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Numerical entropy and adaptivity for finite volume

schemes

G. Puppo1,∗and M. Semplice2

1 Dipartimento di Matematica, Politecnico di Torino, corso Duca degli Abruzzi 24,
10129 Torino, Italia
2 Dipartimento di Fisica e Matematica, Università dell’Insubria, Via Valleggio 11,
22100 Como, Italia

Abstract. We propose an a-posteriori error/smoothness indicator for standard semi-
discrete finite volume schemes for systems of conservation laws, based on the numer-
ical production of entropy. This idea extends previous work by the first author limited
to central finite volume schemes on staggered grids. We prove that the indicator con-
verges to zero with the same rate of the error of the underlying numerical scheme on
smooth flows under grid refinement. We construct and test an adaptive scheme for
systems of equations in which the mesh is driven by the entropy indicator. The adap-
tive scheme uses a single nonuniform grid with a variable timestep. We show how
to implement a second order scheme on such a space-time non uniform grid, preserv-
ing accuracy and conservation properties. We also give an example of a p-adaptive
strategy.

AMS subject classifications: 65M08, 65M50, 76M12.
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1 Introduction

The a-posteriori error indicator proposed in this paper can be constructed for multidi-
mensional systems of conservation laws. However, for simplicity, in the following we
will mainly consider one-dimensional hyperbolic systems of equations of the form:

ut+ fx(u)=0. (1.1)

Here u(t,x) is a function from R
+×R→R

m, where m is the number of equations of the
system, f is the flux function, and we assume that f is a smooth function from R

m→R
m.

We suppose that the system is strictly hyperbolic, i.e. that the Jacobian A(u)= J( f ) has m
real eigenvalues and a complete set of corresponding eigenvectors.

∗Corresponding author. Email addresses: gabriella.puppo@polito.it(G. Puppo),
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It is well known that solutions of initial value problems for (1.1) may loose their regu-
larity in a finite time even if the initial data are smooth, developing shock waves. In this
case, the solution must be understood in the weak sense, and uniqueness of the solution
is lost. In order to retrieve uniqueness, the system must be completed with an entropy
inequality, characterizing the unique admissible weak solutions of (1.1). Thus, we will
consider systems of the form (1.1) possessing an entropy-entropy flux pair, that is we
assume there exist a convex function η(u) and a corresponding entropy flux ψ(u) verify-
ing the compatibility condition ∇TηA(u)=∇Tψ [8]. Then it is well known that entropy
solutions of (1.1) must satisfy the entropy inequality

ηt+ψx(u)≤0 (1.2)

in the weak sense for all entropies.
Numerical integration of (1.1) is challenging because the solution can exhibit a very

complex structure: discontinuities may arise and disappear through the interaction with
other waves present in the flow. For these reasons, several attempts to the construction
of adaptive grids have appeared in the literature. Adaptive grids seek to achieve a good
resolution in regions where the flow varies rapidly, and an effective error control where
the flow does not have a complex structure, and high resolution is not needed.

High resolution can be obtained using a fine grid, and/or using a high order scheme.
In the first case, the CPU time increases rapidly, because the CFL stability condition im-
poses an upper bound on the grid ratio λ=∆t/h, where ∆t is the time step and h is the
grid spacing, so that a fine grid requires a small time step. In the second case, the presence
of discontinuities may result in non-linear instabilities in a high order numerical solution,
so that the scheme itself must become non linear to prevent the onset of spurious oscil-
lations. There is a huge literature on non-oscillatory high order schemes for hyperbolic
problems. Here we just mention the reference [18] expecially for second order schemes,
and [28] for higher order schemes. As the order increases, these schemes become more
costly, not only because their structure and the mechanisms designed to prevent an oscil-
latory behavior become more complex, but also because usually they seek non oscillatory
stencils to compute the solution, and this requires the use of characteristic variables to
prevent the selection of stencils containing wave interactions, see [27].

Finally, finite volume schemes usually give a good resolution of shocks even on coarse
grids, because the smearing effect of numerical viscosity is counterbalanced by the steep-
ening mechanism of converging characteristics. This does not occur on contact disconti-
nuities, along which the characteristic fields are parallel, and only numerical diffusion is
active [11].

Thus an effective adaptive algorithm must be driven by an indicator which should be
able not only to provide a robust a posteriori measure of the local error, but should also
recognize the qualitative structure of the flow, to pivot both grid and scheme adaptivity.

Error control and grid adaptivity have been particularly successful in the framework
of Finite Element Methods for elliptic or convection-diffusion problems. Here we are
particularly interested in error control through a posteriori error estimates based on a
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measure of the local residual, as in [33]. Since in hyperbolic problems, the solution exists
only in the weak sense, the residual can be estimated weakly, as in [14]. There the residual
is estimated integrating the equations against compactly supported test functions. For
high order schemes, the smoothness of the test functions must be increased, and their
support therefore widens. This of course interferes with the localization of the indicator,
which provides information on a cluster of cells whose size depends on the support of
the test function, both in space and in time. See also [15].

In another approach, the error indicator is computed estimating the weak residual of
the entropy inequality, as in [16] for first order upwind schemes applied to scalar conser-
vation laws, and generalized in [5] to higher order Discontinuos Galerkin schemes, still
in the case of scalar conservation laws, for which Kruzkov entropies can be defined.

Another interesting approach to grid adaptivity is based on the solution of an adjoint
problem, depending on a functional whose purpose is the minimization of the error not
in the whole computational region, but on a certain quantity of interest, as, for instance,
the lift of an airfoil, see [13] or the monograph [7].

We also mention an approach to adaptivity based on multiresolution techniques, fol-
lowing the pioneering work by Harten, [12], and later applied by [2] and [22].

In this work, we are interested in finite volume schemes. In this case, system (1.1) and
the entropy inequality (1.2) are integrated on control volumes Vn

j = Ij×[tn,tn+1], where

Ij =[xj−hj/2,xj+hj/2] is the interval of width hj centered around the grid point xj, and

tn = tn−1+∆tn. For the time being, we will suppose that hj and ∆tn are constants, so that
xj+1−xj =hj ≡h and ∆tn ≡∆t. Let:

un
j =

1

h

∫

Ij

u(x,tn)dx

be the cell average of the function u around the point xj at the time tn. Integrating (1.1) on
the control volume Vn

j we find the finite volume formulation for the hyperbolic system:

un+1
j =un

j −
1

h

∫ tn+1

tn
[ f (u(I+j ,τ))− f (u(I−j ,τ))]dτ, (1.3)

where I+j and I−j denote respectively the right and left end points of the interval Ij. Note

that this equation is still exact. Integrating the entropy inequality (1.2) on the same control
volume, we find the finite volume formulation of the entropy inequality, namely:

ηn+1
j −ηn

j +
1

h

∫ tn+1

tn
[ψ(u(I+j ,τ))−ψ(u(I−j ,τ))]dτ≤0. (1.4)

