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Abstract. Mathematical models for the description, in a quantitative way, of the damages
induced on monuments by the action of specific pollutants are often systems of nonlinear, possibly
degenerate, parabolic equations. Although some of the asymptotic properties of the solutions are
known, one needs a numerical approximation scheme in order to have a quantitative forecast at any
time of interest. In this paper an implicit numerical method is proposed, analyzed, and numerically
tested for parabolic equations of porous media type and on a systems of two PDEs that models
the sulfation of marble in monuments. Due to the nonlinearity inside the differential operator of
the underlying mathematical model, the use of an iterative solver for a large system of nonlinear
equations is required, and every step implies the solution of large, locally structured, linear systems.
A special effort is devoted to the spectral analysis of the relevant matrices and to the design of ap-
propriate iterative solvers, with special attention to preconditioned Krylov methods and to multigrid
procedures. Numerical experiments for the validation of the analysis complement this contribution.
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1. Introduction. The problem of monitoring, preserving, and, when needed,
restoring monuments and works of art has become more and more relevant in recent
years for the conservation of our cultural heritage, after the recognition of the negative
effects of some pollutants on the monuments. Numerous studies made researchers and
restorers increasingly aware that gaseous pollutants, atmospheric particulate matter,
and some microorganisms can adversely affect the status of our monuments. In order
to monitor the cultural heritage and to program restoration works, it is of paramount
importance to be able to accurately assess the status of each monument. Along these
lines, quantitative methods are emerging and making their way into the practice
of preservation and restoration. These have the obvious advantages of allowing fair
comparisons of the states of different monuments, and supporting the decision process
on what to restore, clean, etc. and on the relative urgency of each case.

As an example, consider the black crusts that grow on marble surfaces as an
effect of sulfation of the carbonate stone that is turned into gypsum when reacting
with SO2 in a moist environment. Since urban concentrations of SO2 can nowadays
be more than 100 times higher than the atmospheric basal values, this effect has
become very important in recent decades. Sulfation can cause permanent damage to
the monuments because gypsum crusts can be easily eroded by rain or (when located
in protected areas) can become unaesthetically black with particulate matter from
the atmosphere and eventually exfoliate [17, 11, 5].

A better scheduling of cleaning or deeper restoration can be devised if the thick-
ness (and composition) of the crust can be forecasted in a quantitative way, providing
a way to compute and thus predict the time evolution of the crust. The most common
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quantitative evaluation of the sulfation phenomena that is used in practice consists
of assuming that the thickness is directly proportional to the length of time of the
exposure to the pollutants, with a proportionality coefficient obtained by fitting data
from a large number of monuments [18]. Although this may give an average indication
that is good enough for civil buildings, the uniqueness and cultural importance of a
work of art calls for a more detailed analysis that can take into account the local
environment to which the monument is exposed. Recently, a mathematical model of
the sulfation of marble based on the chemical reactions involved was developed by
Natalini and coworkers [2, 14] at IAC-CNR (Rome) and tested against experiments;
see [12].

It is worthwhile to remark that the mathematical model is able to provide new
information, which partly contradicts the most common quantitative evaluation meth-
ods based on data fitting. In particular (see [15]), the asymptotic study of the equa-
tions in a one-dimensional setting reveals that for large times the thickness of the
gypsum crust does not grow proportionally to the elapsed time as in the Lipfert
formula, but proportionally to its square root: the speed of growth of the crust is
significantly reduced as time goes on. Clearly this means that a complete removal
of the crust will speed up the damage and it calls for study of optimal strategies for
periodic partial crust removal.

However, the asymptotic analysis does not give enough information on what hap-
pens for short times and, moreover, the study is not yet available for complex geome-
tries. For example, on a corner stone, SO2 penetrates the marble from two sides: how
does the crust grow? Does it get rounded? By how much? And, more importantly,
what about the fine features of decorations or statues? In some cases sulfation has
caused an almost complete loss of detail: can the model predict the thickness of the
crust there and allow the scheduling of an optimal conservation strategy? In order to
answer the previous questions, one needs a numerical method to solve the equations
of the model developed in [2]. This is a system of two equations, one of which is
nonlinear of parabolic type.

This paper generalizes and applies the novel numerical techniques studied in [9]
to integrate for long times nonlinear, possibly degenerate, parabolic equations such
as those appearing in the model in [2]. The techniques developed here, however, have
applications that go beyond the aforementioned model. For example, in the area of
planned conservation, the techniques could be adapted to numerically investigate the
more complete sulfation model described in [1] and the consolidation model presented
in [7].

This paper considers two fully implicit discretizations in time, thus solving a non-
linear system at each timestep. In order to fix ideas, consider the parabolic equation

(1.1)
∂u

∂t
= ∇ · (D(u)∇u) ,

whereD(u) is a nonnegative differentiable function, and denote with LD(u) the elliptic
operator on the right-hand side.

In the literature, degenerate parabolic equations have been discretized mainly us-
ing explicit or semi-implicit methods, thus avoiding solving the nonlinear equations.
A remarkable class of methods arise directly from the so-called nonlinear Chernoff
formula [4] for time advancement, coupling it with a spatial discretization: for fi-
nite differences this was started in [3], and for finite elements in [19]. The schemes
in this class share a timestep restriction of the form Δt = O(h2) for stability, but,
especially in the finite element setting, there is a mature theory that also includes
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error estimators and h-adaptivity. For example, the numerical scheme analyzed in
[2] for integrating the sulfation model belongs to the class of semi-implicit methods.
More recently, another class related to the relaxation approximation emerged: such
numerical procedures exploit high order nonoscillatory methods typical of the dis-
cretization of conservation laws, and their convergence can be proved making use of
semigroup arguments similar to those relevant for proving the Chernoff formula [6].
Finally, we wish to point out the paper [10], where the authors derive conservative
schemes for degenerate convection diffusion equations with the elliptic operator in the
form ∂2

xx(K(u)), which is obviously equivalent to (1.1) in one space dimension, setting
K(u) =

∫ u

0 D(ξ)dξ.
In this paper, however, we chose to use form (1.1) since most models arise nat-

urally in this form, where D(u) has the direct physical interpretation of diffusion
coefficient. Especially in two dimensions, it is not trivial to turn form (1.1) into that
required by the scheme described in [10], and if (in one space dimension) one does
not have a closed form expression for K(u) and thus approximates the integral with
the midpoint rule, Evje and Karlsen’s discretization of the elliptic operator falls back
to the one used in this paper.

