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Abstract

Dynamic Multimedia fate models (MFMs) have to deal with the temporal and spatial varia-

tion of physical-chemical properties, environmental scenarios and chemical emissions. In such

complex simulation tools, an analytical solution is not practically feasible and even a numer-

ical approach requires a suitable choice of the method in order to obtain satisfying speed and

reliability, particularly when certain combinations of modelling scenarios and chemical prop-

erties occur. In this paper, considering some examples of a wide range of realistic chemical

and scenario properties, some sources of stiffness in MFM equations are pinpointed. Next, a

comparison of the performances of several numerical schemes (chosen as representatives of

three wide classes) is performed. The accuracy and the computational effort required by each

method is evaluated, illustrating the general effectiveness of automatically adapted timesteps

in numerical algorithms and the pros and cons of implicit timestepping. The results show that

automatic error control methods can significantly improve the quality of the computed solu-

tions and most often lead to relevant savings in computing time. Additionally, explicit and

implicit methods are compared, indicating that an implicit method of medium order (around

5) is the best choice as a general purpose MFM computing engine.

∗To whom correspondence should be addressed
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Introduction

MFMs are nowadays standard tools to evaluate ecosystem exposure and to assess the indirect expo-

sure of humans. Most of the initial MFMs1,2 were based on the definition of well mixed standard

compartments, such as air, soil, water and sediment, and were simple steady state partitioning

models with a fixed environmental scenario.3–6 Many MFMs then evolved towards unsteady state

or dynamic systems,7 also used to study the behaviour of persistent organic pollutants at a global

level.8,9 The number of compartments also increased as the original four were often subdivided

into a number of boxes (e.g. layered soil compartments) in order to gain a more accurate descrip-

tion of chemical movement.10–13 Spatial variability of emissions and environmental scenarios was

later introduced and handled in a variety of ways, from site specific models, to GIS/spatially ex-

plicit approaches.14–16 More recently, a lot of effort was devoted to incorporating the influence

of environmental scenario and chemical changes in the models: 17 from seasonal changes, such as

vegetation cycles, to monthly/daily/hourly18 variations of compartment properties, meteorological

conditions, and physical-chemical properties.

Among MFMs, compartmental models are the most used in environmental fate studies and

are usually composed by boxes that exchange chemicals with each other and in which various

processes (partitioning, transformation, etc) occur.6 The focus of the present paper is on numerical

solution techniques suitable for MFMs representing real-world systems that can be simplified to

one spatial dimension (e.g. depth in soil, position along a river, etc).

In a MFM, the time evolution of the amount Yi(t) of a substance in the ith compartment at time

t is described by an Ordinary Differential Equation (ODE) that takes the environmental behaviour

of the substance and considering all the processes mentioned above. There is an ODE per compart-

ment and, as the equations are intertwined by the exchange/transport terms, they must be solved

as a system. This system is often too large or too complex in order to allow the computation of an

analytic solution and thus one resorts to numerical methods to compute an approximation. While

MFMs become more and more complex, the choice of a numerical method is crucial in order to ob-

tain a good approximation of the solution (with respect to its accuracy, absence of spurious drifts,
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oscillations, etc.) in a reasonable computational time.

More in details, the discrepancy between the computed result and the true value (accuracy)

can be split into two parts: the modelling error, that is to say the difference of the true value of a

variable from the exact solution of the ODE, and the numerical error, that is to say the difference

between the exact and the computed solution of the ODE. The modelling error is due, for example,

to the approximations of chemical and physical processes in the MFM, to the uncertainty in the

input data, etc., and it can be reduced only by changing the model or its parameters. However,

once these are fixed, the numerical error can be controlled by employing a numerical algorithm

that is suitable for the task at hand. Thus, for the purpose of this paper, the quality of the solution

is defined as the relative numerical error: a numerical method is better than another one if it can

compute a solution with comparable numerical error, using less computing time.

Any numerical method requires the selection of a timestep ∆t and computes the amounts Yi

at time tn+1 = tn + ∆t from the known amounts at time tn. An appropriate choice of ∆t is crucial

for the quality of the computed solution. Obviously, one has to take into account the stability

requirement of the methods (see TextSI-1 in the Supporting Information), but this is not sufficient

to guarantee the accuracy of the computed results: the latter is controlled by a combination of the

method (especially its order) and of the choice of timesteps.

