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BRAIDED BIALGEBRAS OF HECKE-TYPE

A. ARDIZZONI, C. MENINI AND D. ŞTEFAN

Abstract. The paper is devoted to prove a version of Milnor-Moore Theorem for connected
braided bialgebras that are infinitesimally cocommutative. Namely in characteristic different

from 2, we prove that, for a given connected braided bialgebra (A, cA) which is infinitesimally
λ-cocommutative for some element λ ̸= 0 that is not a root of one in the base field, then the
infinitesimal braiding of A is of Hecke-type of mark λ and A is isomorphic as a braided bialgebra

to the symmetric algebra of the braided subspace of its primitive elements.

Introduction

The structure of cocommutative connected bialgebras is well-understood in characteristic zero.
By Milnor-Moore Theorem [MM] such a bialgebra is the enveloping algebra of its primitive part,
regarded as a Lie algebra in a canonical way. This result is one of the most important ingredients in
the proof of Cartier-Gabriel-Kostant Theorem [Di, Sw], that characterizes cocommutative pointed
bialgebras in characteristic zero as “products” between enveloping algebras and group algebras.

Versions of Milnor-Moore Theorem and Cartier-Gabriel-Kostant Theorem for graded bialgebras
(over Z and Z2) can be also found in the work of Kostant, Leray and Milnor-Moore. For other
more recent results, analogous to Milnor-Moore Theorem, see [Go, Kh, LR, Ma2, R1, R2, St].

The Z2-graded bialgebras, nowadays called superbialgebras, appeared independently in the work
of Milnor-Moore and MacLane. From a modern point of view, superalgebras can be seen as
bialgebras in a braided monoidal category. These structures play an increasing role not only in
algebra (classification of finite dimensional Hopf algebras or theory of quantum groups), but also in
other fields of mathematics (algebraic topology, algebraic groups, Lie algebras, etc.) and physics.
Braided monoidal categories were formally defined by Joyal and Street in the seminal paper [JS],
while (bi)algebras in a braided category were introduced in [Ma1]. By definition, (A,∇, u,∆, ε) is
a bialgebra in a braided category M, if ∇ is an associative multiplication on A with unit u and ∆
is a coassociative comultiplication on A with counit ε such that ε and ∆ are morphism of algebras
where the multiplication on A⊗A is defined via the braiding. In other words, the last property of
∆ rereads as follows

∆∇ = (∇⊗∇)(A⊗ cA,A ⊗A)(∆⊗∆), (1)

where cX,Y : X⊗Y → Y ⊗X denotes the braiding in M. The relation above had already appeared
in a natural way in [Ra], where Hopf algebras with a projection are characterized. More precisely,
let A be a Hopf algebra and let p : A → A be a morphism of Hopf algebras such that p2 = p.
To these data, Radford associates an ordinary Hopf algebra B := Im(p) and a Hopf algebra
R = {a ∈ A | (A ⊗ p)∆(a) = a ⊗ 1} in the braided category B

BYD of Yetter-Drinfeld modules.
Then he shows that A ≃ R ⊗B, where on R ⊗B one puts the tensor product algebra and tensor
product coalgebra of R and B in the category B

BYD (the braiding of B
BYD is used to twist the

elements of R and B). It is worth to notice that the above Hopf algebra structure on R ⊗ B can
be constructed for an arbitrary Hopf algebra R in B

BYD. It is called the bosonization of R and it
is denoted by R#B. Notably, the “product” that appears in Cartier-Gabriel-Kostant Theorem is
precisely the bosonization of an enveloping Lie algebra, regarded as a bialgebra in the category of
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BRAIDED BIALGEBRAS OF HECKE-TYPE 3

Yetter-Drinfeld modules over its coradical. The result of Radford was extended for more general
classes of bialgebras with a projection in [AMS1, AMS2].

Bosonization also plays a very important role in the “lifting” method for the classification of
finite dimensional pointed Hopf algebras, introduced by N. Andruskiewitsch and H.J. Schneider.
Roughly speaking, the lifting method requires two steps. If A is a pointed Hopf algebra, then grA,
the graded associated of A with respect to the coradical filtration, is a Hopf algebra with projection
onto the homogeneous component of degree 0. Hence, by Radford’s result, grA is the bosonization
of a graded connected Hopf algebra R in B

BYD, where B is the coradical of A. Accordingly to the
lifting method, first one has to classify all connected and graded Hopf algebras R in B

BYD such
that dimR = dimA/ dimB. Then one has to find all Hopf algebras A such that A ≃ R#B, with
R as in the first step.

Therefore, in many cases, for proving a certain property of Hopf algebras, it suffices to do it
in the connected case. The price that one has to pay is that we have to work with Hopf algebras
in a braided category (usually B

BYD), and not with ordinary Hopf algebras. Motivated by this
observation, in this paper we will investigate connected and cocommutative bialgebras in a braided
category. Actually nowadays people recognize that it is more appropriate to work with braided
bialgebras, that were introduced in [Ta] (see e.g. [Gu3] and [Kh]).

To define a braided bialgebra we first need a braided vector space, that is a pair (A, c), where A
is a vector space and c is a solution of the braid equation (2). Then we need an algebra (A,∇, u)
and a coalgebra (A,∆, ϵ) which are compatible with the braiding (see Definitions 1.2 and 1.4).
Now, for defining braided bialgebras, one can proceed as in the classical case; see Definition 1.6.

The prototype braided bialgebra is T := T (V, c), the tensor algebra of a braided K-vector space
(V, c). The braiding c lifts uniquely to an operator cT : T ⊗T → T ⊗T . The usual algebra structure
on T (V ) is compatible with cT , so T ⊗T is an algebra (for the multiplication, of course, we use cT
and not the usual flip map). Therefore, there is a unique coalgebra structure on T , so that V is
included in the space of primitive elements of T and the comultiplication is an algebra map.

For constructing other examples of braided bialgebras, we focus on the case when (V, c) is a
braided vector space such that c is a braiding of Hecke-type of mark λ ∈ K∗, that is c is a root of
(X + 1)(X − λ). Then, to every K-linear map b : V ⊗ V → V which is compatible with c (i.e. a
so called braided bracket, see Definition 23) we associate a new braided bialgebra U(V, c, b), called
enveloping algebra, as follows. The set

Xc,b = {c(z)− λz − b(z) | z ∈ V ⊗ V = T 2(V )}

contains only primitive elements in T (V, c), so the ideal Ic,b generated by Xc,b in T (V, c) is a coideal
too. Hence the quotient U(V, c, b) of T (V, c) through Ic,b is a braided bialgebra. As a particular
case we obtain the braided symmetric algebra S(V, c) := U(V, c, 0).

It is worthwhile noticing that the braided subspace (P, cP ) of primitive elements of a connected
braided bialgebra (A, cA) can always be endowed with a braided bracket bP : P ⊗P → P whenever
cP is a braiding of Hecke-type. In this case one can consider the corresponding enveloping algebra
(see Theorem (2.4)).

The main result of the paper is Theorem 5.5. In fact, we prove that, for a given field K with
charK ̸= 2, if (A, cA) is a connected braided bialgebra which is infinitesimally λ-cocommutative
for some regular element λ ̸= 0 in K, then

• the infinitesimal braiding cP of A is of Hecke-type of mark λ and
• A is isomorphic as a braided bialgebra to the symmetric algebra S (P, cP ) of (P, cP ) when-

ever λ ̸= 1.

We would like to stress that, since the symmetric algebra is indeed a universal enveloping algebra
with trivial bracket, the foregoing result could be thought as a strong version of Milnor-Moore
Theorem for connected braided bialgebras that are infinitesimally cocommutative.

We also point out that, when λ = 1, A is isomorphic to the symmetric algebra S (P, cP ) just as
coalgebra by means of Kharchenko’s results (see Remark 5.7 and [Kh, Theorem 7.2]).

