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Abstract 37 

The strain M8 of Pichia guillermondii isolated from the carposphere of apples (cv. Golden Delicious) 38 

showed a high efficacy in controlling grey mold, caused by Botrytis cinerea, on apples under 39 

semi-commercial conditions. Moreover, P. guilliermondii M8 produced high amounts of active 40 

exo-1,3-beta-glucanase in Lilly-Barnett minimal salt medium with different carbon sources, which greatly 41 

inhibited B. cinerea in vitro and in vivo tests. Therefore, an exo-1,3-beta-glucanase gene, named as PgExg1 42 

(GenBank accession number HQ113463) was cloned from the genomic DNA of the strain M8 by genome 43 

walking. The sequencing and the nucleotide BLAST analysis indicates that no introns are present inside 44 

the gene, which was confirmed by amplifying the full gene from complementary DNA (cDNA) of the 45 

yeast. An open reading frame of 1,224 bp encoding a 408-amino acid (aa) protein with a calculated 46 

molecular weight (Mr) of 46.9 kDa and an isoelectric point (pI) of 4.5 was characterized. Protein BLAST 47 

and phylogenetic tree analysis of the deduced amino acid sequences from the PgExg1 gene suggested that 48 

the glucanase produced by PgExg1 gene belongs to the Glycoside Hydrolase Family 5. Expression of 49 

PgExg1 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification 50 

with Ni-NTA and analysis with enzyme assay, yielded homogeneous recombinant PgExg1. At its optimal 51 

pH of 5.0 and its optimal temperature of 40°C, the recombinant enzyme protein showed the highest activity 52 

towards laminarin, while the highest stability was obtained when the enzyme was stored at pH of 7.0 and 53 

temperature of 4°C. 54 

 55 

Keywords: Biological control; Enzyme characterization; Molecular cloning; Postharvest pathogens; 56 

SDS-PAGE. 57 

 58 



 4

1. Introduction 59 

Due to the occurrence of fungicide-resistant pathogen strains (Holmes and Eckert, 1999), the increasing 60 

concerns for public safety and the subsequent cancellation of some of the most effective fungicides (Spadaro 61 

and Gullino, 2004), new strategies are required to control postharvest pathogens (Janisiewicz and Korsten, 62 

2002). One of the most promising alternatives to reduce pesticide use is biological control using microbial 63 

antagonists. This approach has been attracting increasing attention from the fruit growers and the 64 

researchers engaged in the control of postharvest diseases (Wisniewski et al., 1995; Ippolito et al., 2000; 65 

Spadaro et al., 2002). Among the microbial antagonists, yeasts received particular attention from the 66 

researchers, searching for new biocontrol agents against the pathogens on fruits and vegetables, because 67 

generally they have minimal negative toxicological or environmental impact (Spadaro et al., 2008; Zhang 68 

et al., 2010a). 69 

Understanding the mechanism of biocontrol is essential for developing appropriate commercial 70 

formulations, application methods, and to maximize the effectiveness of biological control agents (BCAs). 71 

For antagonistic yeasts, few modes of action have been proposed such as competition for limiting nutrients 72 

and site exclusion (Bencheqroun et al., 2007; Saravanakumar et al., 2008), induction of host resistance 73 

(Ippolito et al., 2000), and mycoparasitism (Chan and Tian, 2005). However, recently more attention has 74 

been paid to study the production of lytic enzymes by BCAs due to their roles in breaking down the 75 

pathogen cell wall and inhibiting the spore germination (Smits et al., 2001; Masih and Paul, 2002). 76 

Most phytopathogenic fungi have cell walls composed of complex polymers of β-1,3- and 77 

β-1,6-glucans, mannoproteins, as well as some chitin which play an important role in maintaining the cell 78 

integrity and protecting against biotic and abiotic stresses (Smits et al., 2001; Cheng et al., 2009). In the 79 

fungal cell wall, chitin acts as a structural backbone and is arranged in regularly ordered layers, and 80 
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β-1,3-glucan is a filling material arranged in an amorphous manner and the most abundant component of 81 

the fungal cell walls (Marcello et al., 2010). Thus, breakdown of the fungal cell wall requires the 82 

participation of different enzymes, especially β-1,3-glucanases and chitinase (Simmons, 1994). 83 

-1,3-glucanases can hydrolyze the substrate by two possible mechanisms: (1) exo--1,3-glucanase 84 

(EC3.2.1.58) hydrolyzes -glucans by sequentially cleaving glucose residues from the nonreducing end, 85 

and (2) endo--1,3-glucanase (EC 3.2.1.39) cleaves -linkages at random sites along the polysaccharide 86 

chain, releasing shorter oligosaccharides and glucose (Monteiro and Ulhoa, 2006). 87 

Lorito et al. (1994) found that β-1,3-glucanases were directly involved in the mycoparasitism 88 

interaction between Trichoderma species and their hosts. More recently, it was proven that 89 

β-1,3-glucanases participate directly or indirectly to the mechanism of biocontrol of some yeasts 90 

antagonistic against plant pathogens (Masih and Paul, 2002; Chan and Tian, 2005).  91 

Among the potential yeast antagonists, the yeast Pichia guilliermondii was effective in controlling 92 

different postharvest pathogens on a number of fruits and vegetables, such as Penicillium digitatum on 93 

grapes (Droby et al., 1997), Penicillium expansum on apples (Tian et al., 2002; Scherm et al., 2003), 94 

Rhizopus nigricans on tomatoes (Zhao et al., 2008) as well as anthracnose on chilli (Chanchaichaovivat et 95 

al., 2008). B. cinerea is the causal agent of grey mold on pome and stone fruits, and could cause large 96 

economic losses worldwide. However, information about the application of P. guilliermondii for 97 

controlling grey mold on apples is still limited and there is no report on cloning and characterization of the 98 

β-1,3-glucanase gene from the antagonistic yeast, P. guilliermondii.  99 

Therefore, the objectives of this research were i) to clone and characterize exo-β-1,3-glucanase gene 100 

from P. guilliermondii strain M8 to reveal its phylogenetic relationship with β-1,3-glucanases from other 101 

fungi, and ii) to express the exo-β-1,3-glucanase gene and demonstrate the activity of exo-β-1,3-glucanase 102 
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in controlling pathogens to prove its involvement in the biocontrol activity of the yeast.  103 