If the solution is smooth, it is well known that both (1.3) and (1.4) are equalities. On the
other hand, if the solution has a singularity, than (1.3) is still satisfied, while the sign of
(1.4) selects the unique physically relevant weak solution of (1.1).
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We now consider a finite volume scheme for (1.1). Let U(t,x) be the numerical solu-
tion and denote with U

n
j its cell average on the interval Ij at time tn. The finite volume

scheme can be written as

U
n+1
j =U

n
j −λ

(
Fj+1/2−Fj−1/2

)
, (1.5)

where Fj+1/2 is a suitable numerical flux consistent with the exact flux f (u) and λ=∆t/h
is the mesh ratio. Following [26], we define the numerical entropy production

Sn
j =

1

∆t

(
η(Un+1)j−η(Un)j+λ[Ψj+1/2−Ψj−1/2]

)
, (1.6)

where Ψj+1/2 is a numerical entropy flux. In the following, we will see that, if Ψj+1/2 is
consistent with the exact entropy flux ψ(u), then Sn

j converges to zero with the same rate

of the local truncation error, in regions of smoothness. On the other hand, if a shock oc-
curs in the control volume Vn

j , then the local entropy production Sn
j is bounded by terms

of order O( 1
∆t ). For these reasons, the quantity Sn

j can be considered as an a posteriori

error indicator for the numerical solution obtained in (1.5). In fact, it contains informa-
tion on the size of the local truncation error, and it signals the presence of singularities.
A local measure of the entropy production is also used in [10] to add artificial dissipa-
tion to numerical schemes for conservation laws only in those cells where the entropy
dissipation is large.

Moreover, we will prove that, if the numerical entropy flux is properly chosen, the
entropy production built on first order monotone schemes is essentially negative defi-
nite, in the sense that positive overshoots in the cell entropy inequality are possible, but
only on non monotone data and their amplitude decreases fast under grid refinement for
smooth flows.

We propose a 1D adaptive algorithm based on a single non-uniform mesh, unlike
the multiple overlayed grids that characterize the AMR implementation of CLAWPACK,
[1, 19]. Our algorithm makes use of dyadic grids in space, which are stored in a binary
tree structure. The storage is similar to the one of [22], although we work in physical
space, while they use the space of wavelet coefficients. For the time integration we con-
sider first a uniform time step algorithm, in which ∆t is thus dictated by the smallest
cell in the grid, as in [5]. This is very simple, but can be extremely penalizing on highly
nonuniform grids. Thus we also consider a nonuniform timestep algorithm, where each
cell has a fixed CFL number. This requires a local timestepping strategy, which is not
yet a standard procedure. Unlike the approach followed in CLAWPACK, we start the
update process from the finest grid, using the smallest time step, and then we iterate up
to the coarsest level. In this fashion, the scheme always uses the most accurate informa-
tion available. Our method tries to overcome the problems of previous algorithms at the
interfaces between cells of different sizes: [24] suffers from lack of accuracy and it’s not
straighforward to extend to higher oder time discretizations, while [32] is not exactly con-
servative at such interfaces. Our approach also allows for more precise time advancing
than the one in [4].
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The structure of the paper is as follows. We will work on semidiscrete schemes, based
mainly on [28] for the high order case and [17] for a second order scheme, although our
framework can be generalized also to other finite volume schemes, such as Discontinu-
ous Galerkin, [3]. We start defining the numerical entropy production for semidiscrete
schemes in §2; we prove the estimated rate of convergence and the sign of the entropy
production in §3. Next we illustrate the properties of the indicator on a few test prob-
lems in §4. Finally we describe the adaptive algorithm in §5. Here we consider scheme
adaptivity first, and next we build the 1D grid adaptivity algorithm.

2 Semidiscrete Runge-Kutta schemes

From now on, consider a pth order semidiscrete numerical scheme with a Runge-Kutta
time advancement. Such a scheme for the conservation law (1.1) can be written in the
form

U
(i)
j =U

n
j −λ

i−1

∑
k=1

aki

(
F
(k)
j+1/2−F

(k)
j−1/2

)

U
n+1
j =U

n
j −λ

ν

∑
i=1

bi

(
F
(i)
j+1/2−F

(i)
j−1/2

) (2.1)

and it is built up from a Runge-Kutta method with Butcher’s tableaux (a,b) and a suit-
able choice of numerical flux F(U−,U+) consistent with the exact flux f appearing in
(1.1), while U±

j+1/2 are the boundary extrapolated data computed from the cell aver-

ages through an rth order nonoscillatory reconstruction. As usual we denote F
(i)
j+1/2 =

F
(

U
(i),−
j+1/2,U

(i),+
j+1/2

)
the numerical flux evaluated at the ith stage of the Runge-Kutta scheme.

Definition 2.1. The numerical entropy production in the control volume Vn
j =[xj−1/2,xj+1/2]×

[tn,tn+1] is

Sn
j =

1

∆t

{
Q
(

η(Un+1)
)

j
−Q(η(Un))j+λ

ν

∑
i=1

bi

(
Ψ

(i)
j+1/2−Ψ

(i)
j−1/2

)}
(2.2)

where Ψ
(i)
j+1/2=Ψ

(
U

(i),−
j+1/2,U

(i),+
j+1/2

)
is a numerical entropy flux Ψ(U−,U+) consistent with

the exact entropy flux ψ appearing in (1.2). In the formula, Q()j denotes a qth order
accurate quadrature rule applied on the interval Ij which uses L quadrature nodes xl;j

and weights wl , namely

Q( f )j =
1

h

(
h

L

∑
l=1

wl f (xl;j)

)
= f j+Cqhq f (q)(xj)+O(hq+1).
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Remark 2.1. We point out that the computation of Sn
j makes use of the same reconstruc-

tions that one must compute in order to advance the solution from U
n
j to U

n+1
j , so it does

not involve a heavy computational overhead.

3 Properties

In this section we study the rate of convergence and the sign property for the entropy
production, as defined in the previous section. The rate of convergence is proved for a
general pth order numerical scheme on smooth flows. The sign property is studied for
a first order scheme, based on the Lax-Friedrichs flux splitting. A similar result can be
proven, with the same technique, for the first order upwind scheme, when the propaga-
tion speed does not change sign. The estimate becomes harder for the general Godunov
scheme using the entropy fix.

3.1 Rate of convergence

Proposition 3.1. Consider a pth order convergent scheme of the form (2.1) and define the entropy
production as in (1.6) with a consistent numerical entropy flux. Assume ∆t=λh, where λ is the
mesh ratio. Then if the solution is regular, the numerical entropy production in a fixed time step
decays as O(∆tp) for ∆t→0. In those cells in which the solution is not regular, Sj ≤C/∆t for a
constant C which does not depend on ∆t.

Proof. Let u(t,x) and U(t,x) be the exact and the numerical solution of the conservation
law. Assume that at time tn the cell averages of the exact and the numerical solution
coincide (localization assumption).