To achieve our result we characterize bialgebras of type one with infinitesimal braiding of Hecke
type (see Theorem 2.15). Moreover, for a given braided vector space (V, c) of Hecke-type of mark
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λ ̸= 0, 1, we show that b = 0 is the unique c-bracket on (V, c) for which the K-linear canonical map
ιc,b : V → U(V, c, b) is injective whenever (3)!λ ̸= 0 (see Theorem 4.3).

It is worth noticing that, as a consequence of Theorem 2.15, we can prove (see Remark 5.6) that
for a connected braided Hopf algebra (H, cH) and λ ∈ K∗, the following assertions are equivalent:

• H is cosymmetric in the sense of [Kh, Definition 3.1] and its infinitesimal braiding is of
Hecke-type of mark λ,

• H is infinitesimally λ-cocommutative.

On the other hand, as a consequence of Theorem 4.3, we get (see Remark 4.6) that a braided Lie
algebra introduced by Gurevich in [Gu2] has trivial bracket in the Hecke case.

1. Braided bialgebras

Throughout this paper K will denote a field. All vector spaces will be defined over K and the
tensor product of two vector spaces will be denoted by ⊗.

In this section we define the main notion that we will deal with, namely braided bialgebras. We
also introduce one of the basic examples, namely the tensor algebra of a braided vector space.

Definition 1.1. A pair (V, c) is called braided vector space if c : V ⊗ V → V ⊗ V is a solution of
the braid equation

c1c2c1 = c2c1c2 (2)

where c1 = c ⊗ V and c2 = V ⊗ c. A morphism of braided vector spaces (V, cV ) and (W, cW ) is a
K-linear map f : V → W such that cW (f ⊗ f) = (f ⊗ f)cV .

Note that, for every braided vector space (V, c) and every λ ∈ K, the pair (V, λc) is a braided
vector space too. A general method for producing braided vector spaces is to take an arbitrary
braided category (M,⊗,K, a, l, r, c), which is a monoidal subcategory of the category of K-vector
spaces. Hence any object V ∈ M can be regarded as a braided vector space with respect to
c := cV,V . Here, cX,Y : X ⊗ Y → Y ⊗ X denotes the braiding in M. The category of comodules
over a coquasitriangular Hopf algebra and the category of Yetter-Drinfeld modules are examples
of such categories. More particularly, every bicharacter of a group G induces a braiding on the
category of G -graded vector spaces.

Definition 1.2 (Baez, [Ba]). A braided algebra, or c-algebra is a quadruple (A,∇, 1, c) where (A, c)
is a braided vector space and (A,∇, 1) is an associative unital algebra such that ∇ and u commute
with c, that is the following conditions hold:

c(∇⊗A) = (A⊗∇)(c⊗A)(A⊗ c), (3)

c(A⊗∇) = (∇⊗A)(A⊗ c)(c⊗A), (4)

c(1⊗ a) = a⊗ 1, c(a⊗ 1) = 1⊗ a for all a ∈ A. (5)

A morphism of braided algebras is, by definition, a morphism of ordinary algebras which, in
addition, is a morphism of braided vector spaces.

Remark 1.3. 1) Let (A,∇, u, c) is a braided algebra. Then A ⊗ A is an associative algebra with
multiplication ∇A⊗A := (∇⊗∇)(A⊗ c⊗ A) and unit 1 ⊗ 1. Moreover, A ⊗ A is a cA⊗A-algebra,
where cA⊗A = (A⊗ c⊗A)(c⊗ c)(A⊗ c⊗A). This algebra structure on A⊗A will be denoted by
A⊗c A.

2)If A is an object in a braided monoidal category M and c := cA,A then the above four
compatibility relations hold automatically, as the braiding c is a natural morphism.

Definition 1.4. A braided coalgebra (or c-coalgebra) is a quadruple (C,∆, ε, c) where (C, c) is a
braided vector space and (C,∆, ε) is a coassociative counital coalgebra such that the comultipli-
cation ∆ and the counit ε commute with c, that is the following relations hold:

(C ⊗∆)c = (c⊗ C)(C ⊗ c)(∆⊗ C), (6)

(∆⊗ C)c = (C ⊗ c)(c⊗ C)(C ⊗∆), (7)

(ε⊗ C)c(c⊗ d) = ε(d)c = (C ⊗ ε)c(d⊗ c) for all c, d ∈ C. (8)
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A morphism of braided coalgebras is, by definition, a morphism of ordinary coalgebras which, in
addition, is a morphism of braided vector spaces.

1.5. Recall that a coalgebra C is called connected if the coradical C0 of C is one dimensional. In
this case there is a unique group-like element g ∈ C such that C0 = Kg. Sometimes, we will write
(C, g), to emphasize the group-like element g. We also ask that f(gC) = gD, for any morphism
f : (C, gC) → (D, gD) of connected coalgebras.

By definition, a c-coalgebra C is connected if C0 = Kg and, for any x ∈ C,

c(x⊗ g) = g ⊗ x, c(g ⊗ x) = x⊗ g. (9)

Definition 1.6 (Takeuchi, [Ta]). A braided bialgebra is a sextuple (A,∇, 1,∆, ε, c) where

• (A,∇, 1, c) is a braided algebra,
• (A,∆, ε, c) is a braided coalgebra,
• ∆ and ε are morphisms of algebras (on the vector space A⊗A we take the algebra structure

A⊗c A).

Remark 1.7. Note that ∆ : A → A⊗c A is multiplicative if and only if

∆∇ = (∇⊗∇)(A⊗ c⊗A)(∆⊗∆). (10)

1.8. We will need graded versions of braided algebras, coalgebras and bialgebras. By definition, a
braided algebra (A,∇, 1, c) is graded if A =

⊕
n∈N An and ∇(An ⊗ Am) ⊆ An+m. The braiding c

is assumed to satisfy c(An ⊗Am) ⊆ Am ⊗An. In this case, it is easy to see that 1 ∈ A0.
Therefore a graded braided algebra can be defined by means of maps ∇n,m : An⊗Am → An+m

and cn,m : An ⊗Am → Am ⊗An, and an element 1 ∈ A0 such that:

∇n+m,p(∇n,m ⊗Ap) = ∇n,m+p(An ⊗∇m,p), for all n,m, p ∈ N, (11)

∇0,n(1⊗ a) = a = ∇n,0(a⊗ 1) for all a ∈ An, n ∈ N, (12)

cn+m,p(∇n,m ⊗Ap) = (Ap ⊗∇n,m)(cn,p ⊗Am)(An ⊗ cm,p) for all n,m, p ∈ N, (13)

cn,m+p(An ⊗∇m,p) = (∇m,p ⊗An)(Am ⊗ cn,p)(cn,m ⊗Ap) for all n,m, p ∈ N, (14)

c0,n(1⊗ a) = a⊗ 1 and cn,0(a⊗ 1) = 1⊗ a for all a ∈ An, n ∈ N. (15)

The multiplication ∇ can be recovered from (∇n,m)n,m∈N as the unique K-linear map such that
∇(x ⊗ y) = ∇p,q(x ⊗ y) for all p, q ∈ N, x ∈ Ap, y ∈ Aq. Analogously, the braiding c is uniquely
defined by c(x⊗ y) = cp,q(x⊗ y) for all p, q ∈ N, x ∈ Ap, y ∈ Aq. We will say that ∇n,m and cn,m

are the (n,m)-homogeneous components of ∇ and c, respectively.
Graded braided coalgebras can by described in a similar way. By definition a braided coalgebra