 104 

2. Materials and methods 105 

2.1 Microorganisms, fruit, vectors and molecular kit 106 

The antagonistic strain M8 of Pichia guilliermondii was obtained from the rhizosphere of maize 107 

cultivated in northern Italy (Zhang et al., 2011) and maintained on nutrient yeast dextrose agar (NYDA) 108 

slants (nutrient broth 8 g l-1, yeast extract 5 g l-1, glucose 10 g l-1 and agar 20 g l-1). The yeast was grown in 109 

YPD (20 g l-1 dextro-glucose, 20 g l-1 peptone casein, 10 g l-1 yeast extract) at 25°C for 48 h on a rotary 110 

shaker (200 rpm). Five strains of B. cinerea were provided by AGROINNOVA. They were maintained on 111 

PDA (potato dextrose agar) slants at 4°C and the conidia were harvested from pathogen mycelia grown on 112 

PDA in Petri dishes at 25°C for 7 days. The required concentrations of the conidia were determined using a 113 

Bürker chamber (Knittel, Germany). Apples (cv. Golden Delicious) for the biocontrol experiments were 114 

bought from supermarkets at a maturity suitable for marketing. 115 

The oligonucleotides and the vector pGEM-T and pET-23a(+) used in this study were obtained from 116 

Promega (Madison, WI, USA). Eschericha coli strain DH5α and strain BL21 were obtained from 117 

Invitrogen (Eugene, OR, USA). The kits for DNA and RNA extraction (RNeasy and DNeasy), QIAquik 118 

PCR purification, Reverse transcript PCR, Plasmid extraction, and QIAquik Gel extraction as well as the 119 

materials for PCR were purchased from Qiagen (Hilden, Germany). The kit “Gene Walking Made Easy”, 120 

the monoclonal anti-polyhistidine as first antibody and the A1293-AlkPhos APA Mouse Fab ads HIgG as 121 

second antibody for Western-blotting were purchased from Sigma (St Louis, MO, USA), and the materials 122 

for enzyme assays, protein purification and SDS-PAGE were purchased from Merck company (Darmstadt, 123 

Germany). 124 
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 125 

2.2 Preparation of cell wall and -1, 3-glucanase activity assay 126 

Cell wall preparations (CWP) of the pathogen were prepared as described by Saligkarias et al. (2002) 127 

with small modifications. Briefly, the pathogen mycelium was harvested from cultures grown in potato 128 

dextrose broth (PDB) medium for 72 h. the mycelium was filtered through four-layer cotton gauzes, 129 

washed twice with deionized water through Whatman No.1 filter paper and centrifuged (Centrifuger: 130 

6K15, Sigma, Germany) at 500g for 2 min. After removing the supernatant, the mycelial mats were 131 

sonicated with a probe type sonicator (USC6000, Malaysia) for 20 min and centrifuged at 500×g for 5 min. 132 

The supernatant was removed and the pellet was resuspended in deionized water. Then the crushed 133 

mycelium was resuspended into an equal volume of Tris/HCl buffer (50 mM and pH 7.2), centrifuged at 134 

1900×g for 15 min, and the supernatant was discarded. The pellet was subjected to three successive cycles 135 

of centrifugation and resuspension. The final pellet was frozen with liquid N2, lyophilized and stored at 136 

-20°C for further studies. 137 

The yeast strain M8 was grown in modified Lilly-Barnett minimal salt medium (Lilly and Barnett, 138 

1951) containing 2 mg ml-1 CWP as sole carbon source in 30 ml of culture media incubated at 25°C on a 139 

rotary shaker at 150 rpm for 0, 24, 72, 96 and 120 h. Culture filtrates from each individual flask were 140 

collected by centrifuging at 7,000g for 8 min, and the supernatants were used for the -1, 3-glucanase 141 

(EC3.2.1.58) activity assay. The assay was carried out by measuring the amount of reducing sugars 142 

released from laminarin (L9634, Sigma), using glucose as standard. A reaction mixture was prepared by 143 

adding 250 µl of 50 mM potassium acetate buffer (pH 5.0) containing 2.5 mg of laminarin per ml into 250 144 

µl of culture filtrate (Chan and Tian, 2005). The enzyme-substrate mixture was incubated at 40°C in a 145 

water bath (D-3508 Melsungen, Germany) for 2 h. Then 0.5 ml of dinitrosalicylic acid reagent was added, 146 
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the sample was boiled at 100°C for 5 min and after cooling, 2 ml deionized water was added and the 147 

absorbance was determined spectrophotometrically at 595 nm. Background levels of reducing sugars were 148 

determined with a supernatant substrate at time zero just prior to boiling at 100°C for 5 min. The protein 149 

concentration of the enzyme solution was determined according to Bradford (1976) by using bovine serum 150 

albumin (A1933, Sigma) as a standard. The specific activity was expressed as micromoles of glucose per 151 

milligram protein per hour (Fan et al., 2002). Each treatment had three replications and the experiment was 152 

repeated twice. 153 

 154 

2.3 Purification of exo--1,3-glucanase and its activity against B. cinerea  155 

Purification of -1,3-glucanase protein was carried out according to Tseng et al. (2008). The strain M8 156 

was grown in modified Lilly-Barnett minimal salt medium as described in section 2.2 and incubated at 157 

25°C on a rotary shaker (150 rpm) for 72 h. The strain M8 culture supernatant were collected by 158 

centrifuging at 7,000 g for 8 min. Ammonium sulfate (Merck) was added to 1000 ml of the culture 159 

supernatant and stirred at 4°C overnight to give up to 75% saturation. Following centrifugation at 18,000 g 160 

for 30 min at 4°C, the precipitated protein pellets were resuspended in 3 ml deionized water. A 0.1% 161 

protease inhibitor cocktail (Sigma, USA) was added, and samples were dialyzed (dialysis membrane 162 

molecular weight cut off = 12,000 kDa) against a 100-fold volume of deionized water at 4°C for 24 h and 163 

then stored at -20°C for further studies. 164 

To assess the activity of the purified crude enzyme against the pathogen, B. cinerea was grown on 165 