Thus, denoting with U the numerical solution of (1.1), and considering a time
discretization so that Δt = tn−tn−1, in this paper we employ the (first order accurate)
implicit Euler scheme

(1.2) U(tn, x)−ΔtLD(U(tn, x)) = U(tn−1, x)

and the (second order accurate) Crank–Nicholson scheme

(1.3) U(tn, x)− Δt

2
LD(U(tn, x)) = U(tn−1, x) +

Δt

2
LD(U(tn−1, x)).

(Note that (1.2) is also known as the Crandall–Liggett formula, after [8].)
The computation of U(tn, x) with (1.2) or (1.3) requires us to solve a nonlinear

equation whose form is determined by the elliptic operator and the nonlinear func-
tion D(u), but the convergence is guaranteed without restrictions on the timestep Δt.
Due to the nonlinear nature of the underlying mathematical model, the use of a fixed
point scheme is required, and the choice of the faster Newton-like methods implies the
solution at every step of large, locally structured (in the sense of Tilli; see [24, 23])
linear systems. A special effort was devoted in [9] to the spectral analysis of the ma-
trices arising from (1.2) for scalar equations and to the design of appropriate iterative
or multi-iterative solvers (see [22]), with special attention to preconditioned Krylov
methods and to multigrid procedures (see [13, 21, 16, 25] and the references therein
for a general treatment of iterative solvers). This paper shows that those methods
can be extended to the case of (1.3) and to systems and can perform numerical tests
on the model of [2].

The paper is organized as follows. In section 2 the results of [9] on scalar equations
are recalled and extended to the case of a scheme which is second order in time,
including numerical tests. In section 3 the sulfation model is described, and section
4 concerns the corresponding implicit numerical scheme and the preconditioners for
the linear systems. Next, we present numerical tests on the model in one spatial
dimension in section 5 and in two spatial dimensions in section 6. Finally, section 7
contains some possible developments of this work.

2. Scalar equations. In this section, the case of a single equation of the porous
media type is considered, namely (1.1), where D(u) is a nonnegative differentiable
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function. The parabolic equation is of degenerate type whenever D(u) vanishes for
some values of u. The convergence analysis of the numerical methods requires that
D(u) be at least continuously differentiable, while the existence of solutions is guaran-
teed under the milder assumption of continuity [26]. Most applications of the porous
media equation involve D(u) = um for some positive m.

For this particular choice, the following self-similar exact solutions have been
computed by Barenblatt and Pattle (see [26]):

(2.1) u(t,x) = t−α

[
1− k

( |x|
tα/d

)2
] 1

m−1

+

for t > 0,x ∈ R
d,

where |x| =
√∑d

1 x
2
i and α = d

d(m−1)+2 , k = αm−1
2md . These solutions are singular for

t = 0, but for t > 0 represent important reference cases both for the analysis of the
solutions of (1.1) and for numerical tests.

Here, results of [9] on scalar equations are recalled and extended to the case of
a scheme which is second order in time. They will be used in section 3, which deals
with a system of two equations, since the linear systems arising there include, as a
subsystem, those considered in this section.

2.1. Numerical scheme. In order to obtain a numerical scheme for approxi-
mating the solutions of (1.1), first the time variable is discretized with the Crank–
Nicholson formula (1.3), generalizing the simpler case of implicit Euler that was con-
sidered in [9]. It is worth pointing out that searching for high order schemes for
(1.1) would seem useless at first, since the exact solution of the equation is in gen-
eral continuous but not differentiable, so any scheme would converge, in theory, with
order 1. However, in practice, the exact solution is often piecewise regular, allowing
a higher order scheme to converge faster than first order and in any case to achieve
better errors than (1.2) at a given spatial resolution, even if the theoretical order of
convergence is not reached.

The discretization is then completed by considering the points xk = a + kh in
the spatial domain [a, b], where h = (b − a)/(N + 1) and k = 0, . . . , N + 1, and
approximating the one-dimensional nonlinear elliptic operator with the usual 3-point
finite difference formula, i.e.,

(2.2)
∂

∂x

(
D(u)∂u∂x

)∣∣∣∣
j

=
D(u)j+1/2

∂u
∂x

∣∣
j+1/2

−D(u)j−1/2
∂u
∂x

∣∣
j−1/2

h
+ o(1)

=
(D(uj+1) +D(uj))(uj+1 − uj)− (D(uj) +D(uj−1))(uj − uj−1)

2h2
+ o(1).

In order to write down the numerical scheme compactly, collect in a vector un all
the unknown values un

j = un(xj). For example, when Dirichlet boundary conditions
are considered, since u0 and uN+1 are known, u

n has N elements, namely un
1 , . . . , u

n
N .

In the following, the notation tridiagNk [βk, αk, γk] is for a square tridiagonal matrix
of order N with entries βk on the kth row of the lower diagonal, k = 2, . . . , N , αk

on the main diagonal, k = 1, . . . , N , and γk on the upper diagonal, k = 1, . . . , N − 1.
Moreover, diagN [αk] indicates an order N square diagonal matrix with αk on the kth
row. Recalling that (1.3) is a second order approximation, one has

(2.3) un − un−1 =
1

2

Δt

h2
LD(un)u

n +
1

2

Δt

h2
LD(un−1)u

n−1 + o(Δt2 + h2),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONED SOLVERS IN MONUMENT CONSERVATION 3075

where

(2.4) LD(u) = tridiagNk [Dk−1/2,−Dk−1/2 −Dk+1/2, Dk+1/2]

and

Dj+1/2 =
D(uj+1) +D(uj)

2
, j = 0, . . . , N.