The cell averages of the entropy must be computed through quadrature; let xl and
wl be the nodes and weights of the quadrature formula of order q, which must match
the accuracy of the underlying scheme. Then Q(η(Un))j =∑

L
l=1 wlη

(
Un(xl;j)

)
. Dropping

the subscript j, the values Un(xl) in the quadrature nodes are computed from the the rth

order reconstruction R needed for the boundary extrapolated data, so that on smooth
solutions we have

Un(xl)=R
(

U
n
;xl

)
=R(un;xl)=un(xl)+O(hr+1)

Analogously Q
(
η(Un+1)

)
j
=∑

L
l=1 wlη

(
Un+1(xl)

)
where

Un+1(xl)=R
(

U
n+1

;xl

)
=R

(
un+1;xl

)
+O(∆tp+1)

=un+1(xl)+O(hr+1)+O(∆tp+1)
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The time contribution is

Q
(

η(Un+1)
)

j
−Q(η(Un))j =Q

(
η(un+1)

)
j
−Q(η(un))j

+
L

∑
l=1

wl

[
η′(un+1(xl))−η′(un(xl))

]
O(hr+1)+

L

∑
l=1

wlη
′(un+1(xl))O(∆tp+1) (3.1)

We note that η′(un+1(xl))−η′(un(xl))=O(∆t) due to the smoothness of the exact solution.
Further we apply the estimate for the quadrature formula

Q
(

η(Un+1)
)

j
−Q(η(Un))j =

1

h

∫

Vn
j

∂tη(u)dtdx−Cqhq
(

η(q)(un+1
j )−η(q)(un

j )
)
+O(∆thr+1)+O(∆tp+1)

=
1

h

∫

Vn
j

∂tη(u)dtdx+∆tO(hq+hr+1+∆tp) (3.2)

Write the space part as

λ
ν

∑
i=1

bi

(
Ψ

(i)
j+1/2−Ψ

(i)
j−1/2

)
=λ

ν

∑
i=1

bi∆jΨ
(i)

Using the consistency of the numerical entropy flux with the exact entropy flux the dif-
ference of the entropy fluxes can be written as

∆jΨ
(i)=Ψ(U

(i),+
j+1/2,U

(i),−
j+1/2)−Ψ(U

(i),+
j−1/2,U

(i),−
j−1/2)

=ψ(U
(i)
j+1/2)−ψ(U

(i)
j−1/2)+

[
∇uΨ

(
U(i),+−U(i)

U(i),−−U(i)

)]

j+1/2

−

[
∇uΨ

(
U(i),+−U(i)

U(i),−−U(i)

)]

j−1/2

where U(i) is an intermediate value between U(i),+ and U(i),−. Using the smoothness of
the numerical entropy flux Ψ, the accuracy of the intermediate values U(i),± which relies
on the accuracy of the underlying numerical scheme, we find that

∆jΨ
(i)=

∫

∆x
∂xψ(U(i))dx+O(hr+1)

Finally applying the time accuracy of the Runge-Kutta quadrature,

λ
ν

∑
i=1

bi

(
Ψ

(i)
j+1/2−Ψ

(i)
j−1/2

)
=

1

h

[∫

Vj

∂xψdtdx+O(h∆tp+1)

]
+λO(hr+1) (3.3)

Summing up the time and space contributions (3.2) and (3.3), we get

Sn
j =

1

∆t

{
1

h

∫

Vn
j

(∂tη(u)+∂xψ(u))dtdx+∆tO(∆tp+hr+1+hq)

}
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If the reconstruction is computed with accuracy r+1≥p and the quadrature has q≥p, we
find that Sn

j =O(∆tp) for smooth solutions.

Note that in the proof, the accuracy of the underlying numerical scheme was used to
assign to each stage value of the boundary extrapolated data the required accuracy.

Finally, for the second part of the proposition, it is sufficient to note that every term
in equation (1.6) is at least bounded, so

∣∣Sj

∣∣≤C/∆t, where C depends on the mesh ratio
λ. For λ fixed, we have that Sn

j is bounded by O(1/h) terms.

Remark 3.1. In the proposition we have supposed that the underlying scheme is con-
vergent, thus the argument of the proof can be repeated at each time step. The local-
ization assumption ensures that the numerical entropy production measures the error
introduced in each single time step.

Remark 3.2. For schemes up to second order, one may simply consider the midpoint
quadrature rule and replace

Q(η(U))j ≡η(U j)=η(U)j+O(h2)

in the Definition 2.1.

3.2 Sign of the numerical entropy production

In this section, we will prove that the numerical entropy production built on the Lax
Friedrichs scheme is negative definite on monotone profiles, provided that the numerical
entropy flux is properly chosen. We can also prove that it is essentially negative definite
on smooth flows in the presence of local extrema, meaning that Sn

j ≤C∆tq, for some q≥ p.

Thus local positive overshoots in the numerical entropy production are possible but their
amplitude decreases at least as ∆tp.

In this section we consider the scalar case. For the Lax Friedrichs scheme, the numer-
ical flux is :

Fn
j+1/2=F(Un

j+1,Un
j )=

1

2

[
f (Un

j+1)+ f (Un
j )−α

(
Un

j+1−Un
j

)]
. (3.4)

The coefficient α is the coefficient of artificial diffusion, chosen at each timestep so that it
satisfies |a(Un

j )|≤α≤ 1
λ , ∀j, where a(Un

j )= f ′(Un
j ).

Proposition 3.2. Consider the first order Lax Friedrichs scheme, with the numerical flux (3.4).
Define the numerical entropy flux as:

Ψn
j+1/2=Ψ(Un

j+1,Un
j )=

1

2

[
ψ(Un

j+1)+ψ(Un
j )−α

(
η(Un

j+1)−η(Un
j )
)]

. (3.5)

Suppose the sequence of grid points (Un
j−1,Un

j ,Un
j+1) is monotone. Then the numerical en-

tropy production (2.2), with the numerical entropy flux (3.5), is negative definite.
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Proof. Since the reconstruction for the Lax Friedrichs scheme is piecewise constant, the
numerical entropy production can be written as:

(∆t)Sn
j =η(Un+1

j )−η(Un
j )+λ[Ψn

j+1/2−Ψn
j−1/2] .

Consider first the space part:

∆Ψn
j =λ[Ψn

j+1/2−Ψn
j−1/2]

=
λ

2

{∫ Un
j+1

Un
j

[
ψ′(u)−αη′(u)

]
du+

∫ Un
j

Un
j−1

[
ψ′(u)+αη′(u)

]
du

}

=
λ

2

{∫ Un
j+1

Un
j

η′(u)[a(u)−α]du+
∫ Un

j

Un
j−1

η′(u)[a(u)+α]du

}

where we have used the compatibility condition ψ′(u) = η′(u)a(u). Now consider the
time part:

∆T n
j =η(Un+1

j )−η(Un
j )=

∫ Un+1
j

Un
j

η′(v)dv

=
∫ U∗

j

Un
j

η′(v)dv+
∫ Un+1

j

U∗
j

η′(v)dv

where U∗
j =Un

j −
λ
2 [ f n

j+1− f n
j −α(Un

j+1−Un
j )], so that Un+1

j =U∗
j −

λ
2 [ f n

j − f n
j−1+α(Un

j −Un
j−1)].

In the first integral, we change variables choosing v1(u)=Un
j −

λ
2 [ f (u)− f n

j −α(u−Un
j )].