(C,∆, ε, c) is graded if C =
⊕

n∈N Cn,∆(Cn) ⊆
∑

p+q=n C
p ⊗ Cq, c(Cn ⊗ Cm) ⊆ Cm ⊗ Cn and

ε|Cn = 0, for n > 0 . If πp denotes the projection onto Cp then the comultiplication ∆ is uniquely
defined by the maps ∆p,q : Cp+q → Cp ⊗Cq, where ∆p,q := (πp ⊗ πq)∆|Cp+q . The counit is given
by a map ε0 : C0 → K, while the braiding c is uniquely determined by a family (cn,m)n,m∈N, as for
braided algebras. The families (∆n,m)n,m∈N, (c

n,m)n,m∈N and ε0 has to satisfy the relations that
are dual to (11) – (15), namely:

(∆n,m ⊗ Cp)∆n+m,p = (Cn ⊗∆m,p)∆n,m+p for all n,m, p ∈ N, (16)

(ε0 ⊗ Cn)∆0,n(c) = c = (Cn ⊗ ε0)∆n,0(c) for all c ∈ Cn, n ∈ N, (17)

(Cp ⊗∆n,m)cn+m,p = (cn,p ⊗ Cm)(Cn ⊗ cm,p)(∆n,m ⊗ Cp) for all n,m, p ∈ N, (18)

(∆m,p ⊗ Cn)cn,m+p = (Cm ⊗ cn,p)(cn,m ⊗ Cp)(Cn ⊗∆m,p) for all n,m, p ∈ N, (19)

(ε0 ⊗ C)c(c⊗ d) = ε0(d)c = (C ⊗ ε0)c(d⊗ c) for all c ∈ Cn, d ∈ C0. (20)

We will say that ∆n,m is the (n,m)-homogeneous component of ∆.
A graded braided bialgebra is a braided bialgebra which is graded both as an algebra and

as a coalgebra.
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Remark 1.9. Let C =
⊕

n∈N Cn be a graded braided coalgebra. By [Sw, Proposition 11.1.1], if

(Cn)n∈N is the coradical filtration, then Cn ⊆
⊕

m≤n C
m. Therefore, if C0 is one dimensional then

C is connected.

Definition 1.10. A graded braided coalgebra will be called 0-connected if its homogeneous com-
ponent of degree 0 is of dimension one.

Lemma 1.11. Let (C, c) be a connected braided coalgebra. Then c induces a canonical braiding cgrC
on grC such that (grC, cgrC) is a 0-connected graded braided coalgebra, where grC is constructed
with respect to the coradical filtration on C.

Proof. Let (Cn)n∈N be the coradical filtration. Since C is connected, we have C0 = Kg, where
g is the unique group-like element of C. We claim that c(Cn ⊗ Cm) ⊆ Cm ⊗ Cn. For n = 0 this
relation holds true as, by definition, c(x⊗ g) = g ⊗ x for all x ∈ C. We choose a basis {yi | i ∈ I}
on Cm and we assume that the above inclusion is true for n. Let x ∈ Cn+1 and y ∈ Cm. Since
Cn+1 = Cn+1

+ ⊕Kg, by [Sw, Proposition 10.0.2], ∆(x) = x ⊗ g + g ⊗ x +
∑q

k=1 x
′
k ⊗ x′′

k , where
x′
k, x

′′
k ∈ Cn. Moreover,

c(x⊗ y) =
∑

i∈I
yi ⊗ xi,

with xi ∈ C, and the set {i ∈ I | xi ̸= 0} finite. Since (C ⊗∆)c = (c⊗ C)(C ⊗ c)(∆⊗ C) we get∑p

i=1
yi ⊗∆(xi) =

∑p

i=1
yi ⊗ xi ⊗ g +

∑p

i=1
yi ⊗ g ⊗ xi + (c⊗ C)(C ⊗ c)(

∑q

k=1
x′
k ⊗ x′′

k ⊗ y).

By induction hypothesis, (c⊗C)(C ⊗ c)(
∑q

k=1 x
′
k ⊗ x′′

k ⊗ y) ∈ Cm ⊗Cn ⊗Cn, so this element can
be written as

∑
i∈I yi ⊗ zi, with zi ∈ Cn ⊗ Cn and the set {i ∈ I | zi ̸= 0} is finite. Hence, for all

i ∈ I, we have

∆(xi) = xi ⊗ g + g ⊗ xi + zi.

Thus xi ∈ Cn+1, so c(x⊗ y) ∈ Cm ⊗ Cn+1. Hence, by induction, c(Cn ⊗ Cm) ⊆ Cm ⊗ Cn, so

c(Cn−1 ⊗ Cm + Cn ⊗ Cm−1) ⊆ Cm ⊗ Cn−1 + Cm−1 ⊗ Cn.

Therefore c induces a unique K-linear map cn,mgrC : gr nC ⊗ grmC → grmC ⊗ gr nC. We define

cgrC :=
⊕

n,m cn,mgrC . Now it is easy to see that (grC, cgrC) is a graded braided coalgebra. �

Remark 1.12. If (C, c, g) is a connected braided coalgebra then c induces a canonical braiding cP
on the space P (C) = {c ∈ C | ∆(c) = c⊗ g + g ⊗ c}, of primitives elements in C. Indeed, by [Sw,
Proposition 10.0.1] we have P (C) = (Ker ε)∩C1. Thus c maps P (C)⊗P (C) to itself, see the proof
of the preceding lemma.

Lemma 1.13. Let (A,∇, u, c) be a c-algebra and let ∆ : A → A ⊗c A be a morphism of algebras.
We fix x, a ∈ A such that ∆(a) = a⊗ 1 + 1⊗ a. Then

∆(xa) = (∇⊗A)(A⊗ c)[∆(x)⊗ a] + (A⊗∇)[∆(x)⊗ a]. (21)

Proof. Let ∆(x) =
∑p

i=1 x
′
i ⊗ x′′

i . Then

∆(xa) = ∆(x) · (a⊗ 1 + 1⊗ a) =
∑p

i=1
(x′

i ⊗ x′′
i ) · (a⊗ 1 + 1⊗ a)

=
∑p

i=1
x′
ic(x

′′
i ⊗ a) +

∑p

i=1
x′
i ⊗ x′′

i a

= (∇⊗A)(A⊗ c)[∆(x)⊗ a] + (A⊗∇)[∆(x)⊗ a].

�

Proposition 1.14. To any braided vector space (V, c) we can associate a 0-connected graded braided
bialgebra (T = T (V, c),∇T , 1T ,∆T , εT , cT ) where

• (T = T (V, c),∇T , 1T ) is the tensor algebra T (V ) i.e. the free algebra generated by V .
• cT is constructed iteratively from c.
• ∆T : T → T ⊗cT T is the unique algebra homomorphism defined by setting ∆T (v) =

1T ⊗ v + v ⊗ 1T for every v ∈ V .
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• εT : T → K is the unique algebra homomorphism defined by setting εT (v) = 0 for every
v ∈ V.

Remark 1.15. Note that ∆T is the dual construction of the quantum shuffle product, introduced
by Rosso in [Ro]. The K-linear map cn,mT is given in the figure below:

c
T

n m,
=

T V
m

( ) T V
n

( )

T V
m

( )T V
n

( )
... ...

... ...

where each crossing represents a copy of c.

Remark 1.16. If A =
⊕

n∈N An is a 0-connected graded c-bialgebra then ∆n,0 = ∆0,n = IdAn .
Indeed, the proof given in the case A = T (V ) works for an arbitrary connected graded c-bialgebra.

Theorem 1.17. Let (V, c) be a braided vector space. Then iV : V → T (V ) is a morphism of
braided vector spaces. If (A,∇A, 1A, cA) is a braided algebra and f : V → A is a morphism of

braided vector spaces then there is a unique morphism f̃ : T (V, c) → A of braided algebras that lifts
f . If, in addition, A is a braided bialgebra and f(V ) is contained in P (A), the set of primitive

elements of A, then f̃ is a morphism of braided bialgebras.