In two dimensions, on the finite grid composed by the (N + 2)× (N + 2) points
xi,j = a + ihe1 + jhe2, where a is the lower left corner of the domain, h the dis-
cretization parameter, el (l = 1, 2) the unit vectors along the coordinate axis, and
i, j ∈ N, the matrix LD(u) approximating ∇ · (D(un)∇un) is pentadiagonal. When
considering Dirichlet boundary conditions, adopting the usual lexicographic ordering
of the unknowns un

i,j , LD(u) is a N2 ×N2 square matrix, and nonzero entries can be
found only on the main diagonal, the first, and the Nth upper and lower diagonal.

Finally, note that, as argued in [23], the asymptotic spectral properties of the
matrices arising from this discretization (LD in our case) to a large extent do not
depend on the choice of the finite difference formula, but really depend on the locally
Toeplitz structure that in turn arises from an operator appearing in the PDE. Thus it
should be possible to generalize most of the results of the following sections on linear
solvers and preconditioning to other spatial discretizations techniques, including finite
element methods.

2.2. Newton method. In order to advance the numerical solution from un−1

to un, the nonlinear system of equations (2.3) must be solved at each timestep. This
is achieved by iterating with Newton’s method for the function

(2.5) F (u) = u− 1

2

Δt

h2
LD(u)u− 1

2

Δt

h2
LD(un−1)u

n−1 − un−1.

The Jacobian of F is

F ′(u) = XN (u) + YN (u),(2.6)

XN (u) = IN − 1

2

Δt

h2
LD(u),(2.7)

YN (u) = −1

2

Δt

h2
TN(u) diagNk (D′

k),(2.8)

TN(u) = tridiagNk [uk−1 − uk, uk−1 − 2uk + uk+1, uk+1 − uk],(2.9)

where TN is the same matrix of the implicit Euler case analyzed in [9]. (In two space
dimensions, TN would be pentadiagonal.)

The first order scheme based on implicit Euler gives rise to

(2.10) F̃ (u) = u− Δt

h2
LD(u)u− un−1.

This is the case studied in [9]. Since the Jacobian matrix of F̃ differs from F ′ only
for the 1

2 factors in XN and YN , most of the results proved in [9] can be adapted to
the present setting. Thus the proofs in this section will only be sketched.

Our main result is that the Newton method defined by F , initialized with un,0 =
un−1, is convergent under a linear restriction on the timestep.
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Theorem 2.1. The Newton method for F̃ (u) defined in (2.5) for computing un

is convergent when initialized with un,0 = un−1 (i.e., the solution at the previous
timestep) and for Δt ≤ Ch, for a positive constant C independent of h.

Proof. The proof of the same statement for F , based on the Kantorovich theorem
(see, e.g., [20]), given in [9], can be adapted easily to the present case.

The key point is again to show that there exists C∞, C1 independent of h such
that

(2.11)
∥∥F ′(u)−1

∥∥
∞ ≤ C1,

provided that Δt ≤ C∞h. For this, note that F ′(u) differs from F̃ ′(u) for F̃ defined
in (2.10) only by factors 1

2 appearing before any Dk+1/2 term. Since these terms are
discarded in the estimates in the proof, the proof of Proposition 2.1 of [9] can be
generalized to the present setting.

Remark 2.2. Setting the initial guess with the average between un−1 and the
value given by an explicit Euler step such as

un,0 = un−1 +
1

2

Δt

h2
LD(un−1)u

n−1

does not change the convergence ratio, but in practice one needs fewer iterations to
reach a given tolerance.

2.3. Iterative methods for the linear system. Of course the (s+1)th New-
ton iterate is computed by first solving the linear system

F ′(un,(s))v(s) = F (un,(s))

for v(s) and then setting

un,(s+1) = un,(s) + v(s).

The matrix AN = F ′(un,(s)) is a square tridiagonal (respectively, pentadiagonal)
N ×N (respectively, N2 ×N2) matrix when the domain is one- (respectively, two-)
dimensional. Its spectral properties are crucial in choosing an appropriate solver for
the linear system. Given the large dimension of the system, an iterative method with
an optimal preconditioner would allow us to compute v(s) in a number of iterations,
which is independent of the system size.

Moreover, AN differs from F̃ ′ only by the factors 1
2 that were missing in the

matrices studied in [9]. It can thus be shown that, also in the present setting, AN is
not symmetric, but it is dominated by its symmetric part (AN +AT

N )/2, which is in
turn essentially a weighted Laplacian. Rather detailed information on the spectrum
of A can be gained via the theory of locally Toeplitz sequences in [24]. In particular,
when Δt is chosen proportional to h, the sequence of N×N matrices {hAN} obtained
for an increasing number of grid points is locally Toeplitz (in the sense of [24]) with
respect to the pair of functions (D(u(x)), 2 − 2 cos(s)) defined on [a, b]× [0, 2π]. Hence
(see [9]) the GMRES method, which is picked as the main iterative solver due to the
asymmetry of AN , is expected to converge in O(

√
N) iterations.

In order to study a preconditioning strategy, first observe that the sequence {XN}
defined by (2.7) is also locally Toeplitz with respect to the same generating functions.
Next recall that any locally Toeplitz sequence is also generalized locally Toeplitz, a
class which is closed under inversion, defined in [23]. Hence both sequences are also
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generalized locally Toeplitz sequences, and {X−1
N AN} is generalized locally Toeplitz

with generating function 1, and thus the singular values are weakly clustered at the
point 1. This is enough to guarantee the superlinear convergence of the preconditioned
GMRES methods, but in [9] it is also shown that the clustering is strong, proving
that XN is an optimal preconditioner for solving a linear system with matrix {AN}
with GMRES; i.e., a given error reduction is reached within a number of iterations
which is independent of the problem size N .

Unfortunately there is not a fast direct solver for XN , but a multigrid method
(MGM) with a Galerkin approach can be successfully applied. The MGM [25] consists
of constructing a solution of a linear system by composing the action of simple iterative
schemes (like Jacobi or Gauss–Seidel) that are run on the original system and on
smaller systems derived from the first one and called coarse grid approximations.

