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1Evolutionary Mechanisms and Neural

2Adaptation: Selective Versus Constructive

3Strategies in the Development and Plasticity

4of the Nervous System

5Ferdinando Rossi

6Abstract The correct function of the nervous system requires complex neural

7networks bearing precise connections. In principle, the high structural specificity

8of neural circuits could be achieved by genetically-determined processes, selected

9and refined during evolution. Highly conserved gene networks regulate some

10crucial steps of neural development, such as the regionalization of the neural tube

11and the initial phases of neurogenesis and synaptogenesis. A totally hardwired

12nervous system may meet the requirements of adaptation and natural selection at

13the population level. Nevertheless, it would be inadequate to allow individual

14organisms to cope with rapid changes of environmental conditions. Neural adapta-

15tion to external constraints can be partly achieved by introducing selective

16mechanisms in neural development. Accordingly, neurons are generated in excess

17and then partially eliminated to match the actual extension of innervation

18territories. Such mechanisms, however, are restricted to a set of potentialities,

19which must be predetermined in the ontogenetic program. On the other hand,

20constructive mechanisms, in which external stimuli directly influence structural

21modifications of neural circuits to produce adaptive responses, may allow individ-

22ual organisms to cope with a wide variety of unprecedented situations. Thus, in the

23last ontogenetic period as well as in the adult, when the organism actively interacts

24with the external milieu, experience exerts a strong growth-promoting effect on

25neural circuits and connections inducing the emergence of specific functional

26properties. By this mechanism, which requires strict inhibitory control to prevent

27aberrant growth and dysfunction, the nervous system exploits external stimuli to

28create adaptive responses to unexpected situations.
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29 1 Introduction

30 Over the last decades, substantial advancements have been obtained in the elucida-

31 tion of the cellular and molecular interactions that regulate the development of the

32 nervous system, govern its function and determine its plastic capabilities in adult-

33 hood. These discoveries have led to the proposition of concepts and principles that

34 relate, in a very peculiar manner, developmental neurobiology and neurophysiol-

35 ogy to evolution. In addition to the obvious influence exerted by evolutionary

36 processes on neural ontogenesis and on neurobiological mechanisms [57], this

37 novel relationship stems from the understanding that both the construction of the

38 nervous system and its operation are continuously scrutinized for their efficacy in

39 enabling the organism to cope with environmental demands. Hence, the notion that

40 neural development and plasticity represent the biological substrates of adaptation

41 has led to propose that these processes are regulated by fundamental mechanisms

42 that are shared with Darwinian evolution and, notably, the mechanisms of natural

43 selection [8, 13].

44 This concept originated from the discovery that some fundamental ontogenetic

45 phenomena, such as the formation of appropriate numbers of neurons or synapses in

46 the brain, are subjected to environmental constraints, in a way that is reminiscent of

47 the regulation of population size in living organisms. For instance, there is now

48 general agreement that most neuron populations are initially generated in excess

49 and attain their final numbers by a process of cell elimination, in which death or

50 survival depend on the extension of innervation territories, the availability of target-

51 derived trophic substances or the level of neuronal activity [27, 47]. Similar

52 considerations are usually applied to synaptogenesis, where initially exuberant

53 contacts are progressively withdrawn according to a set of restrictive parameters,

54 including levels of activity, spatio-temporal patterns of synaptic activation or

55 activity-dependent uptake of neurotrophic factors [27, 62].

56 This large body of evidence highlights the role of selective mechanisms in

57 aspects of neural development and plasticity that are strictly related to adaptation.

58 Nevertheless, a purely selective mechanism implies a range of pre-existing

59 potentialities, which is restricted following confrontation with intervening

60 demands. In other words, all the available options should be hardwired ex ante in

61 the ontogenetic program responsible for constructing the organism. Now, is such a

62 mechanism really compatible with adaptation? How can the variety of pre-existing

63 potentialities be expanded at an adequate pace to match the speed of environmental

64 change? Are the discarded options permanently lost or can they be rescued if they

65 become again advantageous in the future?