1.18. Recall ([Ka, page 74]) that the X-binomial coefficients
(
n
k

)
X

are defined as follows. We set

(0)X = (0)!X = 1 and, for n > 0, define (n)X := 1+X+· · ·+Xn−1 and (n)!X = (1)X(2)X · · · (n)X .
Then: (

n
k

)
X

=
(n)!X

(k)!X (n− k)!X
. (22)

It is well known that
(
n
k

)
X

is a polynomial. Therefore we may specialize X at an arbitrary element

λ ∈ K. In this way we get an element
(
n
k

)
λ
∈ K. Note that, if λ is a root a unity, then

(
n
k

)
λ
may be

zero. If char(K) = 0 and λ = 1, the formula shows that
(
n
k

)
1
is the classical binomial coefficient.

Definition 1.19. We say that a braided vector space (V, c) is of Hecke-type (or that c is of
Hecke-type) of mark m(c) = λ if

(c+ IdV ⊗2)(c− λIdV ⊗2) = 0.

Remark 1.20. For every Hecke-type braiding c of mark λ, the operator č := −λ−1c is also of
Hecke-type. We have m(č) = λ−1. Note that, for d = č, one has ď = c.

2. Braided enveloping algebras

In this section we introduce the main example of c-bialgebras that we will deal with, namely
the enveloping algebra of a c-Lie algebra.

Given a vector spaces V,W and a K-linear map α : V ⊗ V → W , we will denote α ⊗ V and
V ⊗ α by α1 and α2 respectively.

Definition 2.1. Let (V, c) be a braided vector space. We say that a K-linear map b : V ⊗V → V
is a c-bracket, or braided bracket, if the following compatibility conditions hold true:

cb1 = b2c1c2 and cb2 = b1c2c1 (23)

Let b be a c-bracket on (V, c) and let b′ be a c′-bracket on (V ′, c′). We will say that a morphism
of braided vector spaces from V to V ′ is a morphism of braided brackets if fb = b′(f ⊗ f).
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Let b be a bracket on a braided vector space (V, c) of Hecke-type with mark λ. Let Ic,b is the
two-sided ideal generated by the set

Xc,b = {c(z)− λz − b(z) | z ∈ V ⊗ V = T 2(V )}.
The enveloping algebra of (V, c, b) is by definition the algebra

U = U(V, c, b) :=
T (V, c)

Ic,b
.

We will denote by πc,b : T (V, c) → U(V, c, b) the canonical projection.
When b = 0, the enveloping algebra of (V, c, 0) is called the c-symmetric algebra, or braided

symmetric algebra, if there is no danger of confusion. It will be denoted by S(V, c).

Proposition 2.2. Let b be a bracket on a braided vector space (V, c) of Hecke-type with mark
λ. Then Ic,b is a coideal in T (V, c). Moreover, on the quotient algebra (and coalgebra) there is a
natural braiding cU such that (U(V, c, b), cU ) is a braided bialgebra.

Proof. We denote T (V, c) and Tn(V, c) by T and Tn, respectively. We first prove that cT maps
Ic,b ⊗ T into T ⊗ Ic,b and T ⊗ Ic,b into Ic,b ⊗ T. Let x ∈ Tn, y ∈ Tm, t ∈ T p and z ∈ T 2. Since c
verifies the braid equation and (23) we get:

cn+m+2,p(Tn ⊗ c⊗ Tm ⊗ T p) = (T p ⊗ Tn ⊗ c⊗ Tm)cn+m+2,p,

cn+m+1,p(Tn ⊗ b⊗ Tm ⊗ T p) = (T p ⊗ Tn ⊗ b⊗ Tm)cn+m+2,p.

Then

cT [(Tn ⊗ (c− λIdT 2 − b)⊗ Tm)⊗ T p] = [T p ⊗ (Tn ⊗ (c− λIdT 2 − b)⊗ Tm)] cT ,

relation that shows us that cT maps Ic,b ⊗ T into T ⊗ Ic,b. The other property can be proved
similarly.

We claim that Xc,b is a coideal in T . In fact we will prove that Xc,b contains only primitive
elements in T . Let z ∈ T 2. By Proposition 1.14 we have

∆T (z) = z ⊗ 1 + z + c(z) + 1⊗ z,

∆T (c(z)) = c(z)⊗ 1 + c(z) + c2(z) + 1⊗ c(z).

Thus ∆T (c(z)−λz) = (c(z)−λz)⊗1+1⊗ (c(z)−λz), as c is a Hecke braiding of mark λ. It follows
that c(z)− λz ∈ P (T ). Since b(z) ∈ V we deduce that c(z)− λz − b(z) ∈ P (T ), so Xc,b ⊆ P (T ).

Now, by (21), it easily follows that Ic,b, the ideal generated by Xc,b, is a coideal. It remains to
show that c factors through a braiding cU of U := U(V, c, b), that makes U a braided bialgebra.
Let πc,b : T → U be the canonical projection. By the foregoing, cT maps the kernel of πc,b ⊗ πc,b

into itself, so there is a K-linear morphism cU : U ⊗ U → U ⊗ U such that

cU (πc,b ⊗ πc,b) = (πc,b ⊗ πc,b)cT .

Since T is a cT -bialgebra, this relation entails that U is a cU -bialgebra and that the canonical
projection πc,b becomes a morphism of braided bialgebras. �

Remark 2.3. Let (V, c) be an arbitrary braided vector space. Let Kn := Ker(Sn) where Sn

denotes the quantum symmetrizer [AS, 2.3]. It is well-known that
⊕

nN Kn is an ideal and a
coideal in T (V, c), see [AS, section 3]. Since

cn,mT (Tn ⊗Km +Kn ⊗ Tm) ⊆ Km ⊗ Tn + Tm ⊗Kn

it follows that B(V, c) = T (V, c)/
(⊕

n∈N Kn
)
is a quotient graded braided bialgebra of T (V, c),

that is called the Nichols algebra of (V, c). Let us now assume that cis a braiding of Hecke-type of
mark λ. By the definition of Hecke operators we have

Im(c− λIdT 2) ⊆ Ker(IdT 2 + c) = K2 ⊆
⊕

n∈N
Kn.

Therefore, there is a morphism of braided bialgebras φ : S(V, c) → B(V, c) such that φ|V = IdV .
Obviously φ is surjective, since B(V, c) is generated by V. Later (see Theorem 2.17) we will see
that the space of primitive elements in S(V, c) and the homogeneous component S1(V, c) = V are
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identical. By [Mo, Theorem 5.3.1], it follows that φ is injective too. Thus, S(V, c) and B(V, c) are
isomorphic braided bialgebras.

We are going to investigate some basic properties of these objects.

Proposition 2.4. Let (A,∇, 1,∆, ε, cA) be a connected braided bialgebra. Let P be the space of
primitive elements of A. Assume that there is λ ∈ K∗ such that cP := cA|P⊗P is a braiding of
Hecke-type on P of mark λ. Then:

a) ∇(cP −λIdP⊗2)(P ⊗P ) ⊆ P, so we can define bP : P ⊗P → P by bP = ∇(cP −λIdP⊗2)|P⊗P .
b) The map bP is a braided bracket on the braided vector space (P, cP ).
c) Let f : (V, c, b) → (P, cP , bP ) be a morphism of braided brackets and assume that c is a braiding

of Hecke-type with mark λ. Then there is a unique morphism of braided bialgebras f̃ : U(V, c, b) → A
that lifts f .

Proof. First, observe that, by Remark 1.12, cA(P ⊗P ) ⊆ P ⊗P so that it makes sense to consider
cP : P ⊗ P → P ⊗ P.

a) By assumption, cP is a Hecke operator on P of mark λ. For z ∈ P ⊗ P, by (21) we get:

∆∇(z) = ∇ (z)⊗ 1 + z + cP (z) + 1⊗∇ (z) ,

∆∇cP (z) = ∇cP (z)⊗ 1 + cP (z) + c2P (z) + 1⊗∇cP (z) .

