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Abstract

Background: In in a typical “left-to-right” phylogenetic tree, the vertical order of taxa
is meaningless, as only the branch path between them reflects their degree of
similarity. To make unresolved trees more informative, here we propose an
innovative Evolutionary Algorithm (EA) method to search the best graphical
representation of unresolved trees, in order to give a biological meaning to the
vertical order of taxa.

Methods: Starting from a West Nile virus phylogenetic tree, in a (1 + 1)-EA we
evolved it by randomly rotating the internal nodes and selecting the tree with better
fitness every generation. The fitness is a sum of genetic distances between the
considered taxon and the r (radius) next taxa. After having set the radius to the best
performance, we evolved the trees with (l + μ)-EAs to study the influence of
population on the algorithm.

Results: The (1 + 1)-EA consistently outperformed a random search, and better
results were obtained setting the radius to 8. The (l + μ)-EAs performed as well as
the (1 + 1), except the larger population (1000 + 1000).

Conclusions: The trees after the evolution showed an improvement both of the
fitness (based on a genetic distance matrix, then close taxa are actually genetically
close), and of the biological interpretation. Samples collected in the same state or
year moved close each other, making the tree easier to interpret. Biological
relationships between samples are also easier to observe.

Background
A central goal of evolutionary biology is to describe the “Tree of Life”, inferring rela-
tionships among all living organisms. First appeared in the XIX century, trees were
often used to describe relationships among organisms, but only Charles Darwin, in his
revolutionary Origin of the Species [1], was the first to define them as evolutionary
trees. Instead of using phenotypic characters, as Darwin did first, nowadays such trees
are commonly built on genetic information and models of molecular evolution.
A phylogenetic tree is a mathematical structure to represent the evolutionary history

of sequences or individuals. It consists of nodes connected by branches (or edges). The
terminal nodes represent the “leaves” of the tree (or tips of the branches) and are also
called taxa. Internal nodes represent ancestors, and can be connected to many branches;
in this case the node is a politomy and represents either simultaneous divergence of des-
cendants (hard politomy) or uncertainty about the phylogenetic relationship (soft
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politomy) [2,3]. Trees with many politomies are called unresolved trees, as they do not
resolve the full history of evolution that they represent. The order in which the labels of
the tips are drawn can differ without changing the meaning of the tree itself. This
because in a tree the branches can be freely rotated without modifying the relationship
among taxa [4,5]. The so called additive trees have branches containing information
about the degree of difference between nodes, and they are used to show evolutionary
features. In this case, information in the tree is contained in the branch direction, in the
pattern of linkages between branches and nodes or, in other words, in its topology.
Indeed in the representation commonly used by phylogenetic softwares, with the root
on the left and the tips on the right (Figure 1), the order of taxa is meaningless, and the
degree of similarity between taxa is only reflected by the branch path between them
[5,6]. A second important feature of phylogenetic trees is the node’s degree: in a fully
resolved tree, all internal nodes have a degree equal to three, but, because of polytomies,
trees may be hard to interpret and then being misinterpreted, assigning unfounded
meaning to the proximity of taxa or clades. If the order of taxa on phylogenetic trees is
flexible, ascribing biological meaning to it without altering the topology is possible [2,5].
A first approach to reorder the taxa according to a distance matrix was introduced

by Moscato, Cotta and colleagues [7,8]. In these works, the authors both build new
phylogenies and improve existing ones generated by Neighbor Joining and hyperclean-
ing methods. They approached the problem as a minimum Hamiltonian path problem,
and used memetic algorithms to find the “solution that minimizes the length of a path
of distances between species” [8].
Here we propose a different approach belonging to the Evolutionary Algorithms

(EAs) family to search a better graphical representation of an unresolved tree [9,10].
Given that each node can be freely rotated, one could group taxa with similar features,
such as genetic similarity, geographic location or collection date, preserving the origi-
nal topology. This approach could assist in drawing phylogenetic trees including more
information, especially in highly unresolved trees.
Considering a tree with its own topology (either rooted or unrooted, and previously

determined by means, for example, of neighbor joining, maximum likelihood, maxi-
mum parsimony, or Bayesian phylogenetics), the search space contains all the possible
tree representations obtainable by node rotation. In this environment, the search pro-
blem would be to find the graphical representation that minimizes the distances
between adjacent taxa. Such distances can be defined in separated matrices, obtained
from different taxa features like genetic, temporal or geographic data.
The reason that moved us towards the application of a heuristic approach instead of

an exhaustive search lies in the tree itself. Given a topology with N nodes, each with
degree {d1, d2, ..., dN } (the root having one branch), the space S of all possible trees
would have the size:

|S| =
N∏

i=1

(di − 1)!

