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The white-clawed crayfish’s habitat has been profoundly modified in
Piedmont (NW Italy) due to environmental changes caused by human
impact. Consequently, native populations have decreased markedly. In
this research project, support vector machines were tested as possible
tools for evaluating the ecological factors that determine the presence
of white-clawed crayfish. A system of 175 sites was investigated, 98 of
which recorded the presence of Austropotamobius pallipes. At each site
27 physical-chemical, environmental and climatic variables were mea-
sured according to their importance to A. pallipes. Various feature selec-
tion methods were employed. These yielded three subsets of variables
that helped build three different types of models: (1) models with no vari-
able selection; (2) models built by applying Goldberg’s genetic algorithm
after variable selection; (3) models built by using a combination of four
supervised-filter evaluators after variable selection. These different model
types helped us realise how important it was to select the right features if
we wanted to build support vector machines that perform as well as possi-
ble. In addition, support vector machines have a high potential for predict-
ing indigenous crayfish occurrence, according to our findings. Therefore,
they are valuable tools for freshwater management, tools that may prove
to be much more promising than traditional and other machine-learning
techniques.

RÉSUMÉ

Conditions requises pour la modélisation de l’habitat de l’écrevisse à pattes blanches
(Austropotamobius pallipes) par machines à vecteur de supports
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L’habitat de l’écrevisse à pattes blanches a été profondément modifié dans
le Piémont (nord-ouest de l’Italie) par les changements environnementaux
dus aux impacts humains. En conséquence, les populations indigènes ont
considérablement diminué. Dans ce projet de recherche, des machines à
vecteur de supports ont été testées comme outils possibles pour évaluer
les facteurs écologiques qui déterminent la présence de l’écrevisse à pattes
blanches. Un ensemble de 175 sites ont été échantillonnés, dont 98 avec
présence d’Austropotamobius pallipes. À chaque site 27 variables physico-
chimiques, environnementales et climatiques ont été mesurées. Différentes
méthodes de sélection ont été employées. Elles aboutissent à trois sous-
ensembles de variables qui permettent de construire trois différents types
de modèles : (1) des modèles sans sélection de variables ; (2) des modèles
construits en appliquant l’algorithme de Goldberg après sélection de va-
riables ; (3) des modèles construits en utilisant une combinaison d’estimateurs
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gérés par filtres après sélection de variables. Ces différents modèles nous ont
aidés à prendre conscience de l’importance de la bonne méthode de sélection
si on veut construire des machines à vecteur de supports qui fonctionnent aussi
bien que possible. De plus, les machines à vecteur de supports sont très perfor-
mantes pour prédire l’occurrence des écrevisses indigènes, selon nos résultats.
Par conséquent, elles sont un outil valable pour la gestion des eaux douces, outil
qui semble être plus prometteur que les techniques traditionnelles et d’autres par
apprentissage de machine.