Therefore ∇(cP − λIdP⊗2) (z) ∈ P. This shows that ∇(cP − λIdP⊗2)(P ⊗ P ) ⊆ P.
b) We have to prove the compatibility relation between c and b, that is we have (23). But these

relations follows immediately by the braid relation and the fact that A is a cA-algebra.
c) Apply the universal property of T (V, c) (see Theorem 1.17) to get a morphism f ′ : T (V, c) → A

of braided bialgebras that lifts f . Since f is a morphism of braided brackets, by the definition
of bP , it results that f ′ maps c(z) − λz − b(z) to 0. Therefore f ′ factors through a morphism

f̃ : U(V, c, b) → A, which lifts f and is compatible with the braidings (note that U(V, c, b) is a
braided bialgebra in view of Theorem 2.2). �

Proposition 2.5. Let (A,∇, 1,∆, ε, cA) be a connected braided bialgebra. Let P denote the prim-
itive part of A. Assume that there is λ ∈ K∗ such that ∇cA = λ∇ on P ⊗ P . If cP = cA|P⊗P

then cP is of Hecke-type on P of mark λ. Moreover, if (V, c) is a braided vector space such that c
is a Hecke operator of mark λ and f : (V, c) → (P, cP ) is a morphism of braided vector spaces then

there is a unique morphism of braided bialgebras f̃ : S(V, c) → A that lifts f . If A is graded then

f̃ respects the gradings on S(V, c) and A.

Proof. For z ∈ P ⊗ P, by (21) we get:

∆∇(z) = ∇ (z)⊗ 1 + z + cA(z) + 1⊗∇ (z) ,

∆∇cA(z) = ∇cA (z)⊗ 1 + cA (z) + c2A(z) + 1⊗∇cA (z) .

By assumption, ∇cA(z) = λ∇(z) whence

0 = cA (z) + c2A(z)− λz − λcA(z) = (cA + IdA⊗2) (cA − λIdA⊗2) (z)

Thus cP is a Hecke operator of mark λ. By taking b = 0 in Proposition 2.4, it results that there

is f̃ that lifts f . �

Remark 2.6. The above proposition still works under the slighter assumption ∇cA = λ∇ on
Im f ⊗ Im f .

2.7. Let Tn := Tn(V ) and let T≤n :=
⊕

0≤m≤n T
m. By construction πc,b is a morphism of algebras

and coalgebras from T (V, c) to U(V, c, b). Thus U ′
n := πc,b(T

≤n) defines a braided bialgebra
filtration on U(V, c, b), i.e. (U ′

n)n∈N is an algebra and coalgebra filtration on U(V, c, b) which is
compatible with cU . It will be called the standard filtration on U(V, c, b). In general, this filtration
and the coradical filtration (Un)n∈N are not identical, but we always have U ′

n ⊆ Un, for any n ∈ N.
If b = 0 then S(V, c) := U(V, c, 0) is a graded cS-bialgebra, S(V, c) =

⊕
n∈N Sn(V, c). The

standard filtration on S(V, c) is the filtration associated to this grading.
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Proposition 2.8. Let b be a c-bracket on a braided vector space (V, c) of Hecke-type. Then
U(V, c, b) is a connected coalgebra. Moreover, for every braided vector space (V, c), S(V, c) is a
0-connected graded braided coalgebra.

Proof. We know that the tensor algebra of an arbitrary braided vector space is a 0-connected
coalgebra. By definition, U(V, c, b) is a quotient coalgebra of T (V, c), where λ = m(c). Then, in
view of [Mo, Corollary 5.3.5], U(V, c, b) is connected. In particular, braided symmetric algebras are
connected coalgebras. They are also 0-connected since they are graded quotients of T (V, c). �

Remark 2.9. Let b be a c-bracket on a braided vector space (V, c) of Hecke-type. The composition
of the inclusion V → T (V, c) with the canonical projection πc,b gives a map

ιc,b : V → U(V, c, b).

Its image is included in the space of primitive elements of U(V, c, b). In general ιc,b is neither
injective nor onto. Our purpose now is to investigate when ιc,b is injective (see Theorem (4.3)).

Definition 2.10. Let (B,∇B , 1B ,∆B , εB , cB) be a graded braided bialgebra. For every a, b, n ∈ N,
set

ΓB
a,b := ∇a,b

B ∆a,b
B .

Lemma 2.11. Let (B,∇B , 1B ,∆B , εB , cB) be a 0-connected graded braided bialgebra. Then

∆n,0
B (z) = z ⊗ 1B and ∆0,n

B = 1B ⊗ z, for every z ∈ Bn.

Moreover

∆n,1
B ∇n,1

B = IdBn⊗B1 +
(
∇n−1,1

B ⊗B1
)(

Bn−1 ⊗ c1,1B

)(
∆n−1,1

B ⊗B1
)
. (24)

Proof. The first assertion follows by Remark 1.16. Since B is a graded bialgebra we have

∆n,1
B ∇n,1

B =

 (
∇n,0

B ⊗∇0,1
B

)(
Bn ⊗ c0,0B ⊗B1

)(
∆n,0

B ⊗∆0,1
B

)
+

+
(
∇n−1,1

B ⊗∇1,0
B

)(
Bn−1 ⊗ c1,1B ⊗B0

)(
∆n−1,1

B ⊗∆1,0
B

) 
= IdBn⊗B1 +

(
∇n−1,1

B ⊗B1
)(

Bn−1 ⊗ c1,1B

)(
∆n−1,1

B ⊗B1
)
,

so that (24) holds. �

Definition 2.12. Let (A,∇, 1A) be a graded algebra. We say that A is a strongly N-graded
algebra whenever ∇i,j : Ai ⊗ Aj → Ai+j is an epimorphism for every i, j ∈ N (equivalently
∇n,1 : An ⊗A1 → An+1 is an epimorphism for every n ∈ N).

Dually, let (C,∆, ε) be a graded coalgebra. We say that C is a strongly N-graded coalgebra
whenever ∆i,j : Ci+j → Ci⊗Cj is a monomorphism for every i, j ∈ N (equivalently ∆n,1 : Cn+1 →
Cn ⊗ C1 is a monomorphism for every n ∈ N).

For more details on these (co)algebras see e.g. [AM1].

Definition 2.13. An element λ ∈ K∗ is called n-regular whenever (k)λ ̸= 0, for any 1 ≤ k ≤ n.
If λ is n-regular for any n > 0, we will simply say that λ is regular.

Remarks 2.14. 1) Note that λ ̸= 1 is regular if and only if λ is not a root of one, while 1 is regular
if and only if char(K) = 0.

2) If λ is n-regular (respectively regular) then λ−1 is also n-regular (respectively regular).

Theorem 2.15. Let (B,∇B, 1B ,∆B , εB , cB) be a 0-connected graded braided bialgebra and let λ ∈
K∗ be regular. The following are equivalent.

(1) B is a bialgebra of type one and c1,1B is a braiding of Hecke-type of mark λ.

(2) B is strongly N-graded as a coalgebra, ∇1,1
B is surjective and c1,1B is a braiding of Hecke-type

of mark λ.

(3) B is strongly N-graded as a coalgebra and
(
c1,1B − λIdB2

)
∆1,1

B = 0.
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(4) B is strongly N-graded as an algebra, ∆1,1
B is injective and c1,1B is a braiding of Hecke-type

of mark λ.

(5) B is strongly N-graded as an algebra and ∇1,1
B

(
c1,1B − λIdB2

)
= 0.

Proof. (1) ⇒ (2) By definition, B is strongly N-graded both as a coalgebra and as an algebra.
(2) ⇒ (3) We have

0 =
(
c1,1B − λIdB2

)(
c1,1B + IdB2

)
(24)
=

(
c1,1B − λIdB2

)
∆1,1

B ∇1,1
B .

Since ∇1,1
B is an epimorphism, we get

(
c1,1B − λIdB2

)
∆1,1

B = 0.