66 A selective strategy is primarily designed to control adaptation at the population

67 level. Hence, it is most efficient in regulating species evolution or, as we will

68 discuss later, in defining the number of neurons belonging to a certain category. On

69 the other hand, the main goal of neural adaptation is to allow individual organisms

70 to cope with changing environmental conditions. A closer examination of neural

71 development and plasticity in this perspective actually suggests that the nervous
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72system must be endowed with an intrinsic capability to construct neural circuits so

73to create novel functional properties, beyond the original set of potentialities. As a

74consequence, both selective and constructive mechanisms participate to determine

75neural ontogenesis and plasticity. Constructive strategies, however, prevail over

76selective ones when the individual nervous system has to face contextual environ-

77mental demands.

782 Adaptive Mechanisms Can Be Either Predictive or Reactive

79Biological modifications set up to cope with environmental changes occur according

80to two main modes. On one side, the organism is able to predict the incoming

81variation and builds up an anticipated response. On the other, the organism is unable

82to foresee the external change and it can only react to novel conditions once

83they have been established. Thus, predictive adaptation implies that the organism

84is ready to face the novel environmental demand at the time when it materializes,

85whereas reactive adaptation will be only unfolded in a subsequent time.

86At a first glance, predictive adaptation may appear more efficient in favouring

87survival of the organism. Nonetheless, it can be only used in a restricted set of

88situations. Actually, predictive mechanisms are only suitable to face extrinsic

89changes that happen at a constant pace through a long period of time (essentially

90forever). Organisms that spontaneously acquire predictive abilities are favoured

91over their counterparts and, hence, these abilities become selected by evolutionary

92mechanisms. Accordingly, predictive adaptation is usually sustained by highly

93conserved gene networks, whose spatio-temporal patterns of activation correspond

94to the time course or space distribution of the related environmental conditions. The

95best example of this kind is the regulation of circadian and circannual functions [12,

9619]. These functions are operated by molecular cascades endowed with intrinsic

97rhythms that match the duration of relevant environmental periods, to which they

98become entrained by sensory information. As we will discuss here, predictive

99mechanisms operate in some major ontogenetic processes, which are also governed

100by highly conserved gene programs. For instance, the gene networks that direct the

101building of the body (and neural) plan have clearly evolved to cope with consistent

102environmental constraints, such as gravity, the sources of energy or relevant

103sensory information (e.g. sunlight) or the mechanics of movement.

104Albeit successful, predictive strategies take very long times to become

105established and diffused. In addition, it is clear that the vast majority of environ-

106mental changes happen according to completely unpredictable frequencies and

107locations. Such situations can be adequately faced only by means of reactive

108processes, which allow individual organisms or populations to design and set up

109novel responses. In these cases, evolutionary processes favour the emergence and

110maintenance of certain abilities, but leave ample degrees of freedom in their actual

111expression. Most homeostatic mechanisms work in this way. For instance, body

112temperature is maintained by a series of evolutionary-selected interdependent
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113 devices, from thyroid hormones to horripilation, whose function is triggered and

114 modulated by feedback loops that tune every response to the concomitant situation.

115 The vast majority of external conditions that may influence the function of the

116 nervous system belong to the latter category. More, I would say that the main

117 emerging property of the nervous system is to design novel strategies to solve

118 unprecedented problems. Accordingly, neural cells and circuits must be endowed

119 with the ability of reshaping connectivity so to generate new functional capabilities

120 that are not part of the constitutive repertoire of the species. Acquiring new

121 information or learning new skills are examples of this sort of morpho-functional

122 modification that underlies neural adaptation. Hereafter, I will argue that these

123 processes, that are crucial to regulate neural development and plasticity, cannot

124 be solely explained in terms of selective mechanisms, but require constructive

125 properties that allow the creative design of new adaptive strategies.

