d.r? f .r!b.end,r : q?b.end+p?e.q! f .q?b.end} we get

{p : q!a.end}]∆′′ 6 {p : q!a.end}]∆1 and
{p : q!c.q?d.r!e.end}]∆′′ 6 {p : q!c.q?d.r!e.end}]∆3

Notice that ∆3]{p : q!c.q?d.r!e.end} can be obtained as the algorithmic projection of

the well-formed global type G3 = p
c−→ q;q d−→ p;p e−→ r;r

f−→ q;q b−→ r. Then the
global type G1∨G3 can be semantically but not algorithmically projected. It is interest-
ing to observe that in one branch participant r receives the message b from q, in the
other branch participant r receives first the messages e from p and then the message b
from q. This assures that r always chooses the right session type. Comparing G2 and G3

of previous examples one can see how the addition of the action r
f−→ q introduces a

sequentialization which is the key of projectability.

44 Castagna, Dezani-Ciancaglini, Padovani

C More on the elimination of ∧

We conjecture that the following rewriting rules (together with the symmetric ones) are
necessary and sufficient in order to eliminate «∧ » from global types:

G ∧G ′ 7→ G ;G ′

(G1;G2)∧G 7→ (G1∧G);G2
(G1;G2)∧G 7→ G1;(G2∧G)
(G1∨G2)∧G 7→ (G1∧G)∨ (G2∧G)
G ∗∧G ′ 7→ (G ∧G ′);G ∗∨G ′

G ∗∧G ′ 7→ G ∗;(G ∧G ′)∨G ′

Sometimes ∧with stars can be dealt with using the first rule in the right way. The global
type (p

a−→ q)∗∧p b−→ q sequentialized as (p a−→ q)∗;p b−→ q is algorithmically pro-

jected from {p : end,q : end}, while p b−→ q;(p a−→ q)∗ is not algorithmically projected

from {p : end,q : end}. Vice versa the global type (p
a−→ q)∗∧r b−→ s sequentialised

as (p a−→ q)∗;r b−→ s is not algorithmically projected from {p : q!c.end,q : p?c.end},
while r b−→ s;(p a−→ q)∗ is algorithmically projected from {p : q!c.end,q : p?c.end}.

The following example shows the utility of the last two rewriting rules to project
stars. Let ∆= {s : q1!d.r1!d.q2!d.r2!d.end,q1 : s?d,r1 : s?d,q2 : s?d,r2 : s?d}, Ai =

pi
a−→ qi∨pi

b−→ ri for i = 1,2 and G1 = {q1,r1}
c−→ s;A1, G2 =A2;s e−→ q1;s e−→

r1, G = {q2,r2}
f−→ s;A1;A2. The only way to eliminate ∧ from (G1;G2)

∗ ∧G and
obtain a global type projectable with the continuation ∆ is [(G1;G ;G2);(G1;G2)

∗]∨G .

D Proof of Theorem 5.1

Lemma D.1. 1. If {p : T}]∆ is safe, then tr({p : T}]∆) = tr({p : T}] (∆!∆′))
for all ∆′ such that ∆!∆′ is defined.

2. If {p : T1}]∆1 and {p : T2}]∆2 are safe, then {p : T1⊕T2}] (∆1 !∆2) is safe if
defined.

Proof. (1) If {p : T}]∆ is safe, then each output in a session type of {p : T}]∆ has
a dual input and therefore the addition of compatible inputs cannot change the set of
traces.

(2) If ∆1 !∆2 is defined, then the types in ∆1 and ∆2 for the same participant can
only differ for inputs, so no new trace can arise in {p : T}] (∆1 !∆2) which was not
already in {p : T1}]∆1. ut

We use ρ to range over substitutions of session type variables with closed session
types.

Lemma D.2. If ρ(∆) is safe and ∆ `a G . ∆′, then ρ(∆′) is safe.

On Global Types and Multi-Party Sessions 45

Proof. By induction on the derivation of ∆ `a G . ∆′. We only consider interesting
cases.

For rule (AP-ALTERNATIVE):
∆ `a G1 . {p : T1}]∆1 ∆ `a G2 . {p : T2}]∆2

∆ `a G1∨G2 . {p : T1⊕T2}] (∆1 !∆2)
we use Lemma D.1(2).
For rule (AP-ITERATION):

{p : X}]{pi : Xi}i∈I `a G . {p : S}]{pi : Si}i∈I

{p : T}]{pi : Ti}i∈I]∆ `a G ∗ . {p : rec X .(T ⊕S)}]{pi : rec Xi.(Ti !Si)}i∈I]∆
we define