In the case of a phylogenetic tree with 64 taxa, this dimension would range from |S| =
263 in the case of a completely resolved tree (containing 63 internal nodes all with degree
3), to |S| = 64! for a completely unresolved tree. The simplest approach to the problem
would be a hill-climbing algorithm starting from the tree obtained by any of the available
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phylogenetic softwares, where the taxon order is often the same order of the sequences
input alignment. This search would be computationally unfeasible in most cases, for the
reason that, for each tentative solution s, the number of neighbors |neighs| to be gener-
ated (all the trees with same topology, but only one node being rotated) and evaluated
would be:

|neighs| =
N∑

i=1

(
di − 1

2

)

=
N∑

i=1

(di − 1)(di − 2)
2

Figure 1 WNV original tree. WNV phylogenetic tree obtained by the Bayesian approach within MrBayes
software and used as starting tree for all the algorithms performed in this work [12].
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where {d1, d2, ..., dN} are the degrees of the N internal nodes of the tree topology.
Considering the previous case of the tree with 64 clades, this value would range from
|neighs| = 64 to |neighs| = (64 × 63) = 2 = 2, 016.
In order to find the optimal solution to our problem, we chose to use (l + μ)-EAs,

where l is the parent population from which the child population μ is generated. In
general, a (l + μ)-EA can be seen as a natural selection process (being inspired by the
biological world), where the l parents mate, generate μ children (different from them),
and the fittest to the environment (i.e. the problem to be solved) survives and mate
again. The l parents for the next generation are given by the best (l + μ) individuals.
Generation after generation, the population itself is selected to fit the environment (i.e.
to solve the problem).
As first approach, we decided to use a (1 + 1)-EA, that could be interpreted as first-

ascent hill climber. In each generation a new tree is created by random swap between
two branches connected to the same node and evaluated according to a fitness criter-
ion. Defined the radius (r) as the number of taxa adjacent to a considered taxon, the
fitness of each tree is evaluated as the sum of all the distances between each node and
the closest r tips according to the genetic distance matrix. The fittest tree (i.e. that tree
with a taxon order that minimizes the distances) survives the next generation. After
having explored the parameter r in the algorithm and compared the results with ran-
dom searches, we investigated the influence of population size with different combina-
tions of l and μ values [11]. In this work we only considered a genetic distance matrix
applied to the phylogenetic tree of West Nile virus (WNV) presented by Bertolotti and
colleagues and thus exhaustedly explained in [12].

Results and Discussion
The two experimental phases described at the end of the previous section are here
described and discussed.

(1 + 1)-Evolutionary Algorithm

Using the tree shown in Figure 1 as starting point for our search, we performed 50
runs of the (1 + 1)-EA for each radius r = 1, 4, 8, 32 considered for the fitness evalua-
tion. The radius is meant as the number of close taxa considered during the fitness
evaluation of a single taxon. Thus, for each taxon of the tree, the sum of the distances
between it and the r closest taxa is considered as partial fitness. The resulting sum is
the fitness of the tree according to the given distances and to the r value. We arbitra-
rily chose 4 values to test the radius, as the evaluation with r = [1, 131] would be
meaningless: increasing the value of r leads to a flattening of the fitness, as the distance
between each taxon and the r next taxa would likely be similar if not equal.
For the comparison of the fitness improvement between the different radii, we calcu-

lated the fitness of each tree as its relative fitness improvement (obtained as ratio
between fitness of the considered tree and fitness of the original starting tree). Then
we ranked each run as Gold, Silver and Bronze, corresponding to 0.80, 0.85 and 0.90
relative fitness improvement, respectively (the lowest fitness represents the best
improvement). Statistics on this classification is reported in Table 1.
With r = 1, no tree in Gold position was found, but more than half of the 50 runs

reached both Silver and Bronze ranks. For r = 4 more than half of the runs reached
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the Gold position. Apparently, better results were obtained with r = 8, as all the 50
runs reached the Gold class. When r = 32 was used in the fitness evaluation, all the
runs improved only until Bronze rank. Trees at r = 8 reached the Bronze class always
in less than 1, 000 generations, while the other radii obtained this improvement only
after 40, 000 generations in average.
In order to compare the trees obtained using different radii, all trees were evaluated

with r ranging from 1 up to 131 (the total number of the taxa). Figure 2 shows the
median fitness improvements evaluated with r Î [1, 131] for the runs evolved using
the 4 different radii (with a focus on the range [1, 20]). It can be observed that the
radii 8, 9, and 10 correspond to the region where all the trees showed the largest rela-
tive fitness improvement. This evidence, together with the aforementioned ranking
analysis, suggests these radii as those exhibiting the best evolvability, therefore in the
following (l + μ)-EAs we performed the fitness evaluation with r = 8 only.
To compare the relative fitness improvement using a different unit, we evaluated all

the final trees with r = 75, a value that is well above the one used in the search algo-
rithm and that still allows discrimination between the different curves in Figure 2.