126 3 Neural Development and Evolutionary Mechanisms

127 In the perspective of this essay, neural development can be schematically

128 subdivided in three main phases (Fig. 1): (1) neurulation refers to the formation

129 of the neural tube and its segmentation into discrete morphogenic regions; (2)

130 neurogenesis is the process by which neurons (and glia) are generated; (3)

131 synaptogenesis is the process by which neurons become connected to each other

132 into functional circuits. These phases comprise both addition (e.g. generation of

133 new neurons, formation of new synapses) and loss of elements (e.g. physiological

134 cell death, synaptic pruning). Therefore, the growth of the nervous system actually

135 results from the balance of concurrent expansive and regressive phenomena.

136 Neurulation is triggered by inductive signals issued by the notochord,

137 a mesodermal structure lining the rostro-caudal axis of the embryo, which triggers

138 profound morphogenic rearrangement of the overlying ectoderm leading to the

139 formation of the neural tube [3, 27]. The latter is a highly polarised structure, which

140 soon becomes subdivided in discrete domains that acquire distinctive morpho-

141 functional specification along the main spatial axes (Fig. 1) [3, 27]. The most

142 important partition occurs along the rostro-caudal axis, where morphologically

143 distinct segments appear, corresponding to the major subdivisions of the adult

144 Central Nervous System (CNS). Within each of such segments, the dorso-ventral

145 axis defines sensory or motor structures, whereas the medio-lateral axis defines the

146 relationship linking neural circuits to axial structures (the trunk) and distal

147 appendages (the limbs).

148 The regionalization and spatial specification of the neuraxis are determined by

149 the interplay between diffusible or contact signalling cues and the combinatorial

150 expression of specific sets of transcription factors [3]. The whole process is

151 regulated by gene networks, which direct the morphogenesis of the entire body

152 plan. This gene program has been particularly successful during evolution: it has

153 been inherited from invertebrates and it is highly conserved through the phyla of
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154vertebrates [51]. The program assembles a structural scaffold, in which fundamental

155morphogenic interactions are precisely regulated in space and time, securing the

156coordinate development of intrinsic neural networks and their appropriate integra-

157tion within the nascent organism. On this basic canvas, evolution creates diversity

158by introducing domain-specific variations in the rate of growth and in the connec-

159tion patterns. In this way, birds have a relatively large mesencephalon, whereas

160mammals are characterized by a prominent telencephalon. Thus, neural morpho-

161genesis is accomplished, in a predictive manner, by the intrinsic activity of specific

162gene networks, whose success is determined a posteriori by natural selection.

Fig. 1 Regulatory mechanisms of neural ontogenesis. The early phases of nervous system

development are determined by the execution of a gene program that directs neurulation, the

regionalization of the neural tube, the generation of nerve cells and the initial formation of

synapses. While these processes are regulated in a predictive manner, later phases are accom-

plished according to reactive strategies, required to adapt ontogenetic processes to contextual

environmental conditions. Surplus neurons are eliminated before birth by a selective mechanism

depending on the extension of available innervation territories. On the other hand, synaptogenesis

is carried out after birth, when the organism is interacting with the external world. Hence, synapse

formation and reshaping are governed by experience-dependent constructive mechanisms

Evolutionary Mechanisms and Neural Adaptation 157



163 Neurogenesis, which is obviously interrelated with morphogenesis, comprises

164 all the phenomena leading to the generation of neurons and glia from neural stem

165 and progenitor cells (Fig. 1) [27]. These cells proliferate in germinal structures

166 located at different levels along the neuraxis, become specified towards different

167 identities and migrate to specific locations, where they acquire mature phenotypes.

168 Then, the final size of each neuronal population can be refined through physiologi-

169 cal cell death. The generation of phenotypic diversity is largely determined by

170 diffusible molecular cues or cell-to-cell interactions that regulate the expression of

171 particular combinations of transcription factors [14, 22, 37, 39]. Once cell fate

172 choices have been taken, however, the differentiation into mature phenotypes is

173 achieved by the unfolding of type-specific gene programs, in an essentially cell-

174 autonomous manner. Hence, neuronal differentiation as well as the establishment of

175 the basic framework of connectivity are also governed by predictive mechanisms

176 that determine a priori the capability of a given neuron to migrate into a certain

177 position, orientate the navigation of its axon or recognize appropriate targets.