(3) ⇒ (1) We have

∆n,1
B ΓB

n,1 = ∆n,1
B ∇n,1

B ∆n,1
B

(24)
= ∆n,1

B +
(
∇n−1,1

B ⊗B1
)(

Bn−1 ⊗ c1,1B

)(
∆n−1,1

B ⊗B1
)
∆n,1

B

= ∆n,1
B +

(
∇n−1,1

B ⊗B1
)(

Bn−1 ⊗ c1,1B ∆1,1
B

)
∆n−1,2

B

= ∆n,1
B +

(
∇n−1,1

B ⊗B1
)(

Bn−1 ⊗ λ∆1,1
B

)
∆n−1,2

B

= ∆n,1
B + λ

(
∇n−1,1

B ∆n−1,1
B ⊗B1

)
∆n,1

B = ∆n,1
B + λ

(
ΓB
n−1,1 ⊗B1

)
∆n,1

B ,

so that
∆n,1

B ΓB
n,1 = ∆n,1

B + λ
(
ΓB
n−1,1 ⊗B1

)
∆n,1

B . (25)

Let us prove by induction that

ΓB
n,1 = (n+ 1)λ IdBn+1 , for every n ≥ 1. (26)

n = 1) We have

∆1,1
B ΓB

1,1

(25)
= ∆1,1

B + λ∆1,1
B = (2)λ ∆

1,1
B .

Since, by hypothesis, ∆1,1
B is injective, we obtain ΓB

1,1 = (2)q IdB2 .

n− 1 ⇒ n) We have

∆n,1
B ΓB

n,1

(25)
= ∆n,1

B + λ
(
ΓB
n−1,1 ⊗B1

)
∆n,1

B = ∆n,1
B + λ (n)λ ∆

n,1
B = (n+ 1)λ ∆

n,1
B

Since, by hypothesis, ∆n,1
B is injective, we obtain ΓB

n,1 = (n+ 1)λ IdBn+1 .
We have so proved (26).
Since λ is regular, we have (n+ 1)λ ̸= 0 so that

∇n,1
B ∆n,1

B = ΓB
n,1

(26)
= (n+ 1)λ IdBn+1

is bijective for every n ≥ 1. Therefore ∇n,1
B is surjective for every n ≥ 1. Equivalently B is strongly

N-graded as an algebra and hence of type one. Moreover(
c1,1B − λIdB2

)(
c1,1B + IdB2

)
(24)
=

(
c1,1B − λIdB2

)
∆1,1

B ∇1,1
B = 0.

(1) ⇔ (4) ⇔ (5) It follows by dual arguments. �

Definition 2.16. A graded coalgebra C =
⊕

n∈N Cn is called strict if it is 0-connected and

P (C) = C1.

Theorem 2.17. (cf. [AS, Proposition 3.4]) Let (V, c) be a braided vector space of Hecke-type with
regular mark λ. Then S (V, c) is a bialgebra of type one. In particular S(V, c) is a strict coalgebra.

Proof. By definition, we have

S := S (V, c) = U(V, c, 0) =
T (V, c)

(c(z)− λz | z ∈ V ⊗ V )
.

Thus, since S is a graded quotient of the graded braided bialgebra T (V, c) , we get that S is strongly

N-graded as an algebra. Moreover ∇1,1
S

(
c1,1S − λIdS2

)
= 0. By Theorem 2.15, we conclude. �
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3. Categorical subspaces

Definition 3.1. [Kh, 2.2] A subspace L of a braided vector space (V, c) is said to be categorical
if

c (L⊗ V ) ⊆ V ⊗ L and c (V ⊗ L) ⊆ L⊗ V. (27)

Theorem 3.2. Let (V, c) be a braided vector space of Hecke-type of mark λ. Assume λ ̸= 0, 1. Let
L be a categorical subspace of V . Then L = 0 or L = V .

Proof. From (c+ IdV⊗V ) (c− λIdV⊗V ) = 0 and λ ̸= 1, we get c = (λ− 1)
−1 (

c2 − λIdV⊗V

)
so

that

c (L⊗ V ) =
1

λ− 1

(
c2 − λIdV⊗V

)
(L⊗ V )

(27)

⊆ L⊗ V.

Then
c (L⊗ V ) ⊆ (V ⊗ L) ∩ (L⊗ V ) = L⊗ L. (28)

From (c+ IdV⊗V ) (c− λIdV⊗V ) = 0 and λ ̸= 0, we get IdV⊗V = λ−1
(
c2 + (1− λ) c

)
so that

L⊗ V =
1

λ

(
c2 + (1− λ) c

)
(L⊗ V )

(28),(27)

⊆ L⊗ L.

Since L ⊆ V, we deduce that L = 0 or L = V. �
Proposition 3.3. Let b be a c-bracket on a braided vector space (V, c) of Hecke-type of mark λ.
Assume λ ̸= 0, 1. Then b is zero or surjective.

Proof. Let L = Im (b) ⊆ V. We have that

cb1 = b2c1c2 ⇒ c (L⊗ V ) ⊆ V ⊗ L,

cb2 = b1c2c1 ⇒ c (V ⊗ L) ⊆ L⊗ V.

Thus L is a categorical subspace of V. By Theorem 3.2, we get that L = 0 or L = V . �
Proposition 3.4. Let V be an object in the monoidal category H

HYD of Yetter-Drinfeld modules
over some Hopf algebra H. Assume that cV,V is a braiding of Hecke type of mark λ and that λ ̸= 0, 1.
Then V is simple in H

HYD.

Proof. Any subspace of V in H
HYD is categorical. We conclude by Theorem 3.2. �

4. Trivial braided brackets

Let b be a braided bracket on (V, c). Our aim now is to answer the following natural question:
when is ιc,b : V → U(V, c, b) injective?

Proposition 4.1. Let b be a c-bracket on a braided vector space (V, c) of Hecke type. If gr′U(V, c, b)
is the graded associated to the standard filtration on U(V, c, b), then gr′U(V, c, b) is a graded braided
bialgebra and there is a canonical morphism θ : S(V, c) → gr′U(V, c, b) of graded braided bialgebras.
Moreover θ is surjective.

Proof. Let T≤n :=
⊕

0≤m≤n T
m and let (U ′

n)n∈N be the standard filtration on U := U(V, c, b). Let

∇U and cU be the multiplication and the braiding of U := U(V, c, b), respectively. If T := T (V, c)
and cT is the braiding of T then the canonical projection πU : T → U is a morphism of braided
bialgebras. Since cT (T

≤n ⊗T≤m) ⊆ T≤m ⊗T≤n we deduce that cU (U
′
n ⊗U ′

m) ⊆ U ′
m ⊗U ′

n, for any
n,m ∈ N. Hence cU induces a braiding cgr′U : gr′U ⊗ gr′U → gr′U ⊗ gr′U. The standard filtration
is a coalgebra filtration, as πU is a morphism of coalgebras, so gr′U is a coalgebra. One can prove
easily that, with respect to this coalgebra structure, gr′U becomes a graded braided bialgebra.

Let λ = m(c). We define θ1 : V → U ′
1/U

′
0 by θ1 = pιc,b, where p : U ′

1 → U ′
1/U

′
0 is the

canonical projection. The image of θ1 is included in the component of degree 1 of gr′U, so Im θ1 ⊆
P (gr′U). Clearly θ1 is a map of braided vector spaces. One can check that ∇gr′U cgr′U = λ∇gr′U

on U ′
1/U

′
0 ⊗ U ′

1/U
′
0. By Proposition 2.5 (see also Remark 2.6) there is a unique morphism of

graded braided bialgebras θ : S(V, c) → gr′U that lifts θ1. On the other hand, gr′U(V, c, b) is
generated as an algebra by U ′

1/U
′
0. Since U ′

1/U
′
0 is included into the image of θ, we conclude that

θ is surjective. �



BRAIDED BIALGEBRAS OF HECKE-TYPE 13

Remark 4.2. The second statement in the following theorem is well known, see [Gu1]. Nevertheless
we include it for sake of completeness.