PDA in Petri dishes at 25°C for 4 days, and then two small wells were made close to the pathogen mycelia 166 

by removing the medium with a cork borer. One hundred µl of purified enzyme solution was added into 167 

one well and 100 µl of uncultured medium was added into the other, serving as a control (CK). After 168 
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incubation for two days, the inhibition of the pathogen mycelia was investigated. 169 

To determine the activity of the purified crude enzyme against the pathogen in vivo, the enzymes were 170 

tested directly on wounded apples according to Jijakli and Lepoivre (1998), with small modifications. 171 

Aliquots of 100 µl of the purified crude enzymes were pipetted into each wound site. After 2 hours 172 

incubation at room temperature, the wounds were inoculated with 30 µl of B. cinerea suspension at the 173 

concentration of 105 spores ml-1. Inoculated control fruits were rinsed with 100 µl deionized water, before 174 

pathogen inoculation. A blank control, treated with 100 µl of deionized water, was included. When dry, 175 

apples from different treatments were randomly packed in commercial plastic trays and stored at 20°C for 176 

3 days, when the diameters of the rotten lesions were measured. 177 

 178 

2.4 Cloning of the exo--1,3-glucanase gene 179 

To clone the -1,3-glucanase gene from the genomic DNA of P. guilliermondii strain M8, degenerate 180 

primers were designed according to the conserved protein sequences (VRIPIGYW and DHHHYQVF) 181 

obtained by using alignments of glucanase genes already published: DPf 5’- 182 

GTNCGNATHCCNATHGGNTAYTGG-3’ and DPr 5’-AANACYTGRTARTGRTGRTGRTGRTC-3’. The 183 

amplification was performed by Grads-PCR with 0.5°C as gradient for annealing temperature from 45 to 184 

60ºC. The reaction mixture (20 µl) contained 1 µl DNA template (50 ng), 200 mM each deoxynucleotide 185 

triphosphate, 2 µl 10 X buffer (Taq DNA Polymerase, Qiagen), 0.7 mM each primer, and 1.0 U Taq DNA 186 

Polymerase (Qiagen). The temperatures of Grads-PCR program were: 95°C, 3 min; 32 cycles: 94°C, 15 s; 187 

45-60°C (0.5°C as gradient), 45 s; 72°C, 30 s; with final extension 72°C, 10 min; 4°C. The PCR products 188 

were purified by agarose (2.0%, w/v) gel electrophoresis in TEB buffer, stained with sybr-safe, excised 189 

from the gel and purified with a QIAquick gel extraction kit (Qiagen) according to the supplier’s 190 
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instructions. The purified fragments were ligated into pGEM-T (Promega) cloning vector before 191 

transformation into chemically competent cells of E. coli strain DH5α (Invitrogen). Positive transformants 192 

were selected at 37°C on Luria Broth (LB) agar added with ampicillin (100 µg ml-1 of LB agar), IPTG (50 193 

mM) and X-gal (80 µg ml-1) for blue / white screening of recombinant colonies. Transformed E. coli 194 

strains were confirmed for the presence of insert using universal primers M13F 195 

(5’-CACGACGTTGTAAAACGAC-3’) and M13R (5’-GGATAACAATTTCACACAGG-3’).  196 

To amplify and identify 5’ and 3’ flanking regions of -1,3-glucanase gene from genomic DNA of P. 197 

guilliermondii strain M8, specific primers and restriction enzymes were designed according to the obtained 198 

sequences (Table 1) and the chemical kit “Gene Walking Made Easy” (UVS1, Sigma) was used according 199 

to the supplier’s instructions. The fragments from Vectorette Cla I and EcoR I library of P. guilliermondii 200 

strain M8 were purified, ligated into pGEM-T cloning vector and sequenced as described above. The 201 

obtained sequences were then subjected to BLAST and ORF Finder programs to assemble the whole 202 

sequence of the targeted gene. 203 

To amplify the -1,3-glucanase gene from the cDNA of P. guilliermondii strain M8, specific primers 204 

were designed according to the PgExg1 gene sequence obtained from the genomic DNA of P. 205 

guilliermondii M8: forward primer, 5’-ATGCTTCCATACTTCTTTATGATG-3’ and reverse primer, 206 

5’-CTAGAATTTACATTGGTTGGGATA-3’. Total RNA was extracted from P. guilliermondii M8 using 207 

RNeasy, a RNA extraction kit, according to the manufacture’s protocol (Qiagen). The concentration and 208 

quality of the total RNA were evaluated by measuring the absorbance of 280 nm and ratio of 260/280 nm 209 

with a spectrophotometer (Nanodrop 2000, Thermo Fisher Scientific, Wilmington, DE, USA). The 210 

first-strand cDNA of the RNA was obtained using QuantiTect® Reverse Transcription Kit (Cat. 205313, 211 

Qiagen). The PCR reaction mixtures were prepared with the first-strand cDNA of P. guilliermondii M8 as 212 
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template and the PCR programs followed: 95°C, 3 min; 34 cycles: 94°C, 30 s; 58°C, 45 s; 72°C, 1min 30 213 

s; 72°C, 10 min; 4°C. The PCR products were purified and sequenced as described above.  214 