178 The situation is different when the regulation of neuron numbers is considered

179 (Fig. 1). The number of neurons generated for each category is determined by the

180 interplay between intrinsic properties of neural progenitors and local regulatory

181 interactions that modulate the rhythm of proliferation, the relative proportion of

182 cells that initiate differentiation or continue to divide, and the duration of neuro-

183 genic periods [7, 33]. All these mechanisms operate to regulate neuron numbers by

184 adjusting their production and, hence, work according to a predictive strategy.

185 Nevertheless, since the pioneering work of Rita Levi-Montalcini and Giuseppe

186 Levi [30], it is well known that most neuron populations are actually generated in

187 excess and the final amount of nerve cells that populate the mature nervous system

188 is achieved through the elimination of supernumerary elements [42]. Cell death or

189 survival depend on a set of parameters, including both intrinsic features of the

190 neurons (e.g. their level of activity) and environmental constraints (e.g. the exten-

191 sion of the target field or the availability of neurotrophic substances). This process

192 is suitable to match the size of each neuronal population to the amount of potential

193 synaptic partners or to the extension of innervation territories in the periphery. It

194 operates according to a selective mechanism that is most reminiscent of natural

195 selection: the juvenile neurons compete for limited quantities of available resources

196 and their fate depends on their intrinsic ability to overcome their rivals [8, 47]. In

197 this case, however, the mechanism works following a reactive strategy, required to

198 adjust neural development to individual fluctuations in the dimension of different

199 parts of the body. Accordingly, the size of most neuron populations can be signifi-

200 cantly modified by experimental manipulations that increase or reduce the exten-

201 sion of the available innervation territory [27, 42, 44]. Therefore, the final number

202 of neurons belonging to each population derives from a dual mechanism, which

203 combines a predictive component, that determines the initial production of surplus

204 neurons, and a reactive component, that eliminates supernumerary elements in

205 response to contextual environmental conditions.

206 At a first glance, similar mechanisms may apply during synaptogenesis (Fig. 1).

207 A well-established notion in developmental neurobiology is that synapses are
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208initially formed in excess and then partially withdrawn to shape the mature connec-

209tivity [27, 47]. Since effective function of neural circuits depends both on the

210number and on the specificity of synapses, the pruning process would be required

211both to reduce the exuberant, supernumerary contacts and to remove aberrant,

212wrong connections.

213The initial formation of synapses is guided by recognition cues exposed on the

214neuronal membrane, whose nature is determined by the intrinsic neurochemical

215profile of the partner neurons [5, 61, 66]. Synaptic pruning is driven by activity-

216dependent mechanisms that are directly influenced by the functional efficacy of the

217developing circuitry [8, 47]. Thus, synaptogenesis also appears to depend on a dual

218mechanism. Synapse formation is guided by molecular interactions determined by

219the unfolding of neuronal-intrinsic gene programs that work in a predictive manner.

220On the other hand, synaptic pruning is driven by an essentially reactive mechanism

221that selects good connections on the basis of their functional meaningfulness. Again,

222the latter phenomenon appears to follow some fundamental principles of natural

223selection.

224The analogy is partial at best. It is well established that a number of synapses are

225withdrawn to shape appropriate spatial connection patterns on specific target

226domains. Nonetheless, it is definitely clear that, when the number of contacts and/

227or their functional weight is considered, the final balance of the synaptogenic

228process is a positive one: newly-formed synapses greatly outnumber the lost ones

229[46, 49, 62]. This has been clearly demonstrated in a variety of experimental

230models, including the autonomic nervous system [31, 48], the visual system [60],

231or the cerebellar climbing fibres [23], just to cite a few ones. Even in the case of the

232neuromuscular junction where mono-innervation of muscle fibres appears to be

233solely achieved through the elimination of supernumerary axons, the winner
234endplate undergoes a remarkable outgrowth to cover the entire postsynaptic surface

235with additional junctional complexes and releasing sites [46, 55]. Therefore, the

236reactive component of synaptogenesis is not a selective process, but rather operates

237in a constructive manner.