Theorem 4.3. Let K be a field with charK ̸= 2. Let b be a c-bracket on a braided vector space
(V, c) of Hecke-type of mark λ ̸= 0 such that (3)!λ ̸= 0.

Assume that the K-linear map ιc,b : V → U(V, c, b) is injective.

• If λ ̸= 1, then b = 0.
• If λ = 1, then b fulfills

bc = −b and bb1(IdV ⊗3 − c2 + c2c1) = 0 (29)

i.e. (V, c, b) is a generalized Lie algebra in the sense of [Gu1].

Proof. Denote by Tn the n-th graded component of T = T (V, c) and set T≤n :=
⊕

0≤m≤n T
m and

T≥n :=
⊕

m≥n T
m.

Let γ := c − λIdT 2 − b, let F := Im (γ) and R := Im (λIdV ⊗2 − c). We denote the component
of degree 1 of the map θ of Proposition 4.1 by θ1 : V → U ′

1/U
′
0.

Let x ∈ Ker θ1. It follows that ιc,b(x) ∈ U ′
0, so there is a ∈ K such that x − a1 ∈ (F ) . Since

(F ) ⊆ T≥1 we get a = 0. It results that ιc,b(x) = 0, so x = 0. In conclusion, θ1 is injective. But, in
view of Theorem 2.17, S(V, c) is a strict coalgebra so that P (S(V, c)) = S1(V, c) = V. Thus, since
θ1, the restriction of θ to V , is injective, by [Mo, Lemma 5.3.3] it follows that θ is injective too.
Since θ is always surjective, we conclude that θ is an isomorphism of braided bialgebras.

The algebras S(V, c) and U(V, c, b) are the quotients of T (V, c) through the two-sided ideals
generated by R and F , respectively. Set

ζ = (λIdV ⊗3 − c1)(λ
2IdV ⊗3 − λc2 + c2c1)

(2)
= (λIdV ⊗3 − c2)(λ

2IdV ⊗3 − λc1 + c1c2).

Since (2)λ ̸= 0, one can easily see that R = {x ∈ T 2 | c(x) = −x} (note that if x is in this set, then
(λIdV ⊗2 − c)(x) = (2)λx) and since (3)!λ ̸= 0 one gets that

(R⊗ V ) ∩ (V ⊗R) = {x⊗ T 3(V ) | c1(x) = c2(x) = −x} = Im ζ. (30)

Since the canonical map θ : S(V, b) → gr′U(V, c, b) is an isomorphism, by [BG, Lemma 0.4], it
follows that the following conditions are satisfied:

F ∩ T≤1 = 0 (31)(
T≤1 · F · T≤1

)
∩ T≤2 = F. (32)

We claim (31) implies

bc = −b. (33)

In fact we have

γ (c+ IdT 2) = (c− λIdT 2 − b) (c+ IdT 2) = −b (c+ IdT 2) (34)

so that Im [b (c+ IdT 2)] = Im [γ (c+ IdT 2)] . We will prove that Im [γ (c+ IdT 2)] = F ∩ T≤1, from
which the conclusion will follow.

⊆) It follows by (34).
⊇) Let y ∈ F ∩T≤1. Then there is x such that y = γ (x) = c (x)−λx−b (x) . Since y, b (x) ∈ T≤1

and c (x) , x ∈ V ⊗ V, it results c(x) = λx and y = −b(x). Thus
γ (c+ IdT 2) (x) = (2)λ γ (x) = (2)λ y. Since (2)λ ̸= 0, we get y ∈ Im [γ (c+ IdT 2)] .

Now, we define α := − (2)
−1
λ b|R. From (33), we deduce that

(IdT 2 − α) (c− λIdT 2) = c− λIdT 2 +
1

(2)λ
b (c− λIdT 2) = γ

so that F = Imγ = Im [(IdT 2 − α) (c− λIdT 2)] = {x − α(x) | x ∈ R}. By [BG, Lemma 3.3] (32)
implies that α satisfies the following two conditions:

(α⊗ V )(x)− (V ⊗ α)(x) ∈ R for all x ∈ (R⊗ V ) ∩ (V ⊗R),

α(α⊗ V − V ⊗ α)(x) = 0 for all x ∈ (R⊗ V ) ∩ (V ⊗R).
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The second property is equivalent to the fact that b(b1 − b2) = 0 on Im ζ, which at its turn is
equivalent to

bb1ζ = bb2ζ. (35)

Let us prove that b satisfies the following conditions

bb1(λ
2IdV ⊗3 − λc2 + c2c1) = 0, (36)

bb2(λ
2IdV ⊗3 − λc1 + c1c2) = 0. (37)

We have

bb2ζ
(30)
= bb2c1c2ζ

(23)
= bcb1ζ

(33)
= −bb1ζ

In view of (35), we obtain bb2ζ = 0 = bb1ζ as char (K) ̸= 2. We have

0 = bb1ζ = bb1(λIdV ⊗3 − c1)(λ
2IdV ⊗3 − λc2 + c2c1)

(33)
= (2)λbb1(λ

2IdV ⊗3 − λc2 + c2c1).

and

0 = bb2ζ = bb2(λIdV ⊗3 − c2)(λ
2IdV ⊗3 − λc1 + c1c2)

(33)
= (2)λbb2(λ

2IdV ⊗3 − λc1 + c1c2).

so that b satisfies (36) and (37). We have

0
(23)
= b [b1c2c1 − cb2] = bb1c2c1 − bcb2

(33)
= bb1c2c1 + bb2

(36)
= bb1

(
−λ2IdV ⊗3 + λc2

)
+ bb2

so that bb2 = λbb1 (λIdV ⊗3 − c2) . Similarly using cb1 = b2c1c2 in (23), (33) and (37) we get
bb1 = λbb2 (λIdV ⊗3 − c1) . Using these formulas we obtain

bb2 = λbb1 (λIdV ⊗3 − c2) = λλbb2 (λIdV ⊗3 − c1) (λIdV ⊗3 − c2)

= λ2bb2
(
λ2IdV ⊗3 − λc1 + c1c2 − λc2

) (37)
= −λ3bb2c2

(33)
= λ3bb2

so that
(
λ3 − 1

)
bb2 = 0. Assume b is not zero. By Proposition 3.3, if λ ̸= 0, 1, we get that b is

surjective. Thus bb2 = b (V ⊗ b) is surjective too and hence λ3 = 1, contradicting (3)λ ̸= 0. �

Remarks 4.4. Concerning the converse of Theorem 4.3, let us note that if b = 0 then the map ιc,b :
V → U(V, c, b) = S(V, c) is clearly injective. On the other hand, let K be a field of characteristic
zero. Given a c-bracket b on a braided vector space (V, c) where c2 = IdV⊗V (i.e. (V, c) of Hecke-
type of regular mark 1), then the canonical map ιc,b : V → U(V, c, b) is injective whenever b fulfills
(29) (see [Kh, Theorem 5.2]).

Example 4.5. [Mas] Let K be a field with char (K) = 2. Let V = Kx and let c : V ⊗ V →
V ⊗ V, c = IdV⊗V . Define b : V ⊗ V → V by b (x⊗ x) = ax for some a ∈ K\ {0} .

Assume there exists λ ∈ K\ {0, 1} such that (3)!λ ̸= 0 i.e. such that λ is not a primitive third
root of unity. Clearly (c+ IdV⊗V ) (c− λIdV⊗V ) = 0 so that c is of Hecke-type of mark λ. Moreover
b is a c-bracket on the braided vector space (V, c). Thus we can consider the universal enveloping
algebra

U = U(V, c, b) :=
T (V, c)

(c(z)− λz − b(z) | z ∈ V ⊗ V )
≃ K [X]

((1− λ)X2 − aX)
.