More precisely, in order to solve a linear system Xu = b in R
m, one considers a

finite sequence of integers m0 = m > m1 > m2 > · · · > m� > 0 and full-rank matrices

P
(i)
(i+1) ∈ R

mi+1×mi (called projections), and defines the V-cycle method as

uk+1 = MGM(0,uk,b),

with MGM defined recursively as follows:

u
(out)
i := MGM(i,u

(in)
i ,bi)

If (i = �), then Solve(A�u
(out)
� = b�)

Else 1 ũi := Sν
i

(
u
(in)
i

)
,

2 ri := Aiũi − bi,

3 bi+1 := P
(i)
(i+1)ri,

4 A(i+1):= P
(i)
(i+1)A(i)(P

(i)
(i+1))

T
,

5 yi+1 := MGM(i+ 1,0ni+1 ,bi+1),

6 u
(out)
i := ũi − (P i

i+1)
T
yi+1

Step 1 performs some (ν) iterations of an iterative method (called a presmoother)
for ni-dimensional linear systems (denoted generically as Si), chosen for its error
dampening properties, which is often taken in the Jacobi or the Gauss–Seidel family.
Then, step 2 calculates the residual of the proposed solution and steps 3–6 define
the recursive coarse grid correction—by projection (step 3) of the residual, subgrid
correction (steps 4, 5), and interpolation (step 6). Note that only the smallest system
(of level �) is solved exactly, while all the others are recursively managed by reduction
to low-level systems and smoothing. For more details and generalizations, see, e.g.,
[25].

For differential problems, it is natural to construct the coarse grid approximations
with the Galerkin approach, i.e., by considering a sequence of coarser and coarser grids

with interpolation operators P
(l+1)
(l) reconstructing values of the unknown function on

the grid of level l from the smaller set values on the coarser grid of level l + 1. In
this paper it is sufficient to consider linear (bilinear in two dimensions) interpolation
operators. This is known to give rise to an optimal solver for a weighted Laplacian.
Moreover, in [9] it is also observed that it is not necessary to bring the MGM to con-
vergence, but applying a single V-cycle to the GMRES residual is enough to optimally
precondition the GMRES method.

Moreover, since YN is (spectrally) negligible with respect to XN , the MGM V-
cycle can be applied using the whole Jacobian matrix F ′ = XN + YN instead of XN .
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Fig. 1. Crank–Nicholson scheme: Newton convergence history in one (a) and two (b) spatial
dimensions.
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2D: Euler
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first order

Fig. 2. Error of the numerical scheme in one and two dimensions, compared with implicit Euler.

This leads to a slight reduction of the number of GMRES iterations. The results
reported in the next section refer to this preconditioning strategy.

2.4. Numerical tests. This section collects some numerical tests supporting
the results previously described. For N ranging from 32 to 1024, equation (1.1) with
the Barenblatt initial data (2.1) for m = 2 is integrated numerically from t = 1 to
t = 1 + 20/32 in one and two spatial dimensions, recording the number of Newton
iterations, GMRES iterations, and the error against the exact solution. Results for
higher values of m are similar.

Figure 1 plots the quantity ‖u1,s − u1,s−1‖ during the Newton iterations s =
1, 2, . . . , 30 for computing the first timestep. Different symbols and line colors cor-
respond to different mesh sizes on the interval (panel (a)) and on a square domain
(panel (b)). It is clear that the very good tolerance 10−6 is reached within a reason-
able number of iterations: four in one spatial dimension and six in R

2. This good
convergence history is to a large extent not dependent on the chosen value for m (see
also [9]).

Using the Crank–Nicholson scheme, a reduction of the error with respect to the
first order Euler scheme is observed (see Figure 2), even if the scheme does not con-
verge with the expected order 2. This is due to the presence of singularities in the
exact solution. The least square fit of the errors obtained in one dimension with the
Crank–Nicholson scheme and represented with plus signs in the figure gives us that
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2d: N×N grid, preRBGS

(a) (b)

Fig. 3. Crank–Nicholson scheme: GMRES iterations inside the Newton steps. (a) No precon-
ditioning (the dashed line is the N1/2 slope). (b) One V-cycle as preconditioner.

the error decays proportionally to N−1.5. In two dimensions the rate of convergence is
closer to 1, but the errors are nevertheless lower than those obtained with the implicit
Euler scheme.

Finally, Figure 3 shows the plot of the number of iterations of the methods for
the linear system. For each value of N , the average number of GMRES iterations
performed by the algorithm is indicated by the symbols, while the vertical lines span
from the minimum to the maximum value recorded during the integration. Figure
3(a) compares the number of unpreconditioned GMRES iterations on different one-
and two-dimensional grids with the

√
N slope. Note that for the largest values of

N , the two-dimensional experiments were not possible due to memory limitations on
a PC with 8GB of RAM. The MGM used here as preconditioner had one damped
Jacobi iteration as a presmoother in the V-cycle for the one-dimensional experiments,
while in the two-dimensional tests the more efficient red-black Gauss–Seidel has been
employed. Figure 3(b) shows that applying one MGM V-cycle is optimal (constancy
of iterations number for different N), robust (small variance in iterations number),
and memory efficient (small number of iterations require small amount of storage
memory in GMRES without the need for the restarted procedure).

3. Marble sulfation. This section is about the numerical simulations of marble
sulfation using the model introduced in [2]. The main features of the model are
described only briefly; refer the reader to the original paper for the details and a more
comprehensive study of the properties of the solutions. In [2], the authors consider
the (simplified) chemical reaction

CaCO3 + SO2 +
1

2
O2 + 2H2O −→ CaSO4 · 2H2O+CO2

to account for the transformation of CaCO3 of the marble stone into CaSO4 · 2H2O
(gypsum), which is triggered in a moist atmosphere by the availability of SO2 at the
marble surface and inside the pores of the stone. The two main variables of the model
are c(t, x), denoting the local concentration of calcium carbonate, and s(t, x), the local
concentration of SO2. As the reaction proceeds, the calcium carbonate concentration
is reduced from the initial value c0, as CaCO3 is progressively replaced by gypsum.
Denoting ϕ0 and ϕg the porosity of the pristine marble and of the gypsum, the model
assumes that the porosity of the intermediate state is well approximated by linear
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(a) (b)

Fig. 4. Sample domains Ω for problem (3.1) are shown for the one-dimensional setting (a) and
the two-dimensional setting (b). The “brick pattern” area represents the marble stone, while the
dotted area is air. The boundary is drawn with a solid line where Dirichlet boundary conditions are
applied and with a dotted line where free-flow boundary conditions are imposed.

interpolation

ϕ(c) = ϕg + (ϕ0 − ϕg)
c

c0
= αc+ β.