238This conclusion has profound implications in terms of structure-to-function

239relationship during neural development. Indeed, while the initial formation of

240synaptic contacts is essentially aimed at establishing a basic framework of neural

241networks capable of initiating the interaction with the external world, the refine-

242ment phase is aimed at modifying the structure of such networks to improve their

243operational abilities. Thus, a fundamental circuit scaffold, assembled by executing

244intrinsic gene programs, is confronted with experience and modified to achieve

245adaptive function. The latter process involves the elimination of some unspecific

246contacts, but it is primarily characterized by the strengthening of meaningful

247connections with the addition of numerous new synapses.

248This process of structural remodelling, which involves the simultaneous

249outgrowth of both presynaptic axons and postsynaptic dendrites [44, 48], leads to

250the emergence of novel functional properties, whose nature is influenced by the

251specific features of the contextual environmental conditions. In other words, the

252final structure of neural circuits is congruent with the actual experience: a particular
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253 interaction with the external world will always lead to an appropriate pattern of

254 connectivity [53]. The essentially constructive nature of this process can be best

255 appreciated in extreme experimental conditions. For instance, severe manipulations

256 such as monocular deprivation or experimental squid during the critical periods of

257 visual system development induce extensive changes in the connectivity of the

258 subcortical and cortical visual system [60]. This peculiar structure, albeit strongly

259 divergent from that of the normal population, is clearly adaptive when the visual

260 experience of the relevant individuals is considered. Indeed, there is no reason to

261 leave half of the cortical territory to an eye that is not conveying any significant

262 sensory information. Similarly, there is no use to form binocular connections if the

263 two eyes are seeing different scenes. Yet, it is difficult to believe that such unusual

264 projection patterns result from the selection of pre-existing connections, rather than

265 being actively constructed by adapting the morpho-functional properties of the

266 circuit to real life experience. Similar considerations apply to other systems, such

267 as the peculiar tonotopic representation that can be induced in the auditory cortex

268 by exposure to auditory stimuli of specific frequencies [10].

269 On the whole, the initial phases of nervous system development, which include

270 neural morphogenesis, neuronal production and the establishment of basic connec-

271 tion patterns, are directed by the activity of species-specific gene networks that

272 operate according to an essentially predictive strategy. These processes lead to

273 assemble the fundamental framework of the nervous system, which then undergoes

274 individual-specific morpho-functional adaptation according to reactive strategies.

275 Neuron numbers are refined through a primarily selective process, whereas synaptic

276 patterns are reshaped according to constructive mechanisms. The latter mechanisms

277 have been likely evolved to exploit influences derived from contextual experience

278 to favour the development of adaptive function.

279 4 Experience-Dependent Mechanisms, Neural Development

280 and the Emergence of Function

281 A major feature of the last phases of neural development is the appearance of

282 reactive processes that essentially shift adaptation from species to individuals. Such

283 processes, however, are accomplished during distinct ontogenetic phases,

284 characterized by strongly different conditions [27, 46]. Neurogenesis and physio-

285 logical cell death primarily occur before birth and are influenced by somatic

286 changes taking place within the same developing organism. On the other hand,

287 the bulk of synaptogenesis is carried out after birth, while the newborn organism is

288 actively interacting with the external world. The latter condition exerts a most

289 dramatic influence on the course and on the outcome of this process.

290 Higher vertebrates, notably mammals, are born with immature neural circuits,

291 and this feature is most prominent in primates and humans [45, 57]. This implies

292 that crucial phases of neural development occur while the organism is exposed to
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293the external environment rather than sheltered in an egg or in the uterus. The

294newborn CNS, and particularly those structures that are more immature at birth

295such as the neocortex, is subjected to a wide range of powerful stimuli, which

296induce specific patterns of neuronal activation, stimulate neuritic extension and

297influence the number and the distribution of newly-formed synapses [63]. This

298ability of experience to stimulate neural growth is the crucial event that shifts the

299nature of synaptogenesis from a selective process aimed at achieving synaptic

300specificity to a constructive one capable of building new functionally meaningful

301connections (Fig. 2).