The canonical map ιc,b : V → U(V, c, b) is clearly injective. Nevertheless b ̸= 0.

Remark 4.6. Let (V, I ⊕ I∗ = V ⊗2, [, ]) be a braided Lie algebra in the sense of [Gu2, Definition
1] such that I := I− = Im(qIdV ⊗2 − S) and I∗ := I+ = Im(IdV ⊗2 + S) where I± ⊆ V ⊗2 are as in
[Gu2, Section 1]. Here S : V ⊗2 → V ⊗2 is a braiding of Hecke-type of mark q. Let b := −(2)q[, ].
Then b is a morphism in the braided monoidal category A is defined as before [Gu2, Definition 1].
Thus b is compatible with the braiding in A. This entails that b : V ⊗ V → V is a S-bracket. In
view of [Gu2, Proposition 5], we have that the map θ : S(V, c) → gr′U(V, c, b) of Proposition 4.1
is an isomorphism. This implies that the canonical map ιS,b : V → U(V, S, b) is injective. In fact
let x ∈ V be in the kernel of ιS,b. Then πU (x) = ιS,b(x) = 0 so that θ(x) = πU (x) + U ′

0 = 0 + U ′
0.

Since θ is injective, we get that x = 0. Therefore, in view of Theorem 4.3, if q ̸= −1 is not a cubic
root of one, we deduce that b = 0 and hence [, ] = 0 (note that in [Gu2] the characteristic of K is
assumed to be zero).
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Anyway, we outline that the case considered in [Gu2] does not require, in general, neither that
I := I− = Im(qIdV ⊗2 − S) nor that I∗ := I+ = Im(IdV ⊗2 + S). In fact the aim of [Gu2] is to
introduce a braided counterpart of the notion of S-Lie algebra (for S involutive) such that the
corresponding enveloping algebra is a quadratic algebra. Here S needs not to be of Hecke-type.

5. A Milnor-Moore type theorem for braided bialgebras

In this section we prove the main result of this paper, Theorem 5.5, which represents a variant
of Milnor-Moore Theorem for braided bialgebras. Then we deduce some consequences of this
theorem, including applications to certain classes of bialgebras in braided categories.

Definition 5.1. Let (A, cA) be a connected braided bialgebra. Let P := P (A). The braiding
cP = cA|P⊗P will be called the infinitesimal braiding of A.

Remarks 5.2. Let (A, cA) be a connected braided bialgebra. Let P := P (A) and let cP be the
infinitesimal braiding of A. If grA denotes the graded associated with respect to the coradical
filtration, then grA is strictly graded. Thus

P (grA) = gr1A ≃ P (A) = P.

Through this identification, c1,1grA is equal to cP . In conclusion the infinitesimal braiding of grA is
the infinitesimal braiding cP of A.

Definition 5.3. Let (A, cA) be a connected braided bialgebra and let P := P (A). The component

∆1,1
grA : A2/A1 → A1/A0 ⊗A1/A0 = P ⊗ P is called the infinitesimal comultiplication of A.

Let cP = cA|P⊗P and let λ ∈ K∗. We will say that ∆1,1
grA is λ-cocommutative (or that (A, cA) is

infinitesimally λ-cocommutative) if cP ◦∆1,1
grA = λ∆1,1

grA, that is we have:

c1,1grA ◦∆1,1
grA = λ∆1,1

grA. (38)

Proposition 5.4. Let K be a field with charK ̸= 2. Let A be a connected braided bialgebra and
assume that its infinitesimal braiding is of Hecke-type of mark λ ̸= 0, 1 such that (3)!λ ̸= 0. Let P
be the space of primitive elements of A and let bP = ∇(cP −λIdP⊗2)|P⊗P be the cP -bracket on the
braided vector space (P, cP ) defined in Proposition 2.4. Then bP = 0.

Let f : (V, c, b) → (P, cP , 0) be a morphism of braided brackets and assume that c is a braiding of

Hecke-type with mark λ. Then there is a unique morphism of braided bialgebras f̃ : U(V, c, b) → A
that lifts f .

Proof. By Proposition 2.4(b) it follows that bP is a cP -bracket on (P, cP ), hence we can apply
the universal property of U := U(P, cP , bP ). There is a unique morphism of braided bialgebras
ϕA : U → A that lifts IdP . Observe that the canonical map ιc,b : P → U is injective, as ϕAιc,b is
the inclusion of P into A. Now apply Theorem 4.3 to obtain that bP = 0. The last part follows
by 2.4. �
Theorem 5.5. Let K be a field with charK ̸= 2. Let (A, cA) be a connected braided bialgebra which
is infinitesimally λ-cocommutative for some regular element λ ̸= 0 in K. Let P = P (A). Then

• the infinitesimal braiding cP of A is of Hecke-type of mark λ and
• A is isomorphic as a braided bialgebra to the symmetric algebra S (P, cP ) of (P, cP ) when-

ever λ ̸= 1.

Proof. LetB := grA. ClearlyB is strongly N-graded as a coalgebra (see e.g. [AM2, Theorem 2.10]).
By assumption (A, cA) is infinitesimally λ-cocommutative and hence the same holds for (B, cB)

i.e.
(
c1,1B − λIdB2

)
∆1,1

B = 0. Since B is also 0-connected, by Theorem 2.15, B is a bialgebra of

type one and c1,1B is a braiding of Hecke-type of mark λ. In particular the infinitesimal braiding
of A is of Hecke-type of mark λ and B is generated as an algebra by B1 so that A is generated
as a K-algebra by P = P (A) = B1. Therefore, the canonical braided bialgebra homomorphism
f : U (P, cP , bP ) → A, arising by the universal property of the universal enveloping algebra, is
surjective. Assume λ ̸= 1. By Proposition 5.4, bP = 0 hence U (P, cP , bP ) = S (P, cP ) . On the
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other hand, by Theorem 2.17, P is the primitive part of S (P, cP ) and the restriction of f to P is
injective so that f is injective by [Mo, Lemma 5.3.3]. In conclusion f is an isomorphism. �
Remark 5.6. Let (H, cH) be a connected braided Hopf algebra and let B := grH be the graded
coalgebra associated to the coradical filtration of H. Let λ ∈ K∗. Since B is always strongly
N-graded as a coalgebra (see e.g. [AM2, Theorem 2.10]), in view of Theorem 2.15, the following
assertions are equivalent:

• H is cosymmetric in the sense of [Kh, Definition 3.1] (see also [Kh, Theorem 3.5]) and c1,1B

is a braiding of Hecke-type of mark λ,
• c1,1B ◦∆1,1

B = λ∆1,1
B i.e. H is infinitesimally λ-cocommutative.

Remark 5.7. With hypothesis of Theorem 5.5, if λ = 1 then A is isomorphic as a braided bialgebra
to the universal enveloping algebra U (P, cP , bP ) of (P, cP , bP ) . In fact regularity of λ in this case
means char (K) = 0. By Theorem 4.3 bc = −b and bb1(IdV ⊗3 −c2+c2c1) = 0 so that [Kh, Theorem
6.1] applies.

Corollary 5.8. Let K be a field with charK ̸= 2. Let (V, c) be a braided vector space such that c
is a braiding of Hecke-type of regular mark λ ̸= 0, 1. Let A be a braided bialgebra such that grA is
isomorphic as a braided bialgebra to S(V, c) then A is isomorphic to the symmetric algebra S(V, c)
of (V, c).

Proof. Obviously the infinitesimal comultiplication of S(V, c) is λ-cocommutative and, by Propo-
sition 2.8, S(V, c) is connected. Thus grA has the same properties. Hence A itself is connected
and by Remark 5.2, (A, cA) is infinitesimally λ-cocommutative. We conclude by applying Theorem
5.5. �
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