In the second integral, we set v2(u) = U∗
j −

λ
2 [ f n

j − f (u)+α(Un
j −u)]. The time integral

becomes:

∆T n
j =

λ

2

{∫ Un
j+1

Un
j

η′(v1)(α−a(u))du+
∫ Un

j−1

Un
j

η′(v2)(α+a(u))du

}

We can now drop the time dependence. Summing up the space and time contributions,
we find:

∆tSj =∆Tj+∆Ψj =
λ

2

{∫ Uj+1

Uj

[
η′(v1(u))−η′(u)

]
(α−a(u))du

+
∫ Uj

Uj−1

[
η′(u)−η′(v2(u))

]
(α+a(u))du

}

=
λ

2

{∫ Uj+1

Uj

[v1(u)−u]η′′(ξ1)(α−a(u))du

+
∫ Uj

Uj−1

[u−v2(u)]η
′′(ξ2)(α+a(u))du

}
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where ξ1 and ξ2 are intermediate points in the intervals enclosed by v1(u), u and by v2(u),
u respectively. Substituting v1 and v2, we find

∆tSj =
λ

2

∫ Uj+1

Uj

−

[
u−Uj+

λ

2

(
f (u)− f j−α(u−Uj)

)]
η′′(ξ1)(α−a(u))du (I1)

+
λ

2

∫ Uj

Uj−1

[
u−Uj−

λ

2

(
f (u)− f j+α(u−Uj)

)]
η′′(ξ2)(α+a(u))du (I2)

+
λ

2

∫ Uj

Uj−1

[
Uj−U∗

j

]
η′′(ξ2)(α+a(u))du. (I3)

Applying the mean value theorem again, we get:

∆tSj =
λ

2

∫ Uj+1

Uj

−
1

2

[
u−Uj

]
[(1−λα)+(1+λa(ũ1))]η

′′(ξ1)(α−a(u))du

+
λ

2

∫ Uj

Uj−1

1

2

[
u−Uj

]
[(1−λα)+(1−λa(ũ2))]η

′′(ξ2)(α+a(u))du

+
λ2

4

[
f j+1− f j−α(Uj+1−Uj)

]∫ Uj

Uj−1

η′′(ξ2)(α+a(u))du,

where ũ1 and ũ2 are intermediate values obtained applying the mean value theorem to
the functions f (u)− f (Uj),u∈ (Uj,Uj+1) and f (u)− f (Uj),u∈ (Uj−1,Uj) respectively. The
quantities

1

2
[(1−λα)+(1±λa(u))]η′′(α∓a(u))

are positive, if CFL holds and |a(u)|<α, so the sign of the first two integrals coincides with

the sign of
∫ Uj+1

Uj
−
[
u−Uj

]
du=− 1

2 (Uj+1−Uj)
2
< 0, in the first case, while in the second

case, the sign of the integral is given by the sign of
∫ Uj

Uj−1

[
u−Uj

]
du=− 1

2 (Uj−1−Uj)
2
<0.

Finally for the last term, we observe than since η′′(ξ2) is positive, the sign of the third term

coincides with the sign of the following expression, where we note that
∫ Uj

Uj−1
(α+a(u))du

can be integrated exactly. Thus:

signI3=sign
{[

f j+1− f j−α(Uj+1−Uj)
][

f j− f j−1+α(Uj−Uj−1)
]}

=−sign [Uj+1−Uj](α−a(ũ1))(α+a(ũ2))[Uj−Uj−1]

=−sign [Uj+1−Uj][Uj−Uj−1]

Using again the fact that (α−a(ũ1)) and (α+a(ũ2)) are positive and the hypothesis on
the monotonicity of the solution, we conclude that also I3≤0.
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Remark 3.3. Note that the first two integrals (I1) and (I2) are negative regardless of the
shape of the initial profile. It is only the third term which may become positive, if an
extremum occurs in the sequence U of grid values. Thus in the general case we will have
to combine (I3) with (I1) and (I2).

Proposition 3.3. Consider the first order Lax Friedrichs scheme, with the numerical flux (3.4).
Define the numerical entropy flux as in (3.5). Suppose the sequence of grid points (Un

j−1,Un
j ,Un

j+1)

has a point of extremum. Then the numerical entropy production (1.6) is essentially negative def-
inite on smooth flows.

Proof. To fix ideas, we will assume that the extremum occurring in (Un
j−1,Un

j ,Un
j+1) is a

local maximum. In particular, we will suppose that the point of extremum is such that
Uj−1≤Uj+1≤Uj. Rewrite Sj from (I1), (I2) and (I3) as:

∆tSj =
λ

2

∫ Uj+1

Uj

[a(u)−α]η′′
1

[
(1−

λα

2
)(u−Uj)+

λ

2
( f (u)− f j)

]
(J1)

+
λ

2

∫ Uj

Uj+1

[a(u)+α]η′′
2

[
(1−

λα

2
)(u−Uj)−

λ

2
( f (u)− f j)

]
(J2)

+
λ2

4

∫ Uj

Uj+1

[a(u)+α]η′′
2

[
f j+1− f j−α(Uj+1−Uj)

]
(J3)

+
λ

2

∫ Uj+1

Uj−1

[a(u)+α]η′′
2

[
(1−

λα

2
)(u−Uj)−

λ

2
( f (u)− f j)

]
(J4)

+
λ2

4

∫ Uj+1

Uj−1

[a(u)+α]η′′
2

[
f j+1− f j−α(Uj+1−Uj)

]
(J5)

where η′′
i = η′′(ξi), i = 1,2. We will group together the terms (J1), (J2) and (J3), which

actually contain the extremum, while (J4) and (J5) will be bounded separately.
Let 0≤m≤ η′′(u)≤ M be the bounds of η′′ over the interval (Uj−1,Uj). We already

know that (J3) is positive, thus it can be bounded as:

J3≤M
λ2

4

∫ Uj

Uj+1

[a(u)+α]
[

f j+1− f j−α(Uj+1−Uj)
]

=−M
λ2

4

[
f j+1− f j−α(Uj+1−Uj)

][
f j+1− f j+α(Uj+1−Uj)

]

=−M
λ2

4

[
( f j+1− f j)

2−α2(Uj+1−Uj)
2
]

Now sum (J1) and (J2), observing that, since they are both negative, η′′ can be bounded
by m to get:

J1+J2≤m
λ

2

∫ Uj

Uj+1

[α(2−λα)(u−Uj)−λa(u)( f (u)− f j)]du

=−
mλα

2
(1−

λα

2
)(Uj+1−Uj)

2+
mλ2

4
( f j+1− f j)

2,
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where we have used the fact that the integrals can be evaluated exactly. Adding (J3) to
the terms above, we have:

J1+J2+J3≤−
mλα

2
(∆U)2−

λ2

4
(M−m)(∆F)2+

λ2α2

4
(m+M)(∆U)2,

where we used the notation ∆U =(Uj+1−Uj) and ∆F=( f j+1− f j). Now we write ∆F=
ã(Uj+1−Uj), where ã denotes the function a(ξ), evaluated in a point ξ ∈ (Uj+1−Uj).
Therefore:

J1+J2+J3≤

[
−

mλα

2
(1−λα)+

λ2

4
(M−m)(α2− ã2)

]
(Uj+1−Uj)

2. (3.6)

Note that M>m, (α2− ã2)≥0 and λα<1.
If η′′ is constant, then m = M, and the entropy production due to these terms is

negative. If η′′ is not constant, then M−m > 0, and the last expression in the square
brackets is non-negative. Note however that if the flow is smooth, then m−M=O(h2)
and ∆U2 =O(h4) because the x derivative of U vanishes by assumption in the interval
(xj−1,xj+1) and thus positive overshoots, if they occur, are extremely small on smooth
flows. On the other hand, if the flow is not smooth, then m−M and ∆U can be of order 1.