302Sensory deprivation experiments, such as dark rearing or exposure to un-

303modulated acoustic stimulation [11, 60, 65], show how administration of meaningful

304stimuli immediately activates neuronal growth mechanisms, associated with rapid

305acquisition of new functional properties. All these examples of experience-dependent

306structural remodelling are characterized by a clear prevalence of expansive phenom-

307ena, with the formation and strengthening of new synapses, over regressive events and

308loss of contacts. Hence, experience drives neuronal growth to create adaptive function.

309The evolutionary advantage of this strategy is obvious: each individual organism

310capable of exploiting contextual experience to generate appropriate novel responses

311will be able to successfully cope with a wide range of unprecedented situations.

312Once function is acquired, synaptogenic processes are greatly reduced if not

313completely arrested [24]. This decline of neuronal growth properties, that marks the

314end of developmental critical periods for the acquisition of experience-dependent

315capabilities, has been attributed to a set of concurrent mechanisms. The remodelling

316of neural circuits often leads to a substantial segregation of afferent axons, which

317impinge upon private target domains, being individual dendrites, single neurons or

318discrete anatomical modules. This process of input segregation would progressively

319reduce the need and the opportunity for activity-dependent competitive interactions

320that sustain synaptogenesis [62]. Hence, growth would be arrested when a stable

321connection pattern is achieved and all partners had their share.

Fig. 2 External stimuli direct developmental synaptogenesis and adult circuit plasticity. External

stimuli drive plastic modification of neural circuits by inducing neuritic remodelling and directing

the formation of functionally meaningful contacts. The process is regulated by inhibitory cues

present in the CNS microenvironment (represented by the STOP signals), required to prevent

aberrant growth and dysfunction
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322 In spite of the attractive simplicity of this mechanism, the end of synaptogenic

323 processes is actually coincident with profound modifications that occur in the

324 neurons themselves and in the surrounding microenvironment [53]. Within the

325 nerve cells, growth-associated gene programs are actively suppressed to favour

326 information processing and signalling function. Coincidentally, the maturation of

327 glia, namely myelination, and the deposition of the extracellular matrix are

328 accompanied by the appearance of a variety of growth-inhibitory molecules that

329 stabilize contacts and hamper further elongation of neuronal processes (Fig. 2).

330 These phenomena are precisely aimed at restricting growth properties of neural

331 circuits. As we will see in the next section, synaptogenic properties typical of

332 juvenile organisms can be restored in the mature CNS by specific manipulations

333 that boost intrinsic neuronal growth properties or remove environmental inhibition.

334 The presence of such strict growth control mechanisms, which have been

335 progressively implemented during the evolution of vertebrates [17, 56], represents

336 an additional argument favouring the constructive nature of developmental

337 synaptogenesis. Indeed, a purely selective mechanism is self-limiting and does

338 not require additional regulatory devices to be terminated. On the contrary, a

339 constructive mechanism must be actively arrested, either by removing the sustain-

340 ing stimuli or by dampening growth processes. Experience cannot be prevented or

341 abolished: the whole ontogenetic process is precisely aimed at making the nervous

342 system able to cope with external constraints. Therefore, when the development of

343 neural circuits adopted the constructive strategy driven by experience-dependent

344 stimulation, a set of growth-inhibitory mechanisms evolved to stabilize meaningful

345 connections and to restrain neuronal growth once function is achieved. Not surpris-

346 ingly, the induction of such regulatory molecules is also triggered by experience

347 [26, 59].

348 5 Constructive Mechanisms and Plasticity in the Adult

349 In spite of the clear decline of intrinsic neuronal growth potentialities, after the end of

350 canonical ontogenesis the nervous system retains a certain degree of ability to modify

351 his structure and function in response to external stimuli or changes in the environ-

352 ment. Adaptation in the mature nervous system, which is generally known as plastic-
353 ity, shares some fundamental features andmechanismswith developmental processes.

354 The notion of plasticity in the adult CNS was established several decades ago with

355 the discovery of reactive synaptogenesis and synaptic turnover [9, 50]. Accordingly,

356 for a long time the adaptive abilities of neural circuits were thought to be exclusively

357 sustained by changes of connectivity. Recently, however, the demonstration that

358 neurogenesis persists at least in some regions of the adult mammalian brain has

359 revealed that functional adaptation can be also carried out by integrating new

360 neurons in pre-existing circuits.