ρ0(X) = ρ(T)
ρ0(Xi) = ρ(Ti)
ρ0(Y) = ρ(Y) for Y 6∈ {X ,Xi | i ∈ I}
ρ`+1(X) = ρ`(S)
ρ`+1(Xi) = ρ`(Si)
ρ`+1(Y) = ρ(Y) for Y 6∈ {X ,Xi | i ∈ I}

for i ∈ I and `≥ 0. Since ρ({p : T}]{pi : Ti}i∈I]∆) = ρ0({p : X}]{pi : Xi}i∈I]∆) is
safe by hypothesis and {p : X}]{pi : Xi}i∈I `a G . {p : S}]{pi : Si}i∈I , by induction we
get that ρ0({p : S}]{pi : Si}i∈I]∆) = ρ1({p : X}]{pi : Xi}i∈I]∆) is safe. By iterating
this argument we get the safety of ρ`+1({p : X}] {pi : Xi}i∈I]∆) from the safety of
ρ`({p : X}]{pi : Xi}i∈I]∆) for all `≥ 0. By Lemma D.1(2) {p : ρ0(X)⊕·· ·⊕ρ`(X)}]
{pi : ρ0(Xi)! · · ·!ρ`(Xi)}i∈I]ρ(∆) is safe for all `≥ 0. By construction every finite
subtree of rec X .(ρ(T⊕S)) is a subtree of ρ0(X)⊕·· ·⊕ρ`(X) for some `≥ 0 and every
finite subtree of rec X .(ρ(rec Xi.(Ti ! Si))) is a subtree of ρ0(Xi)! · · ·! ρ`(Xi) for
some `≥ 0. We can conclude that ρ({p : rec X .(T⊕S)}]{pi : rec Xi.(Ti !Si)}i∈I]∆)
is safe. ut

Lemma D.3. If ∆ ` G . ∆′ and tr(∆′′) = tr(∆), then ∆′′ ` G . ∆′.

Proof. We can derive ∆′′ ` skip . ∆′′, which implies ∆′′ ` skip . ∆. Then ∆′′ `
skip;G . ∆′, so we conclude ∆′′ ` G . ∆′. ut

Lemma D.4. If ∆ `a G . ∆′, then ∆]∆′′ `a G . ∆′]∆′′ for all ∆′′ such that ∆′]∆′′
is defined.

Proof. By induction on the derivation of ∆ `a G . ∆′. ut

Proof (Theorem 5.1). We show

If ρ(∆) is safe and ∆ `a G . ∆′, then ρ(∆) ` G . ρ(∆′)

by induction on the derivation of ∆ `a G . ∆′.
If the last applied rule is (AP-ALTERNATIVE):
∆ `a G1 . {p : T1}]∆1 ∆ `a G2 . {p : T2}]∆2

∆ `a G1∨G2 . {p : T1⊕T2}] (∆1 !∆2)
by induction ρ(∆) ` G1 . ρ({p : T1}]∆1) and ρ(∆) ` G2 . ρ({p : T2}]∆2). By
Lemma D.2 ρ({p : T1}]∆1) and ρ({p : T2}]∆2) are safe. By Lemma D.1(1) we get
ρ({p : T1}](∆1 !∆2))6 ρ({p : T1}]∆1) and ρ({p : T2}](∆1 !∆2))6 ρ({p : T2}]

46 Castagna, Dezani-Ciancaglini, Padovani

∆2). We can then derive ρ(∆) ` G1 . ρ({p : T1}] (∆1 !∆2)) and ρ(∆) ` G2 . ρ({p :
T2}](∆1 !∆2)) by rule (SP-SUBSUMPTION), so we conclude ρ(∆)`G1∨G2 . ρ({p :
T1⊕T2}] (∆1 !∆2)) by rule (SP-ALTERNATIVE).

Let the last applied rule be (AP-ITERATION):
{p : X}]{pi : Xi}i∈I `a G . {p : S}]{pi : Si}i∈I

{p : T}]{pi : Ti}i∈I]∆ `a G ∗ . ∆′]∆
where ∆′ = {p : rec X .(T ⊕S)}]{pi : rec Xi.(Ti !Si)}i∈I . If ρ({p : T}]{pi : Ti}i∈I]
∆) is safe, then ρ(∆′]∆) is safe by Lemma D.2. By Lemma D.4 we get {p : X}]{pi :
Xi}i∈I]∆ `a G . {p : S}]{pi : Si}i∈I]∆. We define

ρ0(X) = ρ(rec X .(T ⊕S))
ρ0(Xi) = ρ(rec Xi.(Ti !Si))
ρ0(Y) = ρ(Y) for Y 6∈ {X ,Xi | i ∈ I}

Since ρ0({p : X}] {pi : Xi}i∈I]∆) = ρ(∆′]∆) we get by induction ρ(∆′]∆) `
G . ρ0({p : S}] {pi : Si}i∈I]∆). This implies that ρ0({p : S}] {pi : Si}i∈I]∆) is
safe by Corollary A.1. We define:

T ′ = ρ(T) T ′i = ρ(Ti)
S′ = ρ0(S) S′i = ρ0(Si)

∆0 = {pi : T ′i !S′i}i∈I]ρ(∆)

Since ρ(∆′]∆)= {p : T ′⊕S′}]∆0 and by Lemma D.1(1) {p : S′}]∆0 6 {p : S′}]{pi :
S′i}i∈I]ρ(∆) we derive {p : T ′⊕S′}]∆0 `G . {p : S′}]∆0 by rule (SP-SUBSUMPTION),
which implies {p : T ′}]∆0 ` G ∗ . {p : T ′⊕ S′}]∆0 by rule (SP-ITERATION). By
Lemma D.1(1) tr({p : T ′}]∆0) = tr({p : T ′}]{pi : T ′i }i∈I]ρ(∆)), so we conclude by
Lemma D.3 {p : T ′}]{pi : T ′i }i∈I]ρ(∆) ` G ∗ . ρ(∆′]∆). ut