For the last two terms, we find:

J4+J5=
λ

2

∫ Uj+1

Uj−1

[a(u)+α]η′′
2

[
u−Uj−

λα

2
(u−Uj)−

λα

2
(Uj+1−Uj)−

λ

2
( f (u)− f j+1)

]

=
λ

2

∫ Uj+1

Uj−1

[a(u)+α]η′′
2

[
(1−λα)(u−Uj)+

λ

2
(α− ã)(u−Uj+1)

]

Here the integral is negative, since (u−Uj+1)<0 and (u−Uj)<0 for u∈ (Uj−1,Uj+1) and
Uj >Uj+1 under the hypothesis that Uj is a local maximum.

Remark 3.4. The previous proposition implies that the numerical entropy production is
not bounded away from zero in cells containing extrema. This may underestimate the
error in these cells when the numerical entropy production is used as an error indicator.

Remark 3.5. The same technique allows to prove that the sign of the entropy produc-
tion is negative definite for the first order upwind scheme, under the restriction that f ′

does not change sign and that the CFL condition holds. In the upwind case, the entropy
dissipation remains negative even on local extrema.

Remark 3.6. We have proved that the entropy production is negative for a few first order
schemes in the scalar case. However we observe numerically that the entropy production
due to first order monotone schemes is negative even in the case of systems of equations,
such as the Euler system of compressible gas dynamics.
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4 Numerical tests on properties of the entropy production

In this section, we show results on the rate of convergence of the entropy production for
schemes from second to fifth order accuracy on scalar problems, a comparison with the
Karni Kurganov error indicator on a 2D problem and a 1D shock tube problem, and the
entropy production for a second order scheme on gas dynamics problems.

4.1 Rate of convergence

We compute the rate of convergence to zero of |Sj| for a smooth flow and the maxima of
|Sj| across a shock wave and a contact discontinuity. We consider Burgers equation before
and after shock formation, and a scalar linear advection problem on discontinuous data.
For Burgers equation the initial data is u(x,t= 0)= 1+ 1

2 sin(πx) in [−1,1] with periodic
boundary conditions. The final times are T = 0.3 (before shock formation) and T = 1.5
(after shock formation). For the linear advection problem, the equation is ut+ux=0 with
initial condition

u(x,t=0)=

{
cos(π

2 x), −1< x<0

sin(πx), 0≤ x≤1

with periodic boundary conditions and final time T=1.5.

The schemes tested are semidiscrete schemes with Runge-Kutta time advancement,
and local Lax Friedrichs numerical flux. For the reconstruction, we consider a piece-
wise linear (SD2), a third order compact WENO reconstruction, [20] (SD3). For the time
advancement SD2 implements the TVD second order Heun scheme, while SD3 is inte-
grated in time with the third order TVD Runge-Kutta of [9]. Finally we consider fifth or-
der WENO reconstructions, [28] with a fourth order (SD4) and a fifth order (SD5) Runge
Kutta scheme.

Tables 1 and 2 show the actual maxj |S
n
j | of the entropy production on Burgers’ solu-

tion before shock formation and its rate of convergence to zero respectively, under grid
refinement. The rate observed is consistent with the theory.

Table 3 contains the values of the maximum dissipation of entropy on a flow with a
shock. Here the entropy doubles, as expected, as the mesh size is halved. On a contact
discontinuity, the entropy is not as large (due also to the smearing of the profile induced
by the scheme), and the entropy remains approximately constant under grid refinement,
see Table 4. Note also that the orders of magnitude of these values of |Sj| are much larger
than in the smooth case. For this reason, the entropy production is an effective indicator
to select discontinuities in the flow.

Moreover, comparing the data in Tab. 1 and those in Tab. 3 we see that the spurious
entropy production on smooth flows decreases fast for high order schemes, and it is or-
ders of magnitude smaller than in the shocked case. Thus the entropy production is an
effective indicator especially for high order schemes.
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N=20 N=40 N=80 N=160 N=320 N=640

SD2 0.41144 0.996E-01 0.175E-01 0.350E-02 0.773E-03 0.179E-03
SD3 0.78220 0.524E-01 0.535E-02 0.692E-03 0.111E-03 0.158E-04
SD4 0.958E-01 0.142E-01 0.108E-02 0.637E-04 0.347E-05 0.196E-06
SD5 0.489E-01 0.997E-02 0.676E-03 0.271E-04 0.896E-06 0.259E-07

Table 1: Sup norm of |Sj| on a smooth transition (at the final time) for schemes of order from 2 to 5, Burgers
equation before shock formation.

N=20 N=40 N=80 N=160 N=320

SD2 2.04 2.50 2.32 2.18 2.10
SD3 3.89 3.29 2.95 2.63 2.81
SD4 2.74 3.71 4.08 4.19 4.14
SD5 2.29 3.88 4.63 4.92 5.10

Table 2: Rate of convergence to zero for |Sj| on a smooth transition for schemes of order from 2 to 5. (Burgers

equation before shock formation.)

N=20 N=40 N=80 N=160 N=320 N=640

SD2 1.1131 2.1399 4.6215 9.0075 17.933 35.573
SD3 1.2336 2.6214 5.1332 10.182 20.316 40.602
SD4 1.1649 3.1572 4.7325 10.451 20.180 36.302
SD5 1.2333 2.3536 4.5667 9.0634 18.124 36.045

Table 3: Maximum entropy production on a shock for several schemes, under grid refinement. The cells with
the maximum |Sj| are those containing the shock. (Burgers equation after shock formation.)

N=20 N=40 N=80 N=160 N=320 N=640

SD2 0.20367 0.24645 0.84641 0.48792 0.32028 0.25642
SD3 0.25252 0.32165 0.06848 0.07275 0.04870 0.03929
SD4 0.06423 0.06859 0.08822 0.06656 0.10110 0.12494
SD5 0.33048 0.14757 0.07947 0.05416 0.04986 0.05215

Table 4: Maximum entropy production on a contact discontinuity for several schemes, under grid refinement.
The cells with the maximum |Sj| are those containing the discontinuity.
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4.2 A 2D example

We consider a simple 2D problem. A rectangular patch is rotated with constant angular
velocity on the domain [0,1]×[0,1].