The majority of numerical methods for ODEs can be conveniently subdivided according to the

following criteria:19–21

(a) choice of timestep length

- fixed timestep: it is chosen a-priori by the user

- automatic timesteps: an error tolerance is set by the user and the algorithm takes care

of choosing ∆t in order to meet the requirement

(b) time advancement, i.e. the computation of Y(tn+1) from the value Y(tn) at the previous

timestep

- explicit methods: it is achieved simply by evaluating some formula

3
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- implicit methods it requires the solution of a system of equations

(3) order, a positive integer number (see TextSI-1).

Automatic and implicit methods are more delicate and difficult to implement than fixed timestep

and explicit ones, but can have significant advantages: in (a) the reliability of the results deriving

from the embedded error control mechanism and in (b) the possibility of taking longer (even though

more computationally demanding) timesteps. Higher order methods are expected to give lower er-

rors at a given timestep length, but the evaluation of a numerical method should be performed from

a slightly different point of view. In fact, each step of a higher order method will cost more CPU

time than a step of a low order; thus, the computational efficiency of a method is a balance of the

cost of each step and the ∆t needed to ensure a fixed relative numerical error.

The difficulty encountered by numerical methods in approximating the solution of an ODE sys-

tem is related to the so-called stiffness of the ODE. In brief, an ODE is stiff if its solution changes

abruptly in a timescale which is much shorter than the time span of interest. 21 For an ODE sys-

tem describing the environmental fate of a chemical, stiffness may arise from all the processes

that imply rapid and large changes of the amount of chemical, which could be related to envi-

ronmental conditions (e.g. high winds, rapidly changing compartment volumes) and particularly

extreme physical-chemical properties (e.g. solubility). Degradation processes are also supposed

to cause stiffness, because a very degradable chemical could be lost in a few hours, requiring very

short time-steps to track accurately its rapidly varying concentrations. Unless a suitable numerical

method is employed, the numerical solution of a stiff system requires an unreasonable number of

very short timesteps, resulting in long computational times and enhancing the risk of “pollution”

of the results by floating point approximation errors.

Additionally, a careful choice and implementation of the numerical scheme becomes vital when

computing resources are put under stress, like for spatially explicit situations (e.g. GIS-based ap-

proaches) or when considerable time frames must be considered in a highly dynamic situation. The

aim of this paper is to provide a guidance for the choice of efficient and reliable numerical meth-

ods by enlightening the relationship between environmental/chemical facts and the performance of

4
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methods of different types, with regard to their ease of use, implementation, accuracy, robustness

and efficiency.

The example developed in the main article is a MFM with one spatial dimensions, while a

description of a solver for more general situation (e.g. more space dimensions) can be found in

TextSI-4.

Materials and methods

Mathematical description of MFMs A rather general mathematical description of a MFM with

N compartments is given by the system of linear ODEs

d
dt

Y(t) = M(t) ·Y(t) + s(t) (1)

where · denotes the matrix-vector product. The column vector Y collects the amounts (e.g. mol)

Yj(t) of chemical present in compartment j at time t. In the formula M represents an N×N matrix,

whose entries may change with time (e.g. hourly, in response to environmental parameters). Each

matrix entry Mi j is the transport rate (e.g. mol/h) from compartment j to compartment i, with

diagonal entries Mii representing loss terms from the ith compartment (e.g. degradation). For

example, in a soil compartment, there will be contributions to M due to biodegradation, advection,

runoff, infiltration, etc. The column vector s collects source terms (e.g. emission rates).

When the boxes of the MFM are ordered so that each box exchanges substances only with two

other ones (e.g. layers in air/soil, segments of a river) most Mi j will be zero and matrix M will take

the tridiagonal form

M =




−d1 u1 0 . . . . . .0

l2 −d2 u2 0 . . .0

0 . . . . . . . . .
...

0 . . . 0 lN −dN




. (2)
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Numerical methods for ODEs In this paper, as prototypes of the methods of the different kinds

mentioned in the Introduction, several methods of the Runge-Kutta (RK) class are tested (see

TextSI-1 for background information). However, the relative performance of an implicit versus an

explicit method or of a fixed versus automatic timestepping is largely maintained across the various

implementations and thus the results also represent a guide for the choice of a routine in one of the

publicly available libraries mentioned below.