 215 

2.5 DNA sequence and computer analysis 216 

BLAST and ORF Finder programs at the National Center for Biotechnology Information (NCBI) 217 

were used for the nucleotide sequence assembling analysis, deduction of the amino acid sequence and 218 

database searches. Multiple sequence alignments of DNA and amino acid sequence were performed using 219 

the programs of DNA-MAN 6.0 and Clustal W (http://www.ebi.ac.uk/Tools/es/Cgi-bin/clustalw2). The 220 

phylogenetic tree of the exo--1,3-glucanases was generated using ClustalX 2.09 and MEGA 4.1 by 221 

neighbour-joining method. 222 

 223 

2.6 Expression of the PgExg1 gene in E. coli BL21 224 

To further characterize the exo--1,3-glucanases encoded by the PgExg1 gene, the gene expression 225 

was performed by transforming the gene into E. coli BL21 (DE3) and inducing expression with IPTG. To 226 

amplify the PgExg1 fragment without signal sequence or terminator from the cDNA of P. gulliermondii 227 

strain M8, the primers forward EcoRI 5’-G/AATTCGAATTTACATTGGTTGGGATA-3’ (bases underlined 228 

encode EcoRI restriction site) and reverse HindIII 5’-A/AGCTTATAACTCGCCGAGGC-3’ (bases 229 

underlined encode HindIII restriction site) were used. The amplicon was ligated into pET-23a(+) with 230 

restriction sites of EcoRI and HindIII to produce the construct of pET-23a(+)-PgExg1. The expression 231 

construct was then transformed into E. coli BL21 (DE3) for the expression of the PgExg1 gene. The 232 

transformants with the plasmid pET-23a(+) served as control. The transformants were selected after growth 233 

in LB broth containing 100 µg ml-1ampicillin and incubated on a rotary shaker (150 rpm) at 37°C until 234 
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OD600nm reached 0.4-0.8, followed by induction with IPTG (final concentration 1.0 mM). The bacterial 235 

strains were then grown at 37°C for 5-6 h. 236 

 237 

2.7 SDS-PAGE and Western-blotting 238 

To characterize the recombinant proteins produced by the transformants of pET-23a(+)-PgExg1, 239 

SDS-PAGE was performed. The bacterial strains were grown and induced with IPTG as described above. 240 

The crude recombinant exo--1,3-glucanase in the supernatant was obtained by ultrasonication and 241 

removal of cell debris of the induced cells of BL21 containing the plasmids pET-23a(+)-PgExg1, and then 242 

subjected to SDS-PAGE. The protein extracts from the BL21 containing the empty vector pET-23a(+) were 243 

used as controls. After SDS-PAGE analysis, the recombinant proteins (6×His-tagged fusion proteins) were 244 

then purified by affinity chromatography with the kit of Ni-NTA for purification of 6×His-tagged proteins 245 

(No. 102, Qiagen) according to the supplier’s instructions. For SDS-PAGE analysis, the concentration of 246 

stacking gel was 7% and the concentration of separating gel was 12%.  247 

To further confirm the specific protein expressed by the PgExg1 gene, western-blotting with 248 

monoclonal anti-polyhistidine as primary antibody and A1293-AlkPhos APA Mouse Fab ads HIgG as 249 

secondary antibody was performed. 250 

 251 

2.8 Effect of pH and temperature on the activity and stability of the recombinant -1,3-glucanase 252 

PgExg1 253 

The effect of pH on the activity of the recombinant -1,3-glucanase of PgExg1 was determined by 254 

incubating the recombinant enzyme between pH 3.0-11.0 using the standard assay conditions described in 255 

section 2.2. In a similar way, the effect of temperatures on the recombinant -1,3-glucanase was 256 
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investigated by incubating the recombinant enzyme at different temperatures (4-60°C) using the standard 257 

assay conditions described before. The relative activity at different pH values and at different temperatures 258 

was referenced to activity at pH 5.0 and 40°C (relative activity = 100%). 259 

The effect of pH value on the enzyme stability was tested by 2 h pre-incubation of the recombinant 260 

enzyme in 0.05 M potassium acetate (pH 3.0-11.0). The remaining activities of the recombinant enzyme 261 

were measured immediately after this treatment with the standard method described above. The relative 262 

activity was referenced to the recombinant enzyme activity at pH 7.0 prior to incubation (relativity activity 263 

= 100%). The effect of temperature on the enzyme stability was examined by pre-incubating the enzyme at 264 

different temperatures (4-60°C) for 2 h. The residual activity was immediately measured as described 265 

above. The sample pre-incubated at 4°C was used as a reference (relative activity = 100%). Three 266 

replicates for each treatment were prepared. 267 

 268 

2.9 Antifungal activity of the recombinant PgExg1 against B. cinerea in vitro 269 

The antifungal activity of the recombinant enzyme PgExg1 against B. cinerea was assessed in PDB 270 

(Potato Dextrose Broth, Merck) under sterile conditions as reported by Lorito et al. (1993), with small 271 

modifications. The recombinant proteins were obtained and purified as described before. The protein 272 

concentration of the purified enzyme solution was determined according to Bradford (1976) by using 273 

bovine serum albumin (A1933, Sigma) as a standard. The conidia of B. cinerea were harvested from 7 274 

day-old culture grown on PDA at 25°C by centrifugation and resuspended in sterile Ringer solution. The 275 

required concentrations of pathogen conidia were adjusted with the help of a Bürker chamber (Knittel, 276 

Germany). Aliquots (300 µl) of B. cinerea spore suspension (1×106 spores/mL) in Ringer solution were 277 

transferred to tubes containing 2.4 ml PDB and 300 µl of the purified recombinant enzyme solution (80 µg 278 
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ml-1) was added to the tubes and reached a final concentration of 8 µg ml-1 in PDB, serving as the enzyme 279 

treatment (pathogen + enzyme). Aliquots (300 µl) of thermally inactivated enzymes, by boiling at 100°C 280 

for 10 min, or sterile distilled water were added to the tubes instead of the enzyme solution as controls 281 

(pathogen+ inactivated enzyme, and pathogen+ water). The tubes were incubated at 25 °C on a rotary 282 

shaker (200 rpm) for 18 h, and 100 spores/replicate were observed microscopically and their germination 283 

rate and germ tube length were measured. Three replications of three tubes were prepared for each 284 

treatment and the experiment was repeated twice. 285 

 286 

2.10 Statistical analysis 287 

All the experiments were performed at least twice. Data from all the experiments were analyzed using 288 

analysis of variance (ANOVA) and the SPSS version 12.0 (SPSS, 1989-2003). The treatment means were 289 

separated at the 5% significance level using Duncan’s Multiple Range Test (DMRT).  290 

 291 

3. Results 292 

3.1 Production and activity of -1, 3-glucanase  293 

The antagonistic yeast P. guilliermondii strain M8 produced extracellular -1,3-glucanase in culture 294 

media in the presence of purified fungal cell walls, sucrose or glucose used as a sole carbon source. it 295 

produced more extracellular -1,3-glucanase after 24 h than 48 h incubation in Lilly-Barnett minimal salt 296 

media supplemented with B. cinerea cell walls, sucrose or glucose used as sole carbon sources. While after 297 