Table 1 Relative fitness improvement using (1 + 1)-EA
r = 1 r = 4 r = 8 r = 32

hits generation hits generation hits generation hits generation

Gold 0 N/A 38 89, 349±7,906.3 50 39, 092±4,770.1 0 N/A

Silver 26 93, 243±7,178.2 38 67, 230±9,409.3 50 2, 035±160.0 0 N/A

Bronze 27 61, 810±9,053.5 39 41, 309±6,638.4 50 714±83.4 50 3, 239±195.7

For each fitness radius the number of runs (hits) over the 50 executed is shown, as well as the mean generation
together with its standard error at which the target was found.

Figure 2 Evaluation with all the possible radii. Median fitness improvements evaluated with r Î [1, 131]
for the runs evolved using the 4 different radii (solid line: r = 1; dashed line: r = 1; dotted line: r = 8; dash-
dotted line: r = 32). Box area highlights the radius range [1, 20].
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Statistical analysis of relative fitness improvements of the 4 different groups evalu-
ated at r = 75 showed a significant difference between them (Kruskal-Wallis rank sum
test p <0.001). Moreover, these data highlighted a significant ordering among the
groups, having r = 1 worse than r = 4, r = 4 worse than r = 8, and r = 8 worse than
r = 32 (all pairwise Wilcoxon rank sum test p <0.001).
To justify the use of our fairly complex heuristic search method, we performed for

comparison a random search (RS) algorithm with the same number of evaluations (n =
200000). Briefly, our (1 + 1)-EA found trees with relative fitness improvement of
0.8344 (for r = 1), 0:7943 (for r = 4), 0.7478 (for r = 8), and 0:8511 (for r = 32),
whereas RS method found trees evaluated at 0.9065 (for r = 1), 0.8206 (for r = 4),
0.7699 (for r = 8), and 0.8878 (for r = 32). Wilcoxon rank sum test performed between
EA and RS returned p ≪ 0.001 for each r values, showing that the evolutionary search
methods consistently outperform random search with a strong statistical support.

(l + μ)-Evolutionary Algorithms

As in the (1 + 1)-EA study, we performed 50 runs for each parameter of the popula-
tion study. In details, we studied two different parameters for (1 + μ)-EA, where μ =
(5, 10), and five combinations of parameters for (l + μ)-EAs: (5 + 5), (5 + 10), (10 +
10), (50 + 50) and (1000 + 1000). As starting tree, the same WNV original tree was
used and its fitness at r = 8 was considered as starting fitness for the computation of
relative fitness improvement (final tree fitness/original tree fitness).
The best result, or in other words the best fitness improvement, was obtained by the

(1 + 5)-EA, giving a relative improvement of 0.75. Nevertheless the Wilcoxon Rank
Sum test performed between EAs returned not significant differences except in the
case of the (1000 + 1000)-EA, that returned p - value ≪ 0.01. Boxplots in Figure 3
highlight how (1000 + 1000)-EA has a lower performance in finding better solutions
compared to the other populations (Figure 3b), although the distribution of its final fit-
ness values is the only one in which all runs cross the threshold of relative improve-
ment of 0.78 (Figure 3a). Hit rates reported in Table 2 also underline that all (1000 +
1000)-EAs cross the threshold. The other (l + μ) combinations instead succeeded only
in between 90% and 94% of the runs. This threshold was set to compare the conver-
gence speed of the different populations and its value was arbitrarily chosen in the
range [0.757, 0.780], as a change in this value does not affect the conclusion. For con-
vergence speed we mean the number of evaluations needed to cross this threshold,

Figure 3 Relative fitness improvement by (l + μ)-EAs. Boxplot representing the relative final fitness
values for the (l + μ)-EAs (a) and magnified in the range [0.745, 0.76] (b). The dotted line in a) is the
threshold used to evaluate the computational effort and set at 0.78.
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and these values are reported in Table 2. The convergence speed of the (1000 + 1000)-
EA is statistically lower than the other EAs (p-values ≪ 0.01 in Wilcoxon Rank Sum
tests), resulting in the best computational performances but in the worse solution by
one order of magnitude (Figure 3). Additionally the (50 + 50)-EA convergence speed is
statistically better than (1 + 1), (5 + 10) and (10 + 10)-EAs.