The first method is the classic fourth-order Runge-Kutta method, 19,20 which is explicit and

uses a fixed timestep that has to be chosen at the beginning of the computation (see TextSI-2).

There is no straightforward way to make a good choice of the timestep length based only on the

chemical and environmental characteristics for a given simulation run, but formula (SI.4) in TextSI-

1 provides a safe choice computed from the coefficients of the matrix M. When this formula is used

to analyse the matrix M(t) and to select a timestep which is used for the whole computation, the

numerical method will be called RK4. When the timestep is changed at fixed intervals (e.g. every

hour, every day, every month) and estimated each time by applying the formula to this smaller time

span, the method will be named RK4a.

The other two methods employ the technique of automatic timestepping. These methods vary

the timestep during the computation of the solution in order, taking automatically into account

the variations in the model coefficients, like those arising from variations of internal transfer and

degradation processes as well as those depending on the variations of the advective fluxes that cross

the boundaries of the region described by the MFM. As a representative of explicit automatic meth-

ods, the Runge-Kutta of order five DOPRI5(4),19,20 introduced by Dormand and Prince, is used.

Finally, the implicit method of order five ESDIRK5(4),22 introduced by Kværno, was considered.

These algorithms choose a trial timestep length according to formula (SI.4) at the beginning of

each simulation hour and compute a final timestep together with an estimate of the approximation

error committed (see formulas (SI.8) and (SI.9) in TextSI-3). The computed values are accepted

only if the error is lower than a tolerance set by the user and rejected otherwise. In both cases

a better guess for the timestep is derived and either the rejected step is recomputed with the new

6
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(shorter) timestep length or the values are accepted and the next timestep is computed with the

new (possibly longer) timestep length. The most common way to choose the error tolerance is to

set a parameter, called RTol, to 10−q, where q is the number of leading significant digits that the

user wants to be correct in the computed values. For the timestep control mechanism to be reli-

able, q≥ 3 must be used; in the following numerical tests q = 6 was employed, corresponding to

numerical results correct within one part per million. A thorough description of the two methods

is given in TextSI-3 and TextSI-4.

For a MFM with N compartments, the computational cost of a single timestep of these methods

is approximatively 19N for RK4 and RK4a, 48N for DOPRI5(4) and 69N for ESDIRK5(4), as

detailed in the Supporting Information. The overall computational time listed in TableSI-1 is of

course the result of the balance between the cost of each step and the timestep length employed.

Implementation of the methods RK4 and ESDIRK5(4) are used in the most recent codes for

SoilPlus12 and AirFug,13 but for this paper all the methods were implemented in a C++ library, in

order to perform a fair comparison. Since the scenario properties in the tests are constant within

each hour but change from one hour to the next, loss and transport coefficients for each air and

soil box are computed by the MFM and the coefficients of the matrix M and the vector s are

saved to disk for each simulation hour. The coefficients are then loaded from disk, the numerical

solution is computed and the results of the simulations are saved, including statistics on the num-

ber of accepted, rejected and total timesteps employed, which allow the evaluation of the overall

performance of the methods.

In order to evaluate the errors of the computed solutions, an exact solution would be needed.

As this is not available analytically, following the tradition in the evaluation of numerical methods

for ODEs, the approximation calculated by the fixed timestep RK4 using 106 steps per hour was

regarded as being exact. This choice rules out errors coming from the automatic timestep selection.

The runs for the reference solutions took 2 hours each on an Intel Xeon running at 2.80 GHz. All

the other simulations and CPU times were recorded with an Intel Core2 running at 1.2 GHz and

7
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using binaries compiled with the same optimisation flags (-O2 in gcc).

The choice to employ methods of the Runge-Kutta type was guided by the ease of imple-

mentation of the automatic timestepping version: sample pseudo-codes are provided in TextSI-2,

TextSI-3 and TextSI-4. One should also be aware that many free libraries are available to compute

numerical solutions of an ODE system, for example the rather complete collection odepack 23

for linear multistep methods and the GSL library24 for Runge-Kutta methods. In this respect, it

can be observed that these routines are tailored for nonlinear ODEs and that, in order to achieve

high performances on linear equations like Eq. (1), they must be called with MY+s as the function

defining the ODE and specifying explicitly that M is the derivative function.