INTRODUCTION

Austropotamobius pallipes (Lereboullet, 1858) is the only indigenous crayfish species living
in north-western Italy. It plays an important role in regulating the biodiversity of streams and
lakes (Gherardi et al., 2001) and actively contributes to the flow of energy and to the cycling of
matter (Nyström, 1999; Nyström et al., 1999). Because of its ecological importance, the white-
clawed crayfish is broadly considered as a keystone species in preserving the well-being of
freshwater ecosystems (Holdich, 2003). In the past, A. pallipes were widely distributed along
brooks and small tributaries flowing into Piedmont’s main rivers. Over the last few decades,
the number of sites inhabited by the species has decreased markedly, as has the density
of the populations (Nardi et al., 2004; Tirelli et al., 2008; Favaro et al., 2010). This decline
has been caused mainly by (1) the pollution of water bodies due to agriculture and urban
activities, (2) erosion, (3) siltation, and (4) habitat loss and fragmentation (Grandjean et al.,
2000; Broquet et al., 2002; Favaro et al., 2010). There is another threat to A. pallipes survival –
the introduction of non-indigenous crayfish species that dramatically contribute to the spread
of crayfish plague (Aphanomyces astacii).
Because of this alarming situation in Piedmont, A. pallipes is protected by a law of Piedmont
Region (L.R. No. 32 of 2 November 1982). Moreover, A. pallipes has been included on the Red
List of threatened animal species of the International Union for the Conservation of Nature
and Natural Resources (Baillie and Groombridge, 1996) and in Annexes II and V of the Habitat
Directive (Council of the European Communities, 1992, 1997). Therefore, several research
projects have been conducted in Italy and elsewhere in Europe over the last few years to
preserve the extant populations of A. pallipes and their sites (Holdich and Rogers, 1997;
Nardi et al., 2006; Tirelli et al., 2008).
There are promising tools that can help us solve such environmental challenges as the loss of
biodiversity – the tools that ecological informatics equips us with (Green et al., 2005). Ecolog-
ical informatics can be seen as an interdisciplinary framework that uses advanced computa-
tional technology to study ecological processes and patterns on various levels of ecosystem
complexity (Recknagel, 2003). There is a rapidly growing area of ecological informatics called
machine learning (ML), a tool that identifies structures in complex, nonlinear data and gener-
ates accurate predictive models.
Different applications of ML methods have been used in ecology (e.g., Fielding, 1999;
Recknagel, 2001, 2003; Cushing and Wilson, 2005; Ferrier and Guisan, 2006; Park and Chon,
2007). They have proved to be powerful alternatives to traditional modelling approaches. ML
methods consist of a range of approaches, including (1) artificial neural networks (Lek et al.,
1996; Hoang et al., 2001; Dedecker et al., 2007; Goethals et al., 2007; Tirelli and Pessani,
2009); (2) classification and regression trees (De’ath and Fabricius, 2000; Dzeroski et al., 2000;
Goethals et al., 2001; Dakou et al., 2007; Lencioni et al., 2007; Pivard et al., 2008; Tirelli and
Pessani, 2009; Hoang et al., 2010); (3) fuzzy logic (Salski and Sperlbaum, 1991; Adriaenssens
et al., 2004a; Mouton et al., 2009); (4) genetic algorithms and programming (Stockwell and
Noble, 1992); (5) Bayesian belief networks (Adriaenssens et al., 2004b); and (6) support vec-
tor machines (Vapnik, 1995; Guo et al., 2005; Hu and Davis, 2005; Drake et al., 2006; Shan
et al., 2006; Sanchez-Hernandez et al., 2007a, 2007b; Ribeiro and Torgo, 2008; Hoang et al.,
2010).
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These methods are being used more and more because they can model the complex, nonlin-
ear relationships that typify ecological data. However, they do not have to satisfy the restric-
tive assumptions of conventional, parametric approaches (Guisan and Zimmermann, 2000;
Peterson and Vieglais, 2001; Olden and Jackson, 2002; Elith et al., 2006). Further, they allow
researchers to develop highly reliable models (Recknagel, 2003).

SUPPORT VECTOR MACHINES

SVMs consist of a new group of learning algorithms. Originally developed by Vapnik (1995),
they are examples of the new ML methods available. SVMs present a challenge for modellers
because they are models that are statistically-based and because they guarantee perfor-
mance in a theoretical way (Cristianini and Scholkopf, 2002).
They are inductive modelling techniques inspired by some features of biological information
processing. They are based on an algorithm that finds the maximum-margin hyperplane –
i.e. the hyperplane showing the greatest separation between the classes. The instances at
the minimum distances from the maximum-margin hyperplane constitute the support vec-
tors. There is at least one support vector for each class, but there is often more than one
support vector. The maximum-margin hyperplane for the learning problem is something that
is defined exclusively by the set of support vectors. Once the support vectors are found,
the maximum-margin hyperplane is easy to build. Statistically, the optimal boundaries should
be generalised to unseen cases with the least errors among all possible boundaries sep-
arating the classes, therefore reducing the confusion among classes as much as possible.
The support vectors are placed on the very edge of the class distributions inside the border
region separating the classes. Therefore, they are elements that are critical for the training
set. All the other training instances are irrelevant to the extent that they can be omitted with-
out changing either the position or orientation of the hyperplane (Witten and Frank, 2005;
Sanchez-Hernandez et al., 2007a). These support vectors are placed closest to the decision
boundary. Therefore, the classifier uses extreme cases to separate the two classes from each
other. Detailed descriptions of SVMs are available in Vapnik (1995) as well as Tax and Duin
(2004). SVMs are equipped with several features that are more advantageous than those of
other ML techniques:
(1) overfitting is unlikely to occur (Vapnik, 1995; Burges, 1998; Duda et al., 2001). This is due to
the fact that overfitting is associated with instability while the maximum margin hyperplane is
relatively stable, moving only if training instances corresponding to SVs are added or deleted.
(2) SVMs can obtain subtle and complex decision boundaries and hence produce results that
are more competitive than those of the best current accessible-classification methods.
(3) SVMs yield excellent generalisation performance while tackling a wide range of problems,
particularly while solving numerous nonlinear regression and time-series problems, as evi-
denced over the years by Vapnik (1995), Hoang et al. (2010) and others.
(4) SVMs require only a minimum of model tuning because only a few parameter settings need
to be adjusted (Decoste and Scholkopf, 2002; Guo et al., 2005; Hoang et al., 2010).
(5) Only a small training dataset is required to find the optimal separating hyperplane
(Sanchez-Hernandez et al., 2007a). This is very important in the ecological applications of the
method because researchers can reach the levels of performance and the accuracy of mod-
els built using other ML techniques. Thus, researchers can work in a more elegant way, sam-
pling only a much smaller number of sites of extreme spectral response (Sanchez-Hernandez
et al., 2007a). They can sample only the locations that are important for training the classi-
fier, thus avoiding conventional, more expensive sampling approaches (Sanchez-Hernandez
et al., 2007a).
On the other hand, there are disadvantages of SVMs: they are computationally complex and
they are slow. Even so, because of their many advantages, SVMs have been applied suc-
cessfully to many tasks. Nevertheless, they have only very recently been applied to ecologi-
cal predictions (Joachims, 1998; Brown et al., 2000; Cristianini and Scholkopf, 2002; Decoste
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and Scholkopf, 2002; Huang et al., 2002; Guo et al., 2005; Hu and Davis, 2005; Shan et al.,
2006; Sanchez-Hernandez et al., 2007a, 2007b; Ribeiro and Torgo, 2008; Hoang et al., 2010).
Because of their novelty and their potential usefulness in ecological applications, we decided
to build models of A. pallipes presence using the SVM approach. Our goal consisted of as-
sessing the reliability of the models and testing their performance in a freshwater context.
The aim of the present research project is two-fold:
(1) To use SVMs to model the species’ presence in Piedmont; to compare the SVM perfor-
mance with the performances of logistic regression, decision trees and artificial neural net-
works (Tirelli et al., submitted); to ascertain whether SVMs are reliable modelling techniques
for investigating the habitat requirements of white-clawed crayfish;
(2) To compare the performance of SVMs built under two different sets of circumstances: (a)
those built without performing feature selection and (b) those built with the use of only those
features that stem from a previous feature selection procedure. This comparison was made
because feature reduction is an open question. In fact, some authors (Hoang et al., 2010)
deem feature reduction unnecessary for SVM classification, while others advocate feature
reduction in order to make the classification and performance of the models more accurate
(Sanchez-Hernandez et al., 2007a, 2007b). Therefore, we aimed at understanding whether
researchers do or do not need feature selection for the specific task of white-clawed crayfish
modelling.