The constants α and β depend on the porosity of the material involved. The model
considered in [2] is described by the following system of PDEs:

(3.1)

⎧⎪⎨⎪⎩
∂ϕ(c)s

∂t
= − a

mc
ϕ(c)sc+ d∇ · (ϕ(c)∇s) ,

∂c

∂t
= − a

ms
ϕ(c)sc.

The spatial domain x ∈ Ω in which (3.1) is set represents a piece of marble
stone for which at least a portion of the boundary ∂Ω is in contact with the polluted
atmosphere. In particular, ∂Ω is in general split into two parts: one represents the
outer surface of the marble sample, in contact with the air, and the complementary
part separates the portion of the marble object of the simulation and the rest of the
monument.

Examples of such one- and two-dimensional such domains are shown in Figure 4.
In order to study the formation of a gypsum crust on a flat area of a monument, it is
sufficient to take a one-dimensional domain such as that shown in the panel (a). In
order to study a corner-like feature of a work of art, such as the edge of a monument
or a long decoration in relief, one would employ a two-dimensional domain as shown in
panel (b). Obviously, more complex shapes need three-dimensional domains faithfully
representing the volume occupied by the marble.

Boundary conditions are set by imposing the value of s on the outer boundary
and free-flow conditions for s on the inner boundary. In particular, as an example
of a one-dimensional setting, take x ∈ Ω = [0, 1], where x = 0 corresponds to the
outer boundary of the marble stone (in contact with the polluted air), and x = 1
to the inner boundary. The boundary conditions are illustrated in Figure 4: they
are of Dirichlet type (imposing s(0, t) on the outer boundary) and of free-flow type
(imposing ∂s

∂x(1, t) = 0 on the inner boundary).
The parameters ms and mc are fixed by the physical properties of the species

involved in the reaction and ensure that the mass balance is fulfilled. On the other
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hand, a represents the reaction rate, and it depends (among other things) on the
moisture of the air and on the temperature. The authors of [2] describe its central
role in the analysis of the solutions of the model equations. In particular, if u(t, x)
is a solution of (3.1) for a given value of a, then ũ(t, x) = u(t/a2, x/a) is a solution
of (3.1) for a = 1. This observation on the one hand plays a fundamental role in
establishing the long-time asymptotics of the solution, and would allow us to perform
the simulations with a = 1 and then rescale the numerical solutions appropriately
to take the reaction rate into account. However, because of the role of a as the
fundamental physical parameter of the model, the form (3.1) of the equations was
employed for the numerical simulations. Moreover, this is beneficial in view of the
more complete model, including a nonconstant a, which has been described in [1].

In particular, as in [2], the values α = 0.01, β = 0.1, d = 1, ms = 64.06,
mc = 100.09 are used throughout, while a varies from 1 to 105.

4. Discretization of the sulfation model. The general setup for the scheme
is the same as in the scalar case: first discretize the time variable using (1.3) and
then discretize the spatial domain and the elliptic differential operator with finite
differences, write the time-advancement problem as an implicit equation, and set up
a Newton scheme to solve it. This procedure is convenient if the Newton scheme
converges in a reasonable number of iterations and one can devise an optimal precon-
ditioner for the linear system that has to be solved at each Newton step.

For the space discretization, denote xξ = 0 + ξh ∈ Ω. Approximating the elliptic
operator along the same lines as in (2.2), consider the second order finite difference
formula

∂x(ϕ(c)∂xs)|xj
=

ϕ(c(xj+1/2))(s(xj+1)− s(xj))

h2
(4.1)

−ϕ(c(xj−1/2))(s(xj)− s(xj−1))

h2
.

This in turn suggests employing two staggered grids in the domain Ω: the set of points
xj (j ∈ N) carrying the unknowns snj for s(tn, xj) and the set of points xj+1/2 (j ∈ N)
with the unknowns cnj+1/2 for c(tn, xj+1/2). The notation ϕn

j+1/2 = ϕ(cnj+1/2) will
also be used. For ease of reference, the two grids are also called “integer grid” and
“half-integer grid.”

Here the formulas for the Crank–Nicholson time discretization (1.3) are consid-
ered, while the case of the Crandall–Liggett (implicit Euler) scheme (1.2) can be
similarly dealt with. Thus consider the scheme that computes snj and cnj+1/2 solving
the nonlinear system of equations

(4.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 = F(s)(sn, cn) = Φnsn +

Δt

2

a

mc
Cnsn +

Δt

2
dLϕnsn

− Φn−1sn−1 +
Δt

2

a

mc
Cn−1sn−1 +

Δt

2
dLϕn−1sn−1,

0 = F(c)(sn, cn) = cn − cn−1 + Δt
2

a
ms

Sncn + Δt
2

a
ms

Sn−1cn−1,
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where sn = [sn1 , s
n
2 , . . .]

T, cn = [cn1/2, c
n
3/2, . . .]

T, and

Φn = diagNk

[
ϕn
k+1/2 + ϕn

k−1/2

2

]
,(4.3a)

Cn = diagNk

[
ϕn
k+1/2c

n
k+1/2 + ϕn

k−1/2c
n
k−1/2

2

]
,(4.3b)

Lϕn = tridiagNk

[
−ϕn

k−1/2, ϕ
n
k−1/2 + ϕn

k+1/2,−ϕn
k+1/2

]
,(4.3c)

S = diagNk

[
ϕn
k+1/2

(
snk+1 + snk

2

)]
.(4.3d)

Note that equations (4.2) are not linear, since the matrices C, S, Lφ, and Φ also
depend on cn and sn, either directly or via the (linear) function ϕ. It is important
to note that the matrix Lϕ is defined as LD of (2.4), but it depends only on the half
of the unknowns of the problem: precisely, Lϕ depends on c and it multiplies s in
formula (4.2).