Eigenvalues and stiffness The eigenvalues of a N×N matrix are N scalar values associated to

the matrix and they can be used to characterise the matrix.25 Let maxE denote the largest absolute

value of these N numbers. The study of maxE for the tridiagonal matrix M will show the link

between the chemical/environmental properties and the behaviour of the different algorithms, thus

providing a guide to the choice of a reliable and time-efficient method for computing the solution

of Eq. (1).

In fact, in the presence of large values of maxE (which is controlled by the elements of the

matrix M and thus by the environmental scenario and chemical properties of the substance) or

large emission rates in s, explicit methods are usually forced to take very short timesteps due to the

very stringent stability requirement, while implicit ones are free to choose ∆t basing only on RTol

(see TextSI-1). Thus, the knowledge of the largest eigenvalue is needed in order to choose a stable

timestep length, or otherwise to predict what timesteps will be chosen by an automatic timestepping

procedure. On the one hand, the computation of the eigenvalues is a time consuming and delicate

task if N > 4. On the other hand, in order to compute a stable ∆t, only an approximation of maxE is

required. The maximum row-sum of the absolute values of the matrix entries (Λ in formula (SI.5))

estimates maxE from above and thus it can replace maxE in formula (SI.4) in order to get a stable

timestep length (see TextSI-1).

8
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Environmental model and test-case scenarios The numerical methods described above were

compared on a number of simulations performed using the SoilPlus model. 12 This is a site-specific,

dynamic model of the fate of organic chemicals, composed by two air compartments (named upper

air (UA) and lower air (LA)) and a variable number of litter and soil boxes. An illustration of the

MFM is provided in FigureSI-1.

The air compartments,13 are characterised by hourly changing heights and wind speeds. In the

simulations, realistic meteorological conditions of a semi-urban area nearby Milan (Italy) for the

period between May and August 2007 (2232 hours) were employed, in order to provide a reason-

able range of values for such environmental parameters: UA height (10–2270 m), LA height (10–

4000 m), UA wind speed (0.29–35 m/s), LA wind speed (0.26–26 m/s), rainfall (0–24 mm/day),

minimum (7.5–21 ◦C) and maximum (13.5–35 ◦C) daily temperature and global solar radiation

(3–29 MJ/day).

In order to distinguish between the numerical difficulties (stiffness) arising from the meteo-

rological scenario and those arising from the physical-chemical properties of the chemicals, all

simulations were performed in the scenario described above (named dynamic-air scenario), and in

a static one (named still-air scenario), which is identical to the previous one, except for UA and LA

heights (fixed at 500 m) and wind speed (constant at 0.1 m/s), corresponding to a rather immobile

air compartment.

In this work, a 0.3 m thick loamy soil, according to the USDA classification, 26 with an organic

carbon fraction in soil set to 0.02, is subdivided into 60 boxes, with two additional ones for the air

compartments. This results in an ODE system of the form of Eq. (1) with 62 ODEs and coefficients,

changing hourly but kept constant within each hour.

Several chemicals, characterised by different physical and chemical properties, and thus envi-

ronmental behaviour, were simulated in both scenarios. The selected chemicals are not intended to

be representative of the range of property variations, but rather to illustrate some specific real chem-

ical property features that may change the model response and induce stiffness. Their physical-

chemical properties are reported in Table 1. Dodine and benomyl, albeit present in ionised form,

9
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Table 1: Properties of the simulated chemicals at 25 ◦C.27–29

Chemical MW log Kow log Kaw logKoa HLair HLsoil
(gmol−1) (days) (days)

PHE phenantrene 178.2 4.57 -2.88 7.45 2 230
CHR chrysene 228.3 5.86 -4.58 10.44 7 710
COR coronene 300.4 6.75 -6.76 13.51 7 2300
HCB hexachlorobenzene 284.8 5.5 -1.28 6.78 710 2300
CB chlorobenzene 112.6 2.8 1.18 1.62 7 230
DCM dichloromethane 89.94 1.25 -1.15 2.40 81 230
MET metolachlor 283.8 3.13 -6.04 9.17 7 23
BEN benomyl 290.6 2.3 -9.11 11.41 0.21 71
DOD dodine 287.4 1.25 -9.00 10.25 7 13.25

were considered as non-ionic chemicals, characterised by the properties listed in Table 1. The

chemicals can be grouped as follows:30

(a) scarcely intermedia mobile hydrophobic chemicals, with relatively high octanol-water parti-

tion coefficient (logKow > 4) and air-water partition coefficients (logKaw) ranging between

−6.76 and −2.88: phenanthrene (PHE), chrysene (CHR) and coronene (COR).