361 Compared to neural development, synaptogenic phenomena occurring in the

362 adult nervous system are considerably restricted in space and time. They involve
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363both formation and withdrawal of synaptic contacts and, although they usually lead

364to moderate changes of synaptic numbers, they obey to reactive mechanisms and

365have a clear constructive character. One important difference with juvenile

366synaptogenesis is the requirement of active participation [29, 64]. Synaptic

367remodelling in immature organisms is usually triggered by the mere exposure to

368external stimuli. In contrast, in adulthood plastic changes also require motivation

369and active participation of the involved organism. Hence, in mature individuals

370adaptation is no more an automatic response to environmental conditions, but

371requires an individual volition that determines the nature of the response and

372influences its outcome.

373Plasticity in the adult is strongly hampered by the presence of the above-

374mentioned inhibitory mechanisms that terminate developmental synaptogenesis.

375These mechanisms are partially counteracted by the growth promoting effect

376exerted by external stimuli [18, 20, 54]. Accordingly, structural plasticity and

377functional adaptation in the adult can be conspicuously enhanced by experimental

378procedures that activate neuronal growth genes or neutralize inhibitory molecules

379of the CNS microenvironment [53]. Nevertheless, whatever effective the simple

380manipulation of the molecular devices that control neuritic growth is not sufficient

381to induce adaptation. Endurable structural changes associated with significant

382functional modifications can only be established if these procedures are combined

383with specific environmental stimuli [43]. Hence, growth regulatory mechanisms

384exert a purely permissive role by setting the degree of plasticity of neural circuits,

385whereas environmental stimulation has a primarily instructive function in deter-

386mining the shape of the connectivity that will be formed [53].

387These features are consistent with a reactive mechanism that induces structural

388remodelling of neural circuits to generate adaptive responses. As for developmental

389synaptogenesis, the presence of multiple inhibitory mechanisms is required to

390maintain constructive modifications within the limits of adaptive function. Indeed,

391there are several examples showing that altered regulatory mechanisms and/or

392unusual experience may induce unspecific growth associated with frank pathological

393phenomena, such as seizures or dystonia [1, 6, 40]. A selective mechanism may fail

394to generate an adaptive response if the required option is not available, but it should

395be intrinsically unable to produce abnormal structures and aberrant function. Thus,

396plasticity in the adult also follows a constructive strategy and, for this reason, it

397must be subjected to inhibitory control.

398Adult neurogenesis shares its major functional significance with adult plasticity.

399In some CNS structures adaptation is not exclusively sustained by changes of

400connectivity, but also involves the integration of newly generated neurons into

401pre-existing circuits. As discussed above, developmental neurogenesis comprises a

402predictive mechanism that generates excessive amounts of neurons, whose final

403number is defined by a reactive mechanism that operates through selection. The

404scenario of adult neurogenesis is very different. In both regions of mammalian brain

405where new neurons are generated throughout life, the hippocampal dentate gyrus

406and the olfactory system, the rate of neuronal generation is clearly influenced by

407external stimuli and/or activity-dependent mechanisms [15, 35]. Thus, while the
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408 adult system retains the capacity for generating neurons, the course and outcome of

409 the process are no more determined by an intrinsically-coded predictive mecha-

410 nism, but regulated by extrinsic cues according to a reactive strategy.

411 Many of the newly generated neurons survive only for a short time, suggesting

412 that survival may depend on selective mechanisms, as for developmental

413 neurogenesis. However, the number and the specific features of the neurons that

414 eventually become stably integrated in adult circuits depend on the activity of the

415 involved network and on specific functional demands [2, 28, 32, 41]. In other

416 words, integration of the newborn neuron is directly related to the function that is

417 being established and not to the intrinsic receptive capacity of the system. There-

418 fore, similar to synaptic remodelling, adult neurogenesis appears to work as a

419 reactive device obeying to a primarily constructive strategy.