The two staggered grids represent a sort of finite difference analogue of the approx-
imation with P1 (for s(x)) and P0 (for c(x)) conforming finite elements considered in
[2]. The results obtained here on preconditioning should also be applicable with little
modifications in that case, too.

Boundary conditions are imposed considering j = 1, 2, . . . , N in (4.2) and assum-
ing at all timesteps a given value for s0 (Dirichlet boundary condition at x = 0) and
that sN+1 = sN−1 (homogeneous Neumann boundary condition at x = 1). Thus the

expressions of F
(s)
1 and F

(s)
N are modified accordingly with respect to those in (4.2),

together with the corresponding elements in the Jacobian (4.4). The 2N unknowns
are collected in a vector u with the ordering u = [s1, s2, . . . , sN , c1/2, . . . , cN−1/2]

T.

Both the Crank–Nicholson and the Crandall–Liggett formulas give rise to an
unconditionally stable scheme. Following the results previously established, in order
to solve the nonlinear problem (4.2), Newton iterations are employed. To this end,
one needs the Jacobian matrix, which is naturally split into four N ×N block as

J = F ′ =
[

Js
s Js

c

Jc
s Jc

c

]
, u =

(
us

uc

)
.

The entries (disregarding fixed rank corrections for the boundary conditions) are
(4.4)

[Js
s ]j,k =

∂F
(s)
j

∂sk
=

ϕj+1/2 + ϕj−1/2

2
δjk +

Δt

2

a

mc

ϕj+1/2cj+1/2 + ϕj−1/2cj−1/2

2
δjk

+
d

2

Δt

h2

[−ϕj−1/2δk,j−1 + (ϕj−1/2 + ϕj+1/2)δk,j − ϕj+1/2δk,j+1

]
,

[Js
c ]j,k =

∂F
(s)
j

∂ck+1/2
=

ϕ′
j+1/2sjδjk + ϕ′

j−1/2sjδj,k+1

2

+
Δt

2

a

mc

(ϕ′
j+1/2cj+1/2 + ϕj+1/2)δjk + (ϕ′

j−1/2cj−1/2 + ϕj−1/2)δj,k+1

2

+
d

2

Δt

h2

[
ϕ′
j−1/2(sj − sj−1)δj,k+1 − ϕ′

j+1/2(sj+1 − sj)δj,k

]
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONED SOLVERS IN MONUMENT CONSERVATION 3083

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Fig. 5. Sparsity structure of the Jacobian matrix (4.4).

[Jc
s ]j,k =

∂F
(c)
j+1/2

∂sk
=

Δt

2

a

ms
ϕj+1/2cj+1/2

δj,k−1 + δjk
2

,

[Jc
c ]j,k =

∂F
(c)
j+1/2

∂ck+1/2
=

[
1 +

Δt

2

a

ms
(ϕ′

j+1/2cj+1/2 + ϕj+1/2)
sj+1 + sj

2

]
δjk.

The sparsity structure of the Jacobian matrix with entries defined in (4.4) is
shown in Figure 5. In order to guarantee the convergence of the Newton method, a
timestep restriction of Δt = O(h) is imposed throughout this section, as in Theorem
2.1. A more detailed analysis of the matrix will be carried out in the next section.

4.1. Solving the linear system. At each Newton iteration, one has to solve a
linear system with matrix J , which is not symmetric, and thus GMRES is a natural
choice for the main Krylov solver.

The top left Js
s block is given by

Js
s = Φ+

Δt

2

a

mc
C +

1

2

Δt

h2
dLϕ,

which is very similar to (2.6), except that the identity is replaced by the diagonal
matrix Φ with O(1) entries and the tridiagonal Y term of (2.6) is not present, corre-
sponding instead to the third term of the Js

c block. The extra term of Js
s , involving

the diagonal matrix C, has entries of order Δt. Hence Js
s is spectrally not too different

from F ′ of (2.6) and thus the unpreconditioned GMRES iterations count should grow
as

√
N , which is indeed confirmed in Figure 6, which graphs the average, minimum,

and maximum number of GMRES iterations needed in the case a = 1 and for different
values of the number of grid points N . A least square fit gives N0.5217 for the number
of iterations.

In order to devise a preconditioning strategy, given the structure of Js
s , a V-cycle

can be employed on this block if the rest of the matrix can be optimally dealt with.
To this end, observe that the lower left block Jc

s has nonzero entries only on two
diagonals and these decay as O(Δt), while the bottom right block Jc

c is the identity
matrix plus a diagonal matrix with O(Δt) entries.

Theorem 4.1. Assuming Δt = O(h), the upper triangular part of J , namely,

(4.5) P =

[
Js
s Js

c

0 Jc
c

]
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3084 MATTEO SEMPLICE

10
2

10
3

10
1

10
2

GMRES iterations − Implicit Euler
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Fig. 6. Number (average, minimum, and maximum) of unpreconditioned GMRES iterates per
timestep with A = 1 for 3 values of N . The dashed line indicates the N1/2 slope.

is an optimal preconditioner for J , assuming that the function ϕ(c) is bounded away
from 0 (i.e., when the porosity of the gypsum-carbonate mixture is never zero, which
corresponds to having β > 0 in the model of section 3).

Proof. First observe that the diagonal blocks are nonsingular, so that

P−1 =

[
(Js

s )
−1 −(Js

s )
−1(Js

c )(J
c
c )

−1

0 (Jc
c )

−1

]
,

and the preconditioned system has matrix

P−1J =

[
1− (Js

s )
−1

(Js
c ) (J

c
c )

−1
(Jc

s ) 0

(Jc
c )

−1
(Jc

s ) 1

]
,

where 0 denotes the null matrix and 1 the identity matrix.
The key point now is that all entries of P−1J are negligible except the diagonal

ones. In fact, Jc
c is diagonal with entries equal to 1 +O(Δt) and thus its inverse has

the same property. Since Jc
s is tridiagonal with entries of O(aΔt), the same is true

for the lower-left block of P−1J . Gershgorin circles arising from the lower half of the
matrix are thus centered at 1 in the complex plane and have radii decaying as O(Δt).