(b) multimedia semivolatile chemicals, with logKaw between −1.28 and 1.18 and logKow be-

tween 1.25 and 5.5: hexachlorobenzene (HCB), dichloromethane (DCM), chlorobenzene

(CB). These chemicals, given their range of properties, show a relative volatility.

(c) multimedia soluble chemicals, with logKaw comprised between−9.00 and−6.00 and logKow

in the 1.25−−3.13 range: metolachlor (MET), benomyl (BEN) and dodine (DOD). Such

chemicals, given the range of their partition coefficients, are relatively involatile and tend to

partition, to a large extent, to the water phase.

(d) half-life driven chemicals: in order to evaluate the stiffness introduced by biodegradation,

MET was simulated using decreasing half-lives, progressively reducing the reference value

provided in Table 1 (23 days) by one order of magnitude at a time (2.3, 0.2, 0.02 days).

The chemicals were homogeneously applied in the first 10 soil boxes (total application depth

of 0.05 m) during the first hour of each simulation performed, with an application rate of 1 kg/ha.

10
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However, series (a) chemicals, given their very scarce intermedia transfer, resulted in simulations

where no rapid changes of the mass balance of the substance in the compartments were observed:

this produced no appreciable differences in the performance of the numerical methods. On the

other hand, when these chemicals were applied to air, significant and rapid transport processes

towards the soil compartments (due to deposition) are shown; this, in turn, magnifies the different

behaviour of the MFM with respect to the numerical integration. Therefore the results reported for

series (a) refer to the application of chemicals in LA with a constant emission of 0.001 mol/h.

Results and discussion

Figure 1: 40 days of a still-air MET simulation. Application days are marked on the bottom time
line. Top: MET content (mol) in the first soil layer (arrows indicate rainy days). Middle: maximum
eigenvalue. Bottom: timestep used by DOPRI54 (hour).

Environmental unsteadiness and automatic time stepping Figure 1 illustrates the relation be-

tween environmental events, eigenvalues and timesteps. In the simulation shown, performed in the

still air scenario, an herbicide (MET) was applied twice (day 3 and 14) in the top 5 cm of soil (first

10 soil boxes in SoilPlus). For the sake of clarity, only the content of the first and the eleventh

soil boxes is shown in Figure 1a. Rainy days cause a decrease in the MET amount in the first

soil box due to leaching (arrows in Figure 1a). Mathematically, this shows up with maxE being

2-3 times higher than in dry days (Figure 1b). Correspondingly, during these events, the explicit

method DOPRI5(4) had to take shorter timesteps for the whole day (Figure 1c). Analogously,
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shorter timesteps were used during the application hours. It is also clear that short timesteps are

needed at the beginning of each simulation day, in response to the updated coefficients. Obviously,

a fixed timestep algorithm would have needed short timesteps for all the simulation, increasing the

computational cost.
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Figure 2: Correlation between maxE and number of steps per hour employed by RK4a and the two
automatic algorithms. (Data from MET and DOD, still-air and dynamic-air scenarios)

Figure 2 is the scatter-plot of maxE and the number of timesteps taken by RK4a and the two

automatic algorithms in the 2232 hours for four representative simulations. The linear relationship

between maxE and the timesteps for the two explicit schemes is evident: up to 105 steps per hour

are required, when maxE is of the same order of magnitude. On the other hand, ESDIRK5(4) never

needed more than 100 steps per hour. This is due to the fact that ESDIRK5(4), being implicit, is

not subject to the stability requirement and can take longer timesteps even when maxE is very high

(see TextSI-1 and TextSI-4).