The equation is

∂tu+∂x

(
−(y− 1

2 )
π
2 u
)
+∂y

(
(x− 1

2 )
π
2 u
)
=0,

with initial condition

u(x,y,t=0)=

{
1.5, (x,y)∈ [0.3,0.7]×[0.2,0.8]

0.5, elsewhere

The underlying scheme is the second order SD2 method. Since the solutions exhibit
contact discontinuities, limiters are needed to avoid spurious oscillations. Figure 1 shows
the solution with and without limiters. The second row shows the corresponding entropy
production. It is clear that the entropy signals the presence of the discontinuities in both
cases, but the strong positive overshoots in the case without limiters reveal also the pres-
ence of spurious oscillations. On the other hand the entropy production for the solution
with limiters remains negative definite. We thus see an extension of Proposition 3.2 and
3.3 to the case of a nonsmooth problem for a high order scheme in two space dimensions.

The entropy production on the two solutions are clearly distinct. The last row shows
for comparison the results obtained with the error indicator proposed by [14]. Here too
the presence of the singularity is detected, but there is no clear way to distinguish the
two solutions.

4.3 Gas-dynamics

We integrate the Euler equations for an ideal gas with the second order semidiscrete
scheme SD2. The unknowns are u= [ρ,ρv,E], where ρ is the density, v the velocity and
E= 1

2 ρv2+ρe is the total energy. The flux function is f (u)= [ρv,ρv2+p,v(E+p)], where
the equation of state p = ρe(γ−1) links the internal energy and the pressure. In this
paper we consider γ=1.4, which is appropriate for air. For this system we consider the
entropy pair defined by the entropy function η(u)=−ρlog(ρe/ργ) and the entropy flux
ψ(u)=−vη(u), [8].

Left-moving rarefaction wave We evolved the initial state

u=

{
uL x≤0.8

uR x>0.8




ρ
v
p




L

=




1.02222
−0.6179

1







ρ
v
p




R

=




ρ∗

v∗

0.4




where ρ∗=ρL(pR/pL)
1/γ, v∗=vL+2/(γ−1)(aR−aL) and the sound speed is defined by

a =
√

γp/ρ. This Riemann problem gives rise to a single left-moving rarefaction wave
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Figure 1: Rotation of a rectangular patch. Top: solution with (left) and without (right) limiters which results in
spurious oscillations. Middle: corresponding entropy production. Bottom: corresponding Karni-Kurganov error
indicator
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Figure 2: Euler equations, single left moving rarefaction wave. Solutions with different grid sizes (left) and
entropy production in logarithmic scale (right).

that starts at x=0.8, which satisfies the CFL condition with λ=0.5. In Figure 2 we show
on the left a blow-up of the region occupied by the rarefaction at t=0.25. The right panel
contains the corresponding entropy production, showing the improved resolution of the
corners of the rarefaction and the convergence to zero of the spurious entropy production
under grid refinement.

Right-moving contact discontinuity Next we consider the initial data

u=

{
uL x≤0.2

uR x>0.2




ρ
v
p




L

=




1
1
1







ρ
v
p




R

=




0.4
1
1




which give rise to a single right-moving contact discontinuity.

In Figure 3 we show the solutions obtained at t=0.25, applying the SD2 scheme with
λ = 0.25. In the left panel we compare the solutions on different grids. The graph on
the right clearly shows that the numerical entropy production over a contact wave is
approximately constant across a wide range of cell sizes and it is localized on the cells
crossed by the discontinuity. We performed the test with N from 32 up to 1024, but for
clarity only a few plots are reported in the graph. Note that the entropy production has a
completely different order of magnitude with respect to the case of the rarefaction wave,
although the data have approximately the same magnitude.

Shock wave In this test we set the initial data to

u=

{
uL x≤0.2

uR x>0.2




ρ
v
p




L

=




1
0.8276

1







ρ
v
p




R

=




0.5313
0.1
0.4
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Figure 3: Euler equations, single right moving contact wave. Solutions with different grid sizes (left) and entropy
production (right).
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Figure 4: Euler equations, single right moving shock. Solutions with different grid sizes and entropy production.
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Figure 5: Lax’ shock tube problem. Top: entropy production with N=200, N=400 and N=800 grid points.
Bottom: corresponding error indicator by Karni-Kurganov. Logarithmic scale.

This Riemann problem develops a right-moving shock wave, initially at x=0.2.

As shown in Figure 4, the entropy production on the shock increases as 1/h when the
grid is refined. Note again the higher order of magnitude of the entropy production with
respect to the previous cases.

Finally, we compare the entropy production on Lax’ shock tube problem with the
results obtained with Karni-Kurganov error indicator [14], see Fig. 5. The scheme is
the third order SD3. Both indicators clearly separate the main structures of the flow,
which can be easily identified comparing the plot of the indicator with the corresponding
density profile in Fig. 13. However the Karni-Kurganov indicator for the third order
scheme involves three time levels, as opposed to the entropy indicator that uses only
two of them. This is clearly an important difference if one wants to modify locally the
computation in response to the indicator values.

5 Adaptivity

In this section we exploit Sn
j as an indicator to locally modify the scheme and/or the grid

to improve the accuracy of the solution.

We start with a description of a strategy to produce a non uniform diadic grid ob-
tained by iterative halvening of a single cell initially occupying the whole computational
domain. The entropy indicator is then used to refine and coarsen the computational cells
in an adaptive mesh algorithm.



20

Figure 6: An example of diadic grid and its tree representation. On the rightmost cells, we show the tree
representation of the refining/coarsening operation.

Start with a grid consisting of a single cell of width h0 that may coincide with the
whole domain. This cell is said to be of level 0. This may be split into two adjacent cells
of level 1, of width h1 = h02−1. Each of these may be further split into two cells of width
h2 = h02−2, and so on. Thus a diadic grid consists of cells with level k ∈ N and width
hk = h02−k. Note that we impose no limitation on the relative size of two neighbouring
cells. Two cells that originated from the same mother cell are called sister cells. During
the time integration we allow splitting any cell into two daughter cells or coarsen the grid
by replacing two sister cells with their common mother cell. To this end, it is convenient
to store the grid in a binary tree structure, thus retaining the information on the grid
hierarchy. An example is shown in Figure 6. There, the leaves of the tree, forming the
active computational grid, are represented with black circles, while the other nodes are
denoted with empty circles. The level 3 cells were obtained by refining the level k = 2
gray cell. On the other hand coarsening the two sister cells of level 3, would replace both
of them with the gray leaf and dashed link of their common mother cell of level 2.

At any time tn, the solution is represented by the cell averages U
n
j on the jth cell, which

has size hj =h02−lj where lj is the level of the cell.

Timestepping We devised two different timestepping procedures. In the first one, that
we call ∆t-mode, we choose a time step ∆t valid for every cell. Thus, in order to satisfy
the CFL condition we must choose the time step according to the stability requirement of
the finest grid. Thus:

∆t=λmin
j

hj =λh02−maxj lj (5.1)

Hence the effective CFL number in each cell is

λj

λ
=

∆t

λhj
=

mini hi

hj
=2lj−maxi li .
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Figure 7: One timestep in CFL-mode for a grid with cells of 3 levels and a 1 stage Runge-Kutta.

Note that, with this approach, it is important to use a semidiscrete scheme that does not
lose accuracy at low CFL numbers. Moreover, even if there are a few small cells, one is
forced to advance the solution with very small time steps, because the stability is dictated
by the finest cells.