Let us now turn to the upper half of the matrix, where trivially one has that
‖ (Js

c ) (J
c
c )

−1
(Jc

s ) ‖∞ = O(Δt), and thus it suffices to show that ‖ (Js
s )

−1 ‖∞ is bounded
to conclude that the Gershgorin circles arising from the upper half of the matrix are
centered at 1 +O(Δt) in the complex plane and have radii decaying as O(Δt).

To this end, split

Js
s = Z −W = Z(1− Z−1W ),

where Z is the diagonal part, which is

Z = diagk(zk), zk = ϕk +Δt
a

mc
ϕ̃k + 2

Δt

h2
ϕk,

where ϕk = 1
2 (ϕk+1/2 + ϕk−1/2) and ϕ̃k = 1

2 (ϕk+1/2ck+1/2 + ϕk−1/2ck−1/2). Since Z
is diagonal, one easily gets the estimate

‖Z−1‖∞ ≤ max
k

1

zk
=

h2

Δt
max

k

1

2ϕk

(
1 +O

(
h2

Δt

))
= O

(
h2

Δt

)
.
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Next observe that Z−1W = Δt
h2 tridiagk(

1
zk
[ϕk−1/2, 0, ϕk+1/2]) and thus

∥∥Z−1W
∥∥
∞ =

∥∥∥∥∥tridiagk
(

[ϕk−1/2, 0, ϕk+1/2]

2ϕk +
h2

Δtϕk + h2 a
mc

ϕ̃k

)∥∥∥∥∥
∞

≤ max
k

2ϕk

2ϕk +
h2

Δtϕk + h2 a
mc

ϕ̃k

≤ 1− Ch

for some small positive constant C. Therefore∥∥∥(1− Z−1W
)−1
∥∥∥
∞

≤
∞∑
j=0

∥∥Z−1W
∥∥j
∞ ≤ 1

Ch

and

‖(Js
s )

−1‖∞ =
∥∥∥(Z (1− Z−1W

))−1
∥∥∥
∞

≤
∥∥∥(1− Z−1W

)−1
∥∥∥
∞

∥∥Z−1
∥∥
∞ = O(1).

Remark 4.2. When applying the preconditioner, the block triangular system
Py = b is solved as

yc = (Jc
c )

−1bc, ys = (Js
s )

−1(bs − Js
cyc),

where the deponents s and c refer to the upper and lower halves of the vectors, respec-
tively. The previous result shows that the spectrum of P−1J is strongly clustered at
1 independently on the discretization parameter h, and thus the block preconditioner
P is optimal. For the whole preconditioner to be optimal, however, an optimal solver
for the Js

s block is needed. However, Js
s is the sum of two diagonal matrices and

a tridiagonal matrix which is the discretization of a Laplacian operator, regularized
with the (strictly positive) function ϕ(c(x)), and thus has spectral properties close to
those of XN studied in section 2.3. As in the scalar case, an MGM (e.g., with one
damped Jacobi as presmoother and a Galerkin approach with linear interpolation) is
an optimal solver for this block.

5. Simulations and performance of the algorithm. Figure 7 shows some
typical curves obtained from the simulations with model (3.1). Note that for bigger
values a, the reaction is faster and a boundary layer appears. For a = 104, Figure 8
shows the temporal evolution of the two main variables: while SO2 penetrates deeper
and deeper into the stone (b), calcium carbonate is substituted by the more porous
gypsum in a narrow spatial band where the curve c(t, x) presents a boundary layer.
Once formed, this transition region travels toward the interior of the stone (a). The
self-similarity of the solutions of (3.1) under rescaling of the temporal and spatial
variables mentioned at the beginning of section 3 implies that the boundary layer
observed for a = 104 will also appear for lower values of a if the solutions were sought
for a larger temporal and spatial domain.

Newton iterations. Figure 9 graphs the average, minimum, and maximum number
of Newton iterations used by the numerical method to solve the nonlinear equation
(4.2) at each timestep.

For a = 1 (black circles), the number of iterations is almost constant when the
number of grid points is increased. Furthermore, for a given number of points em-
ployed in the discretization, the number of Newton iterations increases very moder-
ately even when a is increased by several orders of magnitude: e.g., for N = 128
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Fig. 7. For different values of a, marble content, and SO2 concentration inside the stone
predicted by the model (3.1) for t = 1.
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Fig. 8. Temporal evolution of the calcium carbonate and sulfate concentration predicted by the
model (3.1) with a = 104.
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Fig. 9. Number (average, minimum, and maximum) of Newton iterates per timestep.

the scheme needs an average of three Newton iterations per timestep for a = 1, five
for a = 100 (blue stars), and ten for a = 10000 (red crosses). Finally, note that for
higher values of N , the number of Newton iterations decreases slightly since the grid
becomes able to resolve the boundary layer better.

Preconditioning. Consider now the Gauss–Seidel preconditioner at block level,
with MGM on the (s, s) block. The (c, c) block does not need an inner preconditioner
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Fig. 10. Number (average, minimum, and maximum) of GMRES iterates per timestep with
a = 1 for three values of N . (a) Block Gauss–Seidel and MGM for the upper left block was used as
a preconditioner. Blue crosses and lines refer to the number of inner MGM iterations. (b) GMRES
iterations when performing only one V-cycle of the MGM.

since it is diagonal and can be solved directly. This strategy yields an optimal pre-
conditioner, i.e., renders the number of GMRES iterations independent from N , as
confirmed by the numerical experiments shown in Figure 10. In panel (a) the MGM
driven to convergence is used as solver for the (s, s) block in the preconditioner: GM-
RES converges in 2–3 iterations, requiring 10–15 MGM cycles at each iteration. In
panel (b) only a single MGM V-cycle is employed as inner preconditioner for the (s, s)
block: the number of GMRES iterations grows slightly (6–8), but this procedure is
overall more efficient. An impressive series of good features can be observed: minimal
average computational cost, minimal number of iterations, and minimal variance in
the latter number meaning a strong robustness of the procedure.