Eigenvalues dependence on environmental and physical-chemical properties Environmental

properties may rule maxE in some circumstances. For example, when volatility and solubility

are not extreme (e.g. unusually involatile or insoluble chemicals), maxE is mainly controlled by

rain in the still-air scenario and by wind speed in the dynamic-air scenario. This is evident from

Figures 3a–c, where the scatter plot of maxE in the MET simulations versus the hourly rainfall

and the average of the UA and LA wind speed is shown. However, for highly volatile or soluble
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Figure 3: Correlation between rain rate, wind speed and maxE. a) MET in the still-air scenario.
b,c) MET in the dynamic-air scenario. d,e) DOD in the dynamic-air scenario, with logarithmic
scale on the vertical axis. f) A comparison of 3 chemicals (DOD values above the horizontal line
in (b) are out of scale and not shown).
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chemicals, this simple relationship is lost. For example, Figures 3d,e show the scatter plots of

maxE versus the hourly rainfall and the average wind speed in the case of DOD. Figure 3d shows

that increasing rainfall sharply enlarges maxE, even if there is not a strict correlation between maxE

and rainfall (note the different vertical scale with respect to Figure 3b). The variability in maxE

that is not explained by the rainfall amount could in principle be explained by the wind speed.

However, Figure 3e clearly depicts that wind speed determines a minimum value for maxE without

being able to explain all its variance. Such variability in maxE is not even explained by some

linear combination of the two controlling variables: in fact, a multivariate linear regression fit (not

shown) has an R2 value of only 0.2, evidencing no correlation of maxE with rainfall and wind

speed. Finally, Figure 3f shows that the lower bound on maxE determined by the wind speed is

linear and largely independent on the molecule, whereas the upper limit of maxE strongly depends

on the chemical under consideration.

This is a very strong indication that simulation efficiency can be greatly improved by using

algorithms that are capable to automatically choose the timestep and adapt it during the simulation,

since a good value of the timestep h cannot be easily predicted a priori by examining the properties

of the chemicals and of the modelled environment.
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Figure 4: Box-plot of the maximum eigenvalue occurring during the 2232 hours of various sim-
ulations (whiskers indicate 3/2 of the interquartile range and the crosses represent outliers). (a):
increasing volatility (b): increasing solubility. (Note the different vertical scale)

14

Page 14 of 22

ACS Paragon Plus Environment

Environmental Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The effect of the chemical properties on maxE (and consequently on the number of timesteps

per hour) was further examined by analysing the distribution of maxE during the 2232 simulation.

In particular, one can observe that stiffness increases with very high or very low volatility and

solubility, whereas logKow and the half-lives have a comparably smaller effect (complete results

may be found in TableSI-1).

Figure 4 shows the box-plots of maxE occurring during each simulation. Increasing volatility

in the still-air scenario causes an increase in the median of the maximum eigenvalue (4a): when

logKaw changes from−1.28 to 1.18, the median of maxE is increased by two orders of magnitude.

Introducing a realistic wind greatly increases the eigenvalues, but reduces the above mentioned

difference among the chemicals: this shows that wind is the dominant source of stiffness.

On the other hand, the increase of solubility (from MET to DOD) in the still-air scenario does

not affect the median of maxE, but produces a wider distribution with very large outliers (4b), with

maxE becoming as large as in the dynamic scenario for other series. This makes the employment

of a fixed timestep method very unfeasible, whereas an automatic one is at its best.

When the dynamic-air scenario is considered, both median and outliers of the maxE distribution

move up by a factor of 102, so that the spread of maxE in a simulation may now reach 4 orders

of magnitude, with the higher values reaching 105. In these extreme cases, only an automatic

algorithm based on an implicit method, like ESDIRK5(4), can perform the job of computing the

solution efficiently.

CPU times, error and performance comparison In order to evaluate the numerical methods,

their relative performance in terms of computational times and errors has to be taken into account.

On the one hand, each timestep of an higher order method will require more CPU time than a

step of a low order method; on the other hand, an higher order method can usually guarantee

the same tolerance taking longer steps. Similarly, each timestep of an implicit method is more

computationally demanding than an explicit one; this is counterbalanced by the fact that implicit

methods can guarantee the same precision with longer timesteps and thus less steps are taken to
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complete the simulation. TableSI-1 collects the data on the performance of the algorithms on all

the scenarios considered and the simulations performed.