72 h incubation period, the yeast increased the extracellular -1,3-glucanase activities, it reached the 298 

maximum after 96 h in minimal salt media with B. cinerea cell walls (133 U µmol glucose released/mg 299 

protein/h), sucrose (125 U) and glucose (126 U) as sole carbon sources. At 120 h, the -1,3-glucanase 300 
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activities started to decrease (Fig. 1). 301 

An obvious inhibition of the pathogen mycelia by the purified enzyme was observed as compared to 302 

the control after incubation on PDA at 25°C for two days (Fig. 2a). Moreover, in presence of purified crude 303 

enzyme, the decayed lesions (15 mm in diameter) caused by B. cinerea on apples were markedly reduced 304 

when compared to the control inoculated with the pathogen alone (35 mm in diameter) (Fig. 2b). 305 

 306 

3.2 Cloning exo--1,3-glucanase gene  307 

To clone the partial gene sequence encoding an extracellular exo--1,3-glucanase in P. guilliermondii 308 

M8, degenerate primers were designed according to the conserved amino acid sequences of extracellular 309 

exo--1,3-glucanases from different yeast species (Fig. 3). With the degenerate primers, Grads-PCR 310 

produced a reliable fragment of around 500 bp. Analysis of the sequence by BLAST program suggested 311 

that a fragment of the putative exo--1,3-glucanase gene was isolated and it contained the consensus motif 312 

(IGIEALNEPL) of the signature pattern of Family 5 hydrolases that is highly conserved among the 313 

exo--1,3-glucanases. New primers were designed from the sequence of the putative exo--1,3-glucanase 314 

fragment in combination with the kit Gene Walking Made Easy (Table 1) using the 5’ and 3’ flanking 315 

regions of the fragment. The new amplicons were sequenced, assembled and subjected to BLAST and ORF 316 

Finder analysis. Finally, the whole gene (GenBank accession number HQ113463), designated as PgExg1, 317 

encoding the exo-1,3--glucanase, was cloned from the genomic DNA of the antagonistic yeast strain M8 318 

(Fig. 4). 319 

To amplify the ORF encoding exo-1,3--glucanase from the cDNA of P. guilliermondii M8, new 320 

specific primers were designed according to the sequence of the whole gene. PCR on the first-strand cDNA 321 

of P. guilliermondii M8 as template with the new primers produced one specific fragment of the same size 322 
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(1,224 bp) of the genomic DNA. After sequencing analysis of the specific fragment obtained from the 323 

cDNA, it was found that the ORF from the cDNA shared the same nucleotide sequence with that of the 324 

genomic DNA, confirming that no intron exists inside the exo-1,3--glucanase gene (PgExg1) sequence. 325 

 326 

3.3 Analysis of P. guilliermondii M8 PgExg1 gene 327 

As shown in Fig. 4, P. guilliermondii M8 PgExg1 gene has an open reading frame of 1,224 bp 328 

encoding a 408-amino acid (aa) protein with a calculated molecular weight (Mr) of 46.9 kDa. Signal 329 

peptide analysis of the protein deduced from the PgExg1 gene indicated that the signal peptide has 15 330 

amino acids. The peptide bond between the 15th and 16th amino acid would be cleaved by a signal 331 

peptidase (Fig. 4). Prediction of isoelectric point of the deduced protein sequence revealed that the deduced 332 

protein from the PgExg1 gene had a pI of 4.54.  333 

Using the ClustalW algorithm (http://www.ebi.ac.uk/Tools/es/Cgi-bin/clustalw2), alignment of the 334 

deduced amino acid sequence of PgExg1 with those of other exo--1,3-glucanases retrieved from NCBI 335 

database indicated that the deduced amino acids shared a consensus motif (IGIEALNEPL) which is the 336 

signature pattern of GH Family 5 hydrolases, suggesting that PgExg1 belongs to the GH 5 Family (Fig. 4). 337 

Moreover, a BLAST search performed using the PgExg1 ORF as query sequence indicated that the enzyme 338 

PgExg1 has high sequence identity and similarity to exo--1,3-glucanases (EC 3.2.1.58) from other yeasts 339 

(Table 2). The latter enzymes are members of the Glycoside Hydrolase (GH) Family 5 (formerly known as 340 

cellulose family A). In addition, the PgExg1 with a pI of 4.54 is an acidic protein, which are similar to 341 

other exo--1,3-glucanases previously obtained from many yeasts and has the signature pattern of GH 342 

Family 5 hydrolases which indicated that PgExg1 belongs to GH Family 5.The topology of the 343 

phylogenetic tree indicated that the amino acids deduced from PgExg1 were also closely related to that of 344 
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other exo-glucanases of other Candida or Pichia species (Fig. 5). The tree clustered the glucanases into 345 

three subgroups. P. anomala EXG1 (CAA05243) and S. cerevisiae EXG2 (CAA92719) clustered into one 346 

subgroup. T. stipitatus [ATCC10500] Exg1 (XP_002483905.1), S. cerevisiae Exg2p (CAA92719.1) and L. 347 

edodes EXG (BAD97445.1) belonged to another subgroup. PgExg1 and the remaining glucanases formed 348 

another subgroup. Among the glucanases in the phylogenetic tree, PgExg1 is the closest to the glucanase 349 

CoEXG1 (Genbank accession number-AAM 21469) of C. oleophila.  350 

 351 

3.4 Expression of the PgExg1 gene in E. coli 352 

SDS-PAGE on the cell free extracts from the induced cells of E. coli BL21 (DE3) containing the 353 

plasmids pET-23a(+)-PgExg1 presented one specific band with a molecular mass of about 47 kDa. This 354 

was a fusion hybrid protein and was similar to the size of 46.9 kDa as calculated from the deduced amino 355 

acid sequence of PgExg1 gene. This conclusion was confirmed by the result of a Western blotting assay 356 

which directly demonstrated that the specific band with a molecular mass of about 47.0 kDa in SDS-PAGE 357 

was actually the His-tagged fusion protein of the recombinant enzyme (Fig. 6).  358 