In order to avoid this problem, the second procedure, that we name CFL-mode, im-
plements a local timestepping procedure similar to the one described in [4]. It insists on
using the same CFL number on each cell and thus the mesh ratio λ is constant throughout
the grid. Thus the jth cell advances with timestep of size

∆tj =λhj =λh02−lj (5.2)

In a grid with cells of level lmin≤ l≤ lmax, the jth cell must advance by 2lj−lmin time steps of
size ∆tj in order to match a single time advancement of the largest cells in the grid, which

is ∆t=∆tmax=λhmax=λh02−lmin .
The procedure to advance the solution for a single global time step in CFL-mode is

depicted in Figure 7 for the case of a grid with cells of 3 different levels and a 1 stage
Runge Kutta scheme. First (top left panel) compute reconstructions and fluxes (arrows)
everywhere at time tn. With these assemble U j(t

n+∆t/4) in all small cells (solid circles)
and their first neighbours (empty circles). Then (top right) compute reconstructions and
fluxes at the boundaries of small cells at time tn+∆t/4, and calculate U j(t

n+∆t/2) on
small and medium cells and their first neighbours. Next (bottom left) compute recon-
structions and fluxes at the boundaries of small and medium cells at time tn+∆t/2, and
get U j(t

n+ 3
4 ∆t) on small cells and their first neighbours. Finally (bottom right) compute

reconstructions and fluxes at the boundaries of small and medium cells at time tn+3∆t/4
and finally assemble U

n+1
j on the whole grid.

Figure 8 depicts the procedure when using a 2 stage Runge-Kutta. First (top left)

compute the first stage fluxes F
(1)
j+1/2 on all boundaries (black arrows) using the recon-

structions computed from U
n
j and use them to obtain U

(2)
j (tn+ 1

4 ∆t) on small cells and
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Figure 8: One timestep in CFL-mode for a grid with cells of 3 levels and a 2 stage Runge-Kutta.

first neighbours (empty circles). Reconstructing boundary values from U
(2)
j (tn+ 1

4 ∆t),

compute (top right) the second stage fluxes F
(2)
j+1/2 (blue arrows) and update U j(t

n+ 1
4 ∆t)

on small cells and first neighbours (solid circles and empty circles). Similarly (bottom
left) compute U j(t

n+ 1
2 ∆t) on small, medium cells and their first neighbours. Repeating

the above procedure (bottom right) get U
(2)
j (tn+1) and with a final reconstruction obtain

the computation of F(2) everywhere and U
n+1
j =U j(t

n+1) on every cell.

Remark 5.1. The procedure illustrated ensures that the fluxes are functions of the cell
boundary and thus no mass is created at cell interfaces. This is the main difference with
respect to the scheme [32] and ensures conservation without losing neither consistency
nor accuracy.

This procedure differs from the one in [4] due to the computation of the auxiliary
values in the neighbouring cells (empty circles in Figures 7 and 8): the strategy proposed
here is more accurate and does not require a smoothly varying cell size hj.

Indicator and h-adaptivity The entropy indicator is computed at the end of a complete
time step ∆t, both in the case of the CFL-mode and the ∆t-mode. At this stage, the grid
is modified following the behaviour of the indicator. In particular, during the time inte-

gration, we compute not only the fluxes F
(·)
j+1/2(t

n+ck∆t) but also the numerical entropy

fluxes Ψ
(·)
j+1/2(t

n+ck∆t), exploiting the same boundary value reconstructions that were

computed for updating the solution. When time integration reaches tn+1 we have also

all the information to approximate
∫ tn+1

tn ψ(t,xj+1/2)dt using the numerical entropy fluxes
and thus we can compute Sn

j using formula (2.2).

Now we can compare the numerical entropy production in each computational cell
with a threshold Sref and mark cells for refinement. We then split the marked cells into

two halves and initialize them setting U
n
j equal to the value of the mother cell. (Alterna-
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tively, one may set U
n
j on the daughter cells using the reconstruction computed at time

level tn). Then only the values U
n+1
j affected by this change of initial data are recomputed

and another check on the entropy indicator is performed. This procedure is iterated until
no more cells need refining. In order to prevent an infinite refining loop around shocks,
we impose a lower bound hmin on the cell size and do not refine further when this mini-
mum is reached, regardless of the entropy production.

Before proceeding to the next time step, we perform a coarsening pass on the grid:
if the sum of the entropy production on two sister cells is lower than the coarsening
threshold Scoa, the cells are merged and replaced with their common mother cell and

U
n+1
j is set to the average of the values of the merged cells. In order to avoid coarsening

and refining the same cells in subsequent time steps, we choose the coarsening threshold
lower than the refining threshold. In the numerical tests we employed Scoa=

1
4 Sref.

Remark 5.2. Shocks are well resolved by finite volume schemes, and therefore on shocks
strong refinement is not necessary. When refinement occurs, one could store the values
of the entropy indicator before and after refinement. If these values show that entropy
increases under grid refinement, than the corresponding cell can be labelled as containing
a shock. In this case, refinement is not carried further.

The ability of recognizing shocked cells is an added value of the entropy indicator
and it can be used to prevent excessive and needless refinement.

5.1 Scheme adaptivity

Here we consider a simple example of scheme adaptivity. It is well known that the appli-
cation of a high order scheme in a componentwise fashion may result in the production
of spurious oscillations, whose amplitude diminuishes under grid refinement. These os-
cillations can be avoided if the reconstructions needed to compute the numerical fluxes
are carried out along characteristic directions, see [27]. However this procedure is costly
and computationally demanding. In this paragraph, we compute the characteristic pro-
jection only in those cells where the production of entropy signals a non smooth flow.
The adaptive strategy is

{
if |Sj|>Sref use characteristic projection

else use component-wise reconstruction

with Sref=1.
Figure 9 shows the results. The top row contains the solutions obtained with the

third order SD3 scheme on Lax’ Riemann problem, for several grid sizes. The figure
shows a detail of the density peak, with the contact discontinuity on the left followed
by the shock. The whole density profile can be seen in Fig. 13. The most oscillatory blue
solution is obtained with the componentwise application of the reconstruction in all cells.
Spurious oscillations are clearly visible, especially on the coarse grid. The remaining
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Figure 9: Adaptive application of characteristic projection. Top: detail of the density peak at the final time,
with increasing number of cells from left to right. Bottom: number of cells selected for characteristic projection
versus time.

profiles are obtained applying the characteristic projection in all cells and, respectively
with the adaptive strategy. This latter is slightly less diffusive than the one obtained
with the characteristic projection. The second row of the figure contains the number of
cells on which the characteristic projection was actually used by the adaptive strategy,
as a function of time, for the three grids used in this test, namely, N = 100, N = 200 and
N=400. Note that the number of points selected remains approximately constant in time,
after the waves separate, and it is almost fixed under grid refinement.

5.2 Adaptive grid tests

We start assessing the quality of the time advancing scheme on non uniform grids, both
in ∆t-mode and CFL-mode. In particular, in this section we will consider the second order
semidiscrete scheme of [17]. First, we wish to show that the accuracy of the scheme
is not modified by the presence of a non uniform grid, and that the entropy indicator
maintains the expected rate of convergence. The aim of the first tests is to assess the
robustness of the scheme and of the indicator as the solution crosses a discontinuity in the
mesh spacing, before proceeding to the development of the fully adaptive and unsteady
algorithm.