Biological interpretation of the results

The best tree among all the runs was obtained by the (1 + 5)-EA and it is shown in
Figure 4. From the biological point of view, the tree has undergone some improvement
for the readability of taxon order. At first sight, the most notable change is the long
branch containing the European strains of WNV moved to the bottom of the tree
from its previous middle position (Figure 4a). Moreover, many samples collected in the
same state are now close to each other (Figure 4b). The algorithm has also moved clo-
ser those tips representing samples collected in the same year (Figure 4b). Finally, as
demonstrated by Lanciotti and colleagues in [13], the strain of the first WNV epidemic
in USA, in New York in 1999, is next to the strain associated with an epidemic in
Israel in 1998, which arrived in the new world and likely sparked the North American
WNV epidemic. In our final tree this relationship is highlighted (Figure 4c).

Conclusions
Since unresolved trees are hard to interpret, we studied the behavior of different para-
meters in (l + μ)-EAs to explore the search space of all the solutions to our problem:
making unresolved trees more meaningful. To do this we used an already published
tree as starting point [12], and a matrix of genetic distances among samples, corrected
with the best fit molecular substitution model, in the fitness computation. First, we
investigated the influence of different radius values (r = 1, 4, 8, 32) in evaluating the
fitness in the (1 + 1)-EA. The most informative results were obtained using r = 8,
though all the considered radii performed better than the random search. Although, as
expected, trees evolved using r = 32 showed improved fitness with respect to the other
groups, the computational time needed to evolve these trees is long. Statistical analyses
of the experimental data, together with the observations described above, suggest that
a value for the radius in the fitness evaluation r = 8 might generally strike an accepta-
ble balance between computational intensity and accuracy.
After the identification of an efficient radius, we investigated the influence of popula-

tion sizes in (l + μ)-EAs. All the combinations of l and μ values returned solid results
for the improvement in the graphical representation of the tree, adding important
information to the vertical reading direction, although no differences in performance
were observed for most of them. In fact, only the (1000 + 1000)-EA returned worse fit-
ness of the final trees when compared to the other populations, but still better than the

Table 2 Hit rate and Convergence speed for (l + μ)-EAs at r = 8
1+1 1+5 1+10 5+5 5+10 10+10 50+50 1000+1000

Hit Rate 0.92 0.90 0.94 0.94 0.90 0.90 0.87 1.00

Conv. speed 60917.24 51712.44 59373.83 53641.17 69464.67 71369.56 42705.77 4800.00

6810.97 6740.09 7168.53 6655.89 8098.49 8597.38 9149.91 304.75

Hit rate and convergence speed are reported in the table. Hit rate is the rate of runs that had a relative improvement
greater than 0.78. The convergence speed is normalized to the number of evaluations and represents the mean
generation (second row) and standard error (third row) that crosses the threshold 0.78
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original tree. However, our experiments showed a significant gain in fitness values of
one order of magnitude by this large population EA.
In a biological perspective, the best tree obtained in all the runs was improved by the

(1 + 5)-EA. This outcome allows an easier interpretation of the tree, especially in those
highly unresolved ones, with many siblings deriving from the same common ancestor.
As previously discussed, in the improved tree, genetically more similar taxa are

Figure 4 (l + μ)-EA best tree. The new graphic representation of the best result among final trees
obtained by the (l + μ)-EA, (1 + 5) in particular. Biologically meaningful improvements in the vertical order
of taxa can be seen, involving samples collected in the same year or state (magnified in b), or the clade
containing European strains was moved to the bottom of the tree (a), and the relationship between the
NY99 and Israel98 samples is highlighted (c).

Cerutti et al. BioData Mining 2011, 4:20
http://www.biodatamining.org/content/4/1/20

Page 8 of 11



collected in a close spatiotemporal dimension and are now closer than in the original
tree. This suggests that the use of genetic closeness between samples to improve the
order of taxa in the tree somehow reflects the spatiotemporal relationship between
them.
This work represents the first try to develop a new method to add a meaning to the

order of taxa in a phylogenetic tree and it needs to be further investigated. So far we
explored the dimension of the algorithm, studying the influence of the parameters on
the performance during the process of selecting best trees. Next steps will be applying
our method on different models analyzing different trees and different distances (e.g.
geographic, temporal, serological) to test the algorithm in varying conditions.