 359 

3.5 Effect of pH and temperature on the activity and stability of the recombinant enzyme 360 

The activity of the recombinant exo--1,3-glucanase was higher at pH 5.0 (Fig. 7a). At pH 4.0 and 6.0, 361 

the recombinant enzyme still had 47% and 40% relative activity, respectively. However, at pH higher than 362 

8.0, the enzyme activity was very low. At the optimum pH of 5.0, the recombinant enzyme had the highest 363 

activity at 40°C (Fig. 7b). 364 

The residual activity of the recombinant exo--1,3-glucanase pre-incubated in buffers at various pH 365 

was higher at pH 7.0. Moreover, when pre-incubated at pH values between 4.0 and 10.0, the recombinant 366 
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enzyme still had high residual activities (Fig. 7c), indicating that the recombinant enzyme had a good 367 

stability in a wide range of pH values. When the recombinant enzyme was pre-incubated at temperatures 368 

between 4 and 30°C for 2 h, its residual activity was still very high (Fig. 7d). However, it greatly decreased 369 

above 37°C, suggesting that the stability of the recombinant enzyme was easily affected by temperature. 370 

 371 

3.6 Antifungal activity of the recombinant PgExg1 in controlling the growth of B. cinerea in vitro 372 

No significant differences in germination percentage were observed among the treatments, however, 373 

the germ tube length (97 µm) of the pathogen spores in presence of the recombinant enzyme PgExg1 was 374 

significantly lower compared to the controls (217 and 223 µm) (Table 3).  375 

 376 

4. Discussion 377 

Though much work has been done to develop biocontrol agents against postharvest pathogens of 378 

fruits, most of the biocontrol efficacy evaluation with antagonistic yeasts was carried out only under lab 379 

conditions. Moreover, so far few postharvest biocontrol products such as Biosave® (Pseudomonas 380 

syringae Van Hall) and Shemer® (Metschnikowia fructicola Kurtzman & Droby) active against B. cinerea 381 

on apples are commercially available (Droby et al., 2009). Previous research (Zhang et al., 2011) showed 382 

that the yeast P. guilliermondii strain M8 had a good efficacy in controlling grey mold on apples under 383 

semi-commercial conditions. Moreover, even though P. guilliermondii has been successfully used to 384 

control postharvest diseases on a number of fruits and vegetables (Tian et al., 2002; Scherm et al., 2003), 385 

very little research has been done to study its efficacy in controlling grey mold, caused by B. cinerea, on 386 

apples. 387 

The knowledge of the mechanism of biocontrol is an important factor in enhancing the biocontrol 388 



 19 

activity and for establishing screening criteria to select new antagonists (Qin et al., 2003). However, the 389 

mechanisms of BCAs against postharvest pathogens are still poorly understood, mainly due to the fact that 390 

appropriate methods and technologies to study the complex interactions of antagonists and pathogens in 391 

fruit wounds are limited, although some mechanisms have been explained. Currently, various mechanisms 392 

have been described, including antibiosis, production of lytic enzymes, parasitism, induced resistance and 393 

competition for limiting nutrients and space (Janisiewicz and Korsten, 2002). Generally, more than one 394 

mechanism is involved in the interactions of one antagonist against the pathogens. 395 

The production of hydrolytic enzymes able to degrade fungal cell walls has been reported as an 396 

important mechanism of suppression of pathogens on fruits by BCAs. Howell (2003) found that a 397 

-1,3-glucanase produced by Trichoderma spp. was directly involved in inhibiting some fungal pathogens. 398 

Masih and Paul (2002) showed that -1,3-glucanase secreted by Pichia membranaefaciens had good 399 

biocontrol activity against B. cinerea causing grey mold of grapevine. P. membranaefaciens grown with 400 

cell wall of the pathogen as sole carbon source produced higher activity of glucanase but less activity in the 401 

presence of sucrose as sole carbon source (Masih and Paul (2002). However, our research showed that P. 402 

guilliermondii strain M8 produced high activities of the enzyme when grown in the presence of sucrose or 403 

the pathogen cell wall as sole carbon source, suggesting that the strain M8 has a stronger capacity to 404 

produce the extracellular -1,3-glucanase than P. membranaefaciens. Moreover, in this research the 405 

biocontrol activity of exo--1,3-glucanase secreted by P. guilliermondii was examined using the native 406 

enzyme and the recombinant enzyme to inhibit the pathogens. The result indicated that although the 407 

recombinant enzyme PgExg1 did not decrease the germination rate of the pathogen conidia, it significantly 408 

reduced the germ tube elongation. The results from the tests in vivo and vitro of enzyme activities against 409 

pathogens suggested that the secretion of exo-1,3--glucanase is involved in the biocontrol activity of P. 410 
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guilliermondii strain M8 against pathogens. To further determine its specific role, such as determinant or 411 

additional role, in the biocontrol mechanisms, exo-1,3--glucanase deficient mutants will be generated. 412 

Due to the potential role of exo--1,3-glucanase in the biocontrol (Oelofse et al., 2009), glucanase 413 

genes have been cloned and characterized from some microbial antagonists. Monteiro and Ulhoa (2006) 414 

biochemically characterized a -1,3-glucanase from Trichoderma koningii induced by the cell wall of 415 

Rhizoctonia solani. Marcello et al. (2010) successfully cloned and characterized an exo--1,3-glucanase 416 

gene from the mycoparasitic fungus Trichoderma asperellum. Although production of -1,3-glucanase 417 

proved to be an important mechanism of biocontrol for some antagonistic yeast against pathogens, little 418 

work was done in cloning and characterizing -1,3-glucanase genes from antagonistic yeasts. Grevesse et 419 

al. (2003) isolated a gene, PaEXG2 (CAA11018), from the antagonistic yeast Pichia anomala strain K. Xu 420 

et al. (2006) cloned and characterized an exo--1,3-glucanase from the yeast Pichia pastoris. As far as we 421 

know, there is no published report on cloning and characterizing -1,3-glucanase genes from the 422 

antagonistic yeast P. guilliermondii.  423 

In this research, the gene PgExg1 encoding exo--1,3-glucanase was successfully cloned from the 424 

antagonistic yeast P. guilliermondii strain M8 by using “ genome walking” and PgExg1 was confirmed to 425 

be one member of GH 5 Family. Moreover, PgExg1 was comprehensively compared with the 426 

exo--1,3-glucanases of other yeasts in similarities, identities as well as molecular weights and pIs. In 427 

comparison, the PgExg1 had extremely high identity and similarity to the exo--1,3-glucanase 428 