In these tests we compare the solution obtained on a regular grid, with the solution
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Figure 10: Left: entropy indicator for the transport of a sinusoidal wave. Right: L1 norm of the error on 3 tests
with uniform meshes and non-uniform meshes.
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Figure 11: Solutions on non uniform meshes. Left: linear advection of a profile with a corner and a jump
discontinuity. Right: shock on Burgers’ equation

obtained with a non uniform grid, where the mesh size is a step function, namely:

hj =

{
h xj <

1
2

h
2 xj ≥

1
2 .

We consider the initial condition u0(x) = sin(2πx) on [0,1] with periodic boundary
conditions for the linear advection equation (left panel of Fig. 10) and in Figure 11 the
linear advection of a solution containing an angular point and a contact discontinuity (on
the left) and finally a double-step profile evolving with Burgers’ equation (on the right).

For the regular profile (left panel of Fig. 10) we compare the entropy production in
the last time step on a regular grid with 64 cells and an irregular grid with h=1/32, i.e.
48 cells: 16 larger cells in [0,0.5] and 32 cells on [0.5,1]. The top graph is Sj and the bottom
graph shows the normalized quantity Sj/h2

j . As expected, the entropy scales as h2.
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The right panel of Figure 10 contains, on a logarithmic scale, the history of conver-
gence of the L1 norm of the error for two smooth problems initialized with a sine wave
(linear advection and Burgers equation with u0(x) = sin(2πx) before shock formation).
For comparison we also add the L1 norm of the error for a linear advection problem with a
contact discontinuity (red markers). For each test we plot the errors when using uniform
meshes (circles) and the nonuniform meshes described above (diamonds for the ∆t-mode
and crosses for the CFL-mode). The series corresponding to each test are ditinguished by
the color of the markers and the labels in the graph. As expected, the convergence is of
second order in the smooth cases (blue and black) and of first order when a discontinuity
is present in the solution (red). It is important to note that the irregularity of the grid
does not influence the rate of convergence of the error: in fact the symbols for each test
appear perfectly aligned in the graphs. Moreover, note that the errors when using the
∆t-mode and the CFL-mode are almost identical. This is a strong point in favour of the
CFL-mode that is computationally much less expensive when cells of very different sizes
are present.

Fig. 11 demonstrates that also contact discontinuities and shocks can traverse a dis-
continuity in the mesh-size without being reflected or deformed. Both panels show the
initial datum (dashed line), the exact solution (solid line) and the numerical solution
(markers). The bottom graph shows the mesh size function. On the left, the initial profile
u0(x)= |sin(3/2πx)| was evolved in the domain x∈ [0,1] with periodic boundary condi-
tions until t=1, so that the contact discontinuity moves from the initial position in x=0
to x = 3/4. In the right panel we consider the case of Burgers’ equation with a double
step initial condition integrated until t=1; the shock initially at x=1/4 moves to x=3/4
and the corner of the rarefaction that starts at x=3/4 has reached the shock when t=1.
Note that no deformation of the profiles has occured when the discotinuities crossed the
jump in cell sizes located at x=1/2. We obtain the same results both in the CFL-mode and
in the ∆t-mode.

We now study the performance of the adaptive grid algorithm, considering the Euler
equations of gas dynamics. We show plots obtained with the grid evolving in time in
∆t-mode, but very similar results are obtained in CFL-mode.

Figure 12 depicts the time evolution of the grid and of the density ρ of the gas for the
Sod shock tube problem. The figure shows the solution and the corresponding grid at
four different times. The density is shown with circles, while the grid levels are drawn
with stars. For this test we set up an initial grid consisting of only 2 cells, the minimum
needed to represent the initial data. During the first timestep (top left panel), the adaptive
algorithm refines the grid until the cells around x=0.5 are drawn to the minimum mesh
size h=2−lmax =2−11. Later on in the evolution the rarefaction, contact and shock separate
and we can see that the algorithm starts coarsening the grid first on flat areas (top right)
and then also inside the rarefaction (bottom panels). Note also that the areas with refined
cells move along the x-axis following the features of the solution.

Finally we consider the Lax problem, setting up the grid as in the Sod test. At final
time (t= 0.16), the adaptive grid consists of 374 cells with refinement level up to 11. In
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Figure 12: Sod problem with adaptive grid. Initial and minimum cell refinement level is 1, the maximum level
is 10, i.e. hmin =2−10. Sref=10−3 was used in this run.
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Figure 13: Lax problem with adaptive grid. Initial and minimum cell refinement level is 1, the maximum level
is 11., i.e. hmin =2−11. Sref=10−3 was used in this run.
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Figure 13 we compare the solution obtained with the adaptive algorithm and the density
computed with two uniform grids with 256 and 512 cells respectively. The grid for the
reference solution has 2048 cells of level 11. We show the complete density profile (left)
and a zoom on the contact discontinuity and the shock (right). The solution given by the
adaptive grid has an even better resolution than the reference profile obtained with more
than 5 times as many points. The profiles obtained with a comparable number of grid
points perform much more poorly than the adaptive solution on all important features of
the flow. Moreover the adaptive algorithm achieves its resolution by selecting small cells
only around the troublesome features of the solution, coarsening as much as is allowed
by the dyadic grid structure in the other areas.

6 Conclusions

In this work, we have proposed an a posteriori error/smoothness indicator based on the
numerical production of entropy to estimate the local error for finite volume schemes
integrating systems of conservation laws. The indicator can be built on an underlying
finite volume scheme, provided a consistent numerical entropy flux is given. In the paper,
we have proposed how to define such a numerical entropy flux for several semidiscrete
finite volume schemes.

We have proved that, on a smooth flow, the indicator decays with the same rate of
the local truncation error of the scheme. Moreover, we have proved that for standard
first order schemes the numerical production of entropy as defined here is essentially
negative definite for scalar conservation laws.

Further, we propose an algorithm to construct non uniform time advancement on
non uniform one dimensional grids. The algorithm proposed has a simple data struc-
ture, it is consistent and conservative. A few test problems on the second order scheme
of [17] show that accuracy is maintained even on non uniform grids, and no spurious
effects such as ghost reflection or diffraction at discontinuities in the grid spacing seem
to appear.

Finally, the entropy indicator and the second order scheme [17] on non uniform grids
are coupled, obtaining an adaptive algorithm in which the grid is locally refined or coars-
ened according to the behavior of the entropy indicator. The tests included show an
impressive improvement in resolution with respect to uniform grids, even with a much
larger number of nodes.

We plan to extend these results to construct a third order adaptive algorithm with a
compact stencil, following the reconstruction in [20]. We also plan to extend the results of
this paper to the two-dimensional setting. Preliminary results using adaptive cartesian
meshes with the ∆t-mode for two-dimensional gas-dynamics problems with cells of three
possible sizes have already appeared in [21]. Future work will be dedicated to implement
more levels of grid refinement and use the more efficient CFL-mode time advancement
algorithm. Moreover, we plan to apply these ideas to other systems of conservation laws
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with an entropy, such as MHD.
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