420 This conclusion is further supported by the observation that neurogenesis, or at

421 least neurogenic attempts, may be induced in other regions of the CNS by strong

422 stimulation or pathological conditions [4, 34, 52, 58]. In these instances, non-

423 neurogenic structures react to extreme environmental constraints by redirecting

424 the specification of local progenitors towards neuronal lineages. These phenomena

425 of intraparenchymal neurogenesis are often abortive, because non-neurogenic

426 regions fail to provide adequate conditions to support the differentiation and

427 integration of new neurons. Hence, latent neurogenic potentialities may be diffused

428 in many CNS regions, but actively repressed by local constraints. In any case, adult

429 neurogenesis appears to be driven by environmental stimuli influencing the mature

430 tissue, rather than local regulatory cues acting in a primary germinal structure.

431 Another feature that adult neurogenesis shares with adult plasticity is the pres-

432 ence of strict inhibitory control. Intrinsic inhibitory control prevents adult neurons

433 from de-differentiating or re-entering the cell cycle [25]. In addition, environmental

434 cues regulate the proliferation of progenitors as well as the migration, differentia-

435 tion and integration of newborn neurons [38]. Thus, successful incorporation of

436 new neurons in adult networks is restricted to precise phenotypes in defined circuits.

437 Furthermore, transplantation experiments show that the endogenous ability of the

438 adult CNS to accommodate donor neurons in functional circuits is limited to a few

439 types and locations [21, 36]. These inhibitory constraints also appear to be primarily

440 aimed at preventing aberrant phenomena that may lead to maladaptive function or

441 behaviour. However, these considerations indicate that adult neurogenesis also has

442 the main characters of a reactive/constructive process, in which experience-dependent

443 growth is exploited to modify neural structures so to achieve adaption.

444 6 Conclusions

445 The initial phases of neural development are primarily regulated by predictive

446 mechanisms that have been established by evolution. These processes, which are

447 highly conserved throughout vertebrate phylogenesis, are designed to develop a

448 nervous system that is suitable to control the main bodily functions of the organism
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449and is capable of interacting with the external world. The sensitivity of neural

450circuits to external stimuli, however, profoundly influenced the strategy of neural

451development. When coping with rather constant phenomena, such as the physio-

452logical expansion or retraction of different body parts, suitable adaptation can be

453obtained by merely selective mechanisms, which share some features with natural

454selection. Hence, neurogenesis starts with the production of surplus neurons and

455their final number is adjusted to match actual requirements, which may fluctuate

456among individuals, but always remain within predictable ranges. A similar mecha-

457nism may also apply to synaptogenesis if the nervous system was designed to be

458completely hardwired by intrinsic genetically-determined mechanisms.

459Quite surprisingly, however, the exposure of the immature nervous system to the

460external environment dramatically changed the ontogenetic strategy. Now, the

461ability of coping with a great variety of unpredictable environmental constraints

462could not be adequately fulfilled by a selective process. Rather, the expanding

463variety of situations favoured the emergence of an alternative mechanism, able to

464create unprecedented structure and function to face unprecedented situations. Thus,

465evolutionary pressure pushed developmental synaptogenesis, adult plasticity and

466even adult neurogenesis to become reactive processes obeying to the rules of

467constructive mechanisms. This constructive revolution of neural ontogenesis

468induced the appearance of specific regulatory mechanisms, which evolved to

469restrain the unchained growth driven by external stimuli within the limits of

470adaptive function. These inhibitory cues first appeared in fish and amphibians

471[56], but their importance consistently increased during later vertebrate evolution,

472in parallel with the increasing complexity of CNS structure and function. Now, they

473clearly fulfil the fundamental task of controlling potentially dangerous growth

474properties that enable the nervous system of powerful plastic and adaptive

475capabilities. However, they also bring with themselves some relevant side effects,

476such as the loss of neural regeneration capabilities [16, 17]. In any case, construc-

477tive mechanisms, such as those directing adult plasticity and neurogenesis, repre-

478sent a most successful phylogenetic invention that greatly increased the individual

479ability to cope with increasingly wide ranges of environmental conditions.
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