The RK4a tests show that some degree of adaptivity in the timestep choice helps in lowering

the computing time. However, setting a criterion for the choice of ∆t based only on stability yields

unpredictable results in terms of the relative error of the computed solution. For example, errors up

to 10−2 in the nonstiff cases of CHR and COR in the still-air scenario were produced. Moreover,

unexpected variability of the relative error (10−3–10−7) was observed for series (b) chemicals

in the dynamic scenario. DOPRI5(4) and ESDIRK5(4) automatically choose the length of each

timestep in order to satisfy a desired (set by the user) relative tolerance. RTol was set to 10−6,

which ensures that the numerical errors are at least 4–5 orders of magnitude smaller than those

deriving from parameter uncertainties. All simulations reveal a relative error lower than 10−8

(see TableSI-2). The little computational overhead introduced by the adaption algorithm is well

compensated by the reliability of the computed solution.

In evaluating the data on the number of steps, it has to be kept in mind that each simulation

hour has a different matrix M and thus, no method can employ less than 2232 steps. The fastest

CPU times of the implicit method reflect the lack of stability requirement: the algorithm is free

to choose ∆t based on RTol only. For example, in the case of PHE in still air, both methods

use roughly 2 steps per hour to compute a numerical solution within tolerance while the explicit

method is slightly faster, since its cost per timestep is lower. In dynamic air, the MFM system is

much stiffer and stability forces DOPRI5(4) to take 105 steps, but ESDIRK5(4) can reach RTol

using just one fifth of steps, being therefore much faster. Additionally, ESDIRK5(4) saves CPU

time thanks to the very low ratio of rejected steps, since almost all of the CPU time is employed

in computing accepted steps. No rejections due to negative values in the solution were observed,

showing the robustness of the method. As a result, time savings can be striking: DOD in the

dynamic-air scenario is simulated in 32 seconds by DOPRI5(4) and in 1.7 seconds by ESDIRK5(4)

(see TableSI-1 for details).

16

Page 16 of 22

ACS Paragon Plus Environment

Environmental Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Selection of methods for MFM applications A good method for general purpose MFM inte-

gration should yield results with predictable errors and in a reasonably short computational time,

so that the modeller can concentrate on the MFM code, without worrying about the numerical

part. Additionally, CPU time savings can become crucial for longer simulations or when spatially

explicit models, such as those requiring a large discretization of an environmental scenario, are

employed. Based on the framework shown, the following guidance can be provided

order The most convenient order for a numerical method is around 4 or 5. In fact lower order

methods need too many timesteps to achieve the required accuracy and higher order ones

usually cannot deploy their potential due to the non-smoothness of the solution. TableSI-2

contains a comparison with methods of order 2 and 8.

automatic timestep choice This is highly recommended, since it frees the modeller from having

to worry about stability issues and the need to estimate the degree of stiffness of the MFM’s

equation. Given the degree of uncertainty of many input properties (physical and chemical

properties, compartment composition, etc) the value suggested for RTol is 10−6. This a

reasonable choice to ensure that the errors introduced in the results by the numerical integra-

tion procedure are orders of magnitude smaller than those caused by the uncertainty in the

parameters.

implicit methods They are a very convenient choice, since their extra cost is mitigated by the lin-

earity of the ODE to be solved and they can achieve high accuracy while take comparatively

long timesteps, even when rapid changes of the MFM variables occur in short times. In most

of the tests, the implicit method outperformed the explicit ones. They are thus suggested for

a general purpose MFM integrator. Only for low stiffness MFMs can explicit methods be

considered.

implementation To the best of our knowledge, all ready-made implementations of implicit meth-

ods for ODEs assume that the ODE is non-linear. An ad-hoc implementation that takes into

account the linearity of the MFM equation can lead to extra time saving.
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Finally, it can be pointed out that, by examining a graph of the timestep length used by an ex-

plicit automatic algorithm during the simulation, the troublesome events for the numerical methods

can be unveiled. As an example, these peculiarly short timesteps reveal when extreme changes in

the value of a variable are present, which can be due to the normal variation of an environmen-

tal condition (e.g. a sudden rise or fall in temperature, high wind speeds or heavy rainfall as in

Figure 1) or the wrong compilation of the environmental dataset (such as merging datasets of an

environmental variable deriving by two non intercalibrated instruments).
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