(XP_001385760.2) isolated from the yeast Pichia stipitis CBS 6054 (Jeffries et al., 2007). Moreover, the 429 

phylogenetic tree indicated that PgExg1 has very high homology to the glucanase CoEXG1 which has 430 

been characterized as an exo--1,3-glucanase of the yeast C. oleophila (Segal et al., 2002). These results 431 

further confirmed that PgExg1 is one member of the GH 5 family. The ORF size of exo--1,3-glucanases 432 
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of diverse yeasts ranged from 408 to 562 amino acids, and the molecular weights ranged from 45.7 to 63.5 433 

kDa. Interestingly, the pIs of all exo--1,3-glucanases are below 7.0, suggesting that although the 434 

exo--1,3-glucanase genes from various yeast species are different in length, the enzymes they code are 435 

acidic proteins. 436 

PgExg1 gene was expressed in E. coli BL21 (DE3) and yielded homogeneous recombinant PgExg1. 437 

This confirmed the possibility of producing a large quantity of PgExg1 through gene expression in E. coli. 438 

Activity and stability are the most important characteristics of one enzyme. In this research, optimal pH 439 

and temperature for the activity and stability of the purified recombinant exo--1,3-glucanase obtained 440 

from E. coli BL21 were investigated. As to activity, it has been reported that the optimum pH range of 441 

-1,3-glucanases from fungi is generally between pH 3.0 and pH 6.0 (El-Katatny 2008), exceptions are 442 

enzymes from Phytophthora infestans and Polyporus species, which are more active at pH 7.0 (Pitson et 443 

al., 1993). Our result from PgExg1 is consistent with this report. El-Katatny (2008) showed that the 444 

temperature optimum of β-1,3-glucanase preparations from Trichoderma harzianum (free or immobilized) 445 

was in the range from 50 to 60°C. However, in this study, the optimal temperature of the recombinant 446 

-1,3-glucanase PgExg1 was lower than that of T. harzianum β-1,3-glucanase. 447 

The pH and thermal stability is vital to enzyme activity. Like other β-1,3-glucanase, the recombinant 448 

PgExg1 showed the highest stability at neutral situations and a high stability in a wide range of pH values. 449 

When stored at 4°C, the recombinant enzyme exhibited the highest activity under the same conditions as 450 

compared to other storage temperatures, suggesting that low temperatures are compatible with the enzyme 451 

activity on fruits during storage. Stored at lower temperature, the enzyme exhibited higher stability, which 452 

could be attributed to prevention of thermal denaturation (Hayashi and Ikada 1990). 453 

In conclusion, the yeast P. guilliermondii strain M8 produced high activity of exo-1,3--glucanase 454 
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when grown in different carbon sources. Moreover, an exo-1,3--glucanase gene, PgExg1, of P. 455 

guilliermondii strain M8 was successfully cloned and characterized, and the recombinant PgExg1 456 

expressed in E. coli BL21 had a strong activity in controlling the growth of B. cinerea. 457 
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Tables 591 

 592 

Table 1  593 

Primers and vectorette units used for amplification and identification flanking regions of PgExg1 by 594 

genome walking with the kit “Gene Walking Made Easy” 595 

 596 

Flanking regions  

of the gene 

Primers Restriction digestion 

enzymes 

Vectorette library 

5’ prime 

3’ prime 

5’-TAGGATCATTGTCCAAAAG-3’ 

5’-CCAATGCTTGGAATGTGG-3’ 

Mae II 

Mfe I 

Cla I vectorette units 

EcoR l vectorette units 

 597 

 598 
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Table 2. Amino acid sequence identities and similarities between P. guilliermondii PgExg1 and other fungal exo-beta-1,3-gluancase and some characteristics of the 599 

glucanases 600 

Source* Accession No. Identity (%) Similarity 
(%) 

Size (AA) Predicted molecular 
weight (kDa) 

pI 

Pichia guilliermondii PgExg1 HQ113463 - - 408 46.9 4.54 
Pichia angusta EXG CAA86948.1 52 69 435 49.3 4.59 
Pichia stipitis CBS 6054 EXG XP_001385760.2 66 77 438 50.0 4.71 
Pichia anomala EXG2 CAA11018 58 72 427 45.7 4.45 
Pichia anomala EXG1 CAA05243 46 62 498 58.1 4.79 
Saccharomyces cerevisiae EXG1 AAA34599.1 54 69 448 51.3 4.57 
Saccharomyces cerevisiae Exg2p CAA92719.1 45 60 422 47.1 6.14 
Saccharomyces cerevisiae YJM789 EXG EDN63719.1 52 66 445 51.9 5.58 
Saccharomyces cerevisiae EXG2 CAA92719 41 56 562 63.5 5.18 
Candida tropicalis MYA-3404 EXG XP_002550037.1 62 76 435 49.6 4.52 
Pichia pastoris EXG  AAY28969.1 57 72 414 47.8 4.53 
Candida oleophila EXG1 AAM21469 62 75 425 48.8 4.48 
Candida dubliniensis CD36 EXG XP_002416951.1 64 76 438 50.0 5.06 
Candida albicans SC5314 EXG XP_721488.1 64 76 438 50.0 5.36 
Wickerhamomyces anomalus EXG  ABK40520.1 58 72 427 49.2 4.66 
Williopsis saturnus EXG ACP74152.2 60 74 417 47.7 4.72 
Yarrowia lipolytica EXG CAA86952.1 50 67 421 48.2 4.98 
Talaromyces stipitatus [ATCC10500] Exg1 XP_002483905.1 45 59 424 46.8 4.78 
Lentinula edodes EXG  BAD97445.1 42 57 421 46.1 4.58 