5.1. Asymptotics for the front position. The asymptotic analysis of [15]
predicts that the front of the travelling wave of c(t, x) that separates the gypsum
dominated phase from the carbonate dominated phase and that moves inward in the
marble sample asymptotically behaves as xfront ∼

√
t.

Numerical experiments were performed to test this prediction and to check how
fast the front approaches this asymptotics. In order to perform the comparison, the
information on the front position was extracted from the numerical solutions cnj+1/2

by identifying the gypsum-carbonate front with the point with the steepest gradient
of c(tn, x).

For a = 104, Figure 11(a) shows the position of the front. Note that the step-like
behavior of the numerical front that is apparent in some regions of the graph is due
to the finite spatial resolution of the simulation (h = 1/128). In order to check the
asymptotics, the position is also plotted in double logarithmic scale in Figure 11(b),
together with the

√
t slope (dashed line). Note that both simulations agree with the

slope of the asymptotics and that for the smaller value of a, the solution approaches
the asymptotics more slowly.

6. Sample application in two dimensions. This section presents a numerical
simulation of (3.1) in the two-dimensional setting of Figure 4. Consider the domain
Ω = [0, 1]×[0, 1]. When using N points per direction, denote xξ = ξ/N and yξ = ξ/N .
The construction of section 4 is generalized considering two staggered grids: the
integer grid is the set of points {(xi, yj)}Ni,j=0 carrying the values si,j of the SO2
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Fig. 11. Gypsum-carbonate front position in a sulfation problem: Numerical simulations (solid
lines) and predicted asymptotics (dashed line) in (b).

concentration field s(x, y) and the half-integer grid is the set {(xi+1/2, yj+1/2)}Ni,j=1

carrying the values ci+1/2,j+1/2 of the calcium carbonate concentration field. The
discretization of the elliptic operator is then generalized in the usual way to the
two-dimensional setting, and the new form of the fixed point problem (4.2) and its
Laplacian (4.4) are derived. The numerical scheme now requires, at each timestep,
the solution of a system of 2N2 nonlinear equations. Again using the Newton method,
at each iteration one needs to solve a sparse linear system with a matrix of dimension
2N2 × 2N2.

The Jacobian matrix has the same block structure described in the one-dimensional
case (see also Figure 5). Since it is not symmetric, GMRES is used as the main Krylov
solver with specialized structured preconditioners as in the one-dimensional case. The
main difference in fact is that now the Js

s block is a weighted two-dimensional Lapla-
cian plus diagonal corrections that are small (in the sense of order of h). The Jc

c block
remains diagonal with elements equal to 1+O(Δt), and the preconditioner (4.5) can
be applied. The off-diagonal blocks have more nonzero diagonals, but their elements
are still small and Theorem 4.1 can be generalized to the two-dimensional setting.

Here, only the best preconditioner among those evaluated in the one-dimensional
setting is employed, namely, the upper triangular part of the Jacobian matrix, where
only one V-cycle on the (s, s) block is performed. Figure 12 shows the effectiveness of
this preconditioning technique. On a 64×64 grid, unpreconditioned GMRES requires
an average of 15–20 iterations to solve the Jacobian linear system in each Newton step,
with frequent peaks of 24 iterations (blue crosses in the figure are the average values,
blue lines the minimum to maximum range). Moreover, the number of iterations is not
constant but depends on the timestep. On the contrary, the preconditioned method
always employs an average of twelve PGMRES iterations, with little variability both
within the timestep and across the different times (black circles and lines).

Figure 13 depicts the solution obtained for a = 103. Recall that the marble is in
contact with the polluted air at the bottom and left boundary (darker regions), while
at the top and right boundary free-flow conditions are considered. Both the color
code and the isolines refer to the carbonate concentration in the stone. An obvious
deformation of the CaCO3 field can be observed near the corner, clearly indicating
that SO2, penetrating from both sides, causes an enhanced loss of material: if the
gypsum crust were to fall off here, the sharp edge would be chipped off and the shape
of the stone would be permanently changed. This simulation, although performed
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Fig. 12. Number of GMRES iterations per Newton step: For each timestep the average, mini-
mum, and maximum number of linear iterations are shown. Without preconditioner: blue crosses.
With V-cycle preconditioner: black circles.
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Fig. 13. Simulation of marble sulfation in two dimensions.

at low resolution (64 × 64 grids) and with a moderate value of a, already indicates
the relevance of our project of developing accurate numerical simulators for realistic
geometries of the domain Ω in two and three dimensions.

7. Conclusions and future developments. The novel contributions of this
paper are the proposal of a fully implicit numerical method for dealing with nonlinear
PDEs of porous media type and its convergence analysis, and the study of optimal
preconditioning strategies for the inner linear systems. In fact, the nonlinear nature
of the underlying mathematical model requires the application (at each timestep) of
an iterative solver for a large nonlinear system. The classical Newton method can be
employed but, at every step, it requires the solution of a large, locally structured, linear
system that has been handled using specialized iterative or multi-iterative solvers. In
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particular, the spectral analysis of the relevant matrices has been crucial for identifying
appropriate preconditioned Krylov methods with efficient V-cycle preconditioners.
Numerical experiments for the validation of our analysis complement this contribution,
which is aimed at providing a noninvasive tool for a quantitative forecast of the damage
evolution in a given monument.

In particular, the application of the above-mentioned techniques to the numerical
approximation of a mathematical model describing the damage of marble monuments
by the sulfation process was considered. The use of our resulting fast integration
algorithms allows us to exploit the model and its predictive power for the strategy
known as planned conservation, that is, the novel approach that privileges the study
and prevention of the damages to delay and optimize the actual restoration works.
Both one- and two-dimensional numerical simulations were carried out using simple
domains.

For future work, two main directions appear naturally. The first extension is to
employ finite element methods for the space discretization in order to deal with more
realistic domains in two and three dimensions that can model a real architectural
item with a complicated geometry. The other natural extension of the numerical
treatment for the sulfation problem involves considering the 3-equations model in [1]
and/or a model for a remediation technique, such as the one in [7], which also includes
degenerate terms. As a long term goal, being able to simulate both the damage and
the remediation process with validated mathematical models and numerical methods
would allow us to perform numerical experiments of restoration works.
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