Methods
The two algorithms applied in the article are here described and discussed, together
with the phylogenetic tree used to validate the new technique, and the statistical meth-
ods employed to analyze the experimental results.

(1 + 1)-Evolutionary Algorithm

As starting tree for the algorithm, an original tree obtained by any available software
for phylogenetic inference with any method (neighbor joining, maximum likelihood,
maximum parsimony, Bayesian phylogenetics) is suitable. Starting from the original
tree, in each generation a new tree is created by applying a random swap between two
taxa connected to the same node in the tree. The fitness of the new tree is evaluated
as sum of all the distances between each node and the closest r tips according to the
genetic distances matrix (r being the radius in the fitness evaluation). If the fitness of
the new tree is better than the one of the tree in the previous generation, the new tree
replaces the old one, and the search procedure continues. If not, the old tree is
retained. This process is iterated for 200000 generations, resulting in the creation and
evaluation of 200000 new tentative solutions.
When evaluating the fitness of a tentative solution, the most straightforward method

would be to sum up, for all taxa in the tree, the distance between the taxon under con-
sideration and the two taxa next to it, i.e. taxa at radius r = 1. However, in order to
have a wider overview to the taxa closeness, we tested different values of the radius in
the fitness evaluation process. For each r value, 50 independent runs were performed.
To justify the use of our heuristic search method, we performed for comparison a ran-
dom search with the same number of evaluations (n = 200000) of trees generated by
random swap of taxa, without memory of the previous generations.

(l + μ)-Evolutionary Algorithm

A first exploration of simple population EAs was performed, where l = 1 is the start-
ing tree to improve, μ = 5, 10 and r = 8. Then, we evaluated the performances of the
EAs when l = μ Î {5, 10, 50, 1000}.
When l >1, l - 1 trees generated by random swap are added to the original tree in

the initial generation. In details, we tested the following populations: (1 + 5), (1 + 10),
(5 + 5), (5 + 10), (10 + 10), (50 + 50) and (1000 + 1000).
The next generation of l parents is selected by performing μ tournaments between

couples chosen by random sampling with reintroduction among the l + μ individuals,
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selecting the best μ ones. In this way the best individual can potentially be selected
more than once, without excluding the other tentative solutions. To have a fair com-
parison between algorithms with different population sizes, we set a maximum genera-
tion limit so that the number of new tentative solutions that each EA evaluates is
200000. For μ = 5, 10, 50, 1000 this results in 40000, 20000, 4000, and 200 generations,
respectively. For each parameter combination, 50 independent runs each were
performed.

Experimental validation on WNV phylogenetic tree

WNV is a single stranded, positive-sense RNA virus member of the Japanese encepha-
litis serocomplex (Flaviviridae; Flavivirus) that is transmitted primarily through the
bite of infected mosquitoes. Because of the recent introduction into North America, it
has been possible to study the phylogenesis and the evolution of the virus. Such studies
of the virus in North America reported highly unresolved trees [12,14,15]. In these
cases, information on genetic, spatial or temporal clustering was not apparent, so that
population substructure was investigated using different approaches.
In this study we used the tree presented by Bertolotti and colleagues in 2007, built

using MrBayes software [16,17] (Figure 1).
The original tree has a total of 132 taxa and 28 internal nodes. The root node has 76

branches, among which 62 were directly connected to terminal taxa (as magnified in
Figure 1), pointing out that this part of tree is highly unresolved. Relating to the pre-
vious formulas, the resulting search space is |S| = 1.749 × 10137, and every tree has 2,
975 neighbors, an area too large to be explored with a exhaustive search.
To calculate the fitness of each tentative solution, we used the matrix of genetic dis-

tances among samples, corrected with the best fit molecular substitution model (GTR+
Γ +I) [5,18].

Statistical analysis

The data obtained by the runs were tested with the Shapiro-Wilk test to determine if
the samples come from a normal distribution. As the test suggested a non-normal dis-
tribution, we applied the Kruskal-Wallis test for testing equality of population medians
among groups. Finally we performed the Wilcoxon rank-sum test to study the variabil-
ity of the results. All the tests were performed in R software [19].

Computational performance

The effective code of the algorithms was written in R language, using the package ‘ape’
[20]. The runs were performed on the cluster IBM-BCX available at the Supercomput-
ing Group of the CINECA Systems & Tecnologies Department at the time of the work.
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