*The -1,3-glucanases are retrieved from NCBI database. Predicted molecular weight and pI were calculated at the website: http://expasy.org/cgi-bin/pi_tool. 601 

Identity and similarity were performed by alignments at the website: http://blast.ncbi.nlm.nih.gov. 602 
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Table 3  603 

Antifungal activity of the recombinant PgExg1 in controlling the growth of B. cinerea in vitro. The 604 

pathogen spores were co-cultured with the recombinant enzyme PgExg1 in PDB, serving as the enzyme 605 

treatment (Pathogen+ Enzyme), and inactivated enzymes or sterile distilled water instead of the enzyme 606 

solution served as controls (Pathogen+ Inactivated enzyme, and Pathogen+ Water). 607 

 608 

Treatments 
Antifungal activity of the recombinant enzyme PgExg1 in 

controlling the growth of B .cinerea in vitro 

Germ tube length (%) **   Germination rate (%) **   

Pathogen+enzyme 

Pathogen+inactivated enzyme 

Pathogen+water (Control) 

97 ± 6.6 a 

217 ± 12.4 b 

223 ± 8.3 b 

97 ± 0.6 b 

99 ± 1.0 a 

99 ± 0.6 a 

 609 

** The results are the mean of two independent experiments. “±” stands for standard error of the means. 610 

Values of each column followed by different letters show significant difference (P<0.05) according to 611 

analysis by Duncan’s Multiple Test (SPSS 13.0). 612 

 613 
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Figures and Captions 614 

 615 

Fig. 1. -1,3-glucanase (EC3.2.1.58) activity of P. guilliermondii strain M8 grown in Lilly-Barnett minimal 616 

salt medium supplemented with 2 mg ml-1 CWP (cell wall preparation of B. cinerea) ( ), glucose ( ) or 617 

sucrose ( ) as sole carbon source at 25°C for 120 h. The specific activity was expressed as micromoles of 618 

glucose per milligram protein per hour (µmol glucose released/mg protein). Bars represented standard 619 

deviations of the means. 620 

 621 

Fig. 2. Inhibition in vitro and in vivo of B. cinerea growth by purified crude enzymes produced by P. 622 

guilliermondii strain M8. For the test in vitro, a) purified enzyme solution was added to two wells made 623 

near the edge of the 4 day-old B. cinerea colony, and after two days, inhibition of the pathogen mycelia 624 

growth was measured. For the test in vivo, b) aliquots of 100 µl of the purified crude enzymes were 625 

pipetted into each wound site of apples. Incubated for 2 h at room temperature, inoculated with 30 µl of B. 626 

cinerea spore suspension at 105 spores ml-1 and stored at 20°C for 3 days, when the diameters of the rotten 627 

lesions were observed.  628 

 629 

Fig. 3. Alignment of the deduced amino acid sequence of eight exo--1,3-glucanase genes retrieved from 630 

NCBI database: Pa-EXG, P. angusta EXG (CAA86948.1); Pp-EXG, P. pastoris EXG (AAY28969.1); 631 

Pa-EXG2, P. anomala EXG2 (CAA11018); Cd-EXG, C. dubliniensis CD36 EXG (XP_002416951.1); 632 

Ca-EXG, C. albicans SC5314 EXG (XP_721488.1); Ps-EXG, P. stipitis CBS 6054 EXG 633 

(XP_001385760.2); Co-EXG1, C. oleophila EXG1 (AAM21469); Sc-EXG, S. cerevisiae YJM789 EXG 634 

(EDN63719.1). Multiple sequence alignment of proteins was performed by using the DNAMAN 6.0. 635 
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Identical residues are highlighted by black boxes.  636 

 637 

Fig. 4. The nucleotide sequence and deduced amino acid sequence of exo-1,3--glucanase gene PgExg1 638 

from P. guilliermondii M8. One GC box, two TATA boxes, and one CAAT box were highlighted in bold, 639 

respectively. The signal peptide cleavage site is indicated by an arrowhead. Numbers on the left represent 640 

nucleotide positions and numbers in bold on the left represent amino acid positions. The signature pattern 641 

of Family 5 hydrolases was underlined. Asterisk (*) represents the terminator of PgExg1. The underlined 642 

(AATAATA) is the potential polyadenylation signal. CA and GT-rich sequences were highlighted within 643 

the black box.  644 

 645 

Fig. 5. Phylogenetic analysis of PgExg1 and closely related -1,3-glucanases. The -1,3-glucanases are 646 

retrieved from NCBI database as seen in Table 2. Phylogenetic analysis was performed using the program 647 

MEGA 4.1. The numbers at node indicate the bootstrap percentages of 1000 resamples. The 648 

DDBJ/Genbank/EMBL accession numbers are indicated in parentheses. 649 

 650 

Fig. 6. Confirmation of the recombinant exo--1,3-glucanase encoded by the PgExg1 gene in E. coli BL21 651 

by Western-blotting with monoclonal anti-polyhistidine as first antibody and A1293-AlkPhos APA Mouse 652 

Fab ads HIgG as second antibody. Lane PgExg1 represents the protein extracts from the cells of 653 

recombinants containing pET23a(+)-PgExg1; Lane CK, the protein extracts from the cells of recombinants 654 

containing the empty vector pET23a(+). 655 

 656 

Fig. 7. Effects of pH (a) and temperature (b) on the activity of recombinant exo--1,3-glucanase encoded 657 
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by the PgExg1 gene in E. coli BL21 and pH (c) and temperature (d) on stability of the enzyme. The 658 

relative activity at different pH’s and temperature was calculated based on the activity of recombinant 659 

PgEXg1 obtained by the reaction at pH 5.0 and 40°C (relative activity = 100%). For the effect of pH value 660 

on the stability, the relative activity was based the recombinant enzyme activity at pH 7.0 (relativity 661 

activity = 100%). For the effect of temperature on the stability, the sample pre-incubated at 4°C was used 662 

as a reference (relative activity = 100%). The details were seen in the section (2. 9) of Materials and 663 

Methods. There were three replicates of each treatment. Bars indicate ± SD of the means. 664 