MATERIALS AND METHODS

> STUDY AREA AND DATA COLLECTION

Samplings were made in 175 sites across Piedmont, covering a total area of 25 399 km2

(Fig. 1). The presence of A. pallipes was recorded in 98 sites. These sites are located within
brooks and small tributaries flowing into the Po River. Most of them were certainly inhabited by
native crayfish until a few decades ago (Gelder et al., 1999). The geological substrate ranges
from siliceous to calcareous. Therefore, the physical and chemical characteristics also range
in features across the 175 sites.
Species presence was assessed during the daylight hours through manual surveys (2 people
for 1 h). At night traps were used (50 × 25 × 25 cm with a 3-mm mesh size, baited with pig
or chicken liver, left overnight). Samplings were performed from late spring to early autumn
each year from 2005 to 2009. Samplings were always performed during normal regimen flow,
hence never after heavy rains or during dry spells.

> INPUT VARIABLE CHOICE

Because data-mining approaches are data-driven, they present researchers with the key
problem of choosing which input variables they need for building the model. In this research
project, variables were chosen according to their importance for A. pallipes presence, as out-
lined by several authors (see, e.g., Broquet et al., 2002; Trouilhé et al., 2007; Brusconi et al.,
2008; Favaro et al., 2010).

> ENVIRONMENTAL VARIABLES

We measured the following environmental variables on site: altitude; width at moderate flow;
width at high flow; percentages (0–100%, not classes) of the sampled area classified accord-
ing to granulometry – bedrock (fixed rock), boulders and pebbles (> 3 cm), medium gravel
(> 1 cm), little gravel (1 cm < dimension < 2 mm), sand and silt (dimension < 2 mm); water
velocity; amount of shade (classes 0–5; the larger the shade, the larger the value).
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Figure 1
Sampling sites in Piedmont, NW Italy.

Figure 1
Sites échantillonnés dans le Piémont, nord-ouest de l’Italie.

> PHYSICAL-CHEMICAL VARIABLES

At each site, we measured pH, conductivity and the percentage of dissolved oxygen (DO)
by means of a multi-parameter probe (mod. Hydrolab Quanta). Moreover, we collected two
100-mL water samples at about 15 cm depth, one that allowed us to avoid floating materi-
als. The samples were stored in sterile polythene test tubes and frozen until chemical anal-
ysis. The concentrations of several inorganic ions commonly used to assess water quality
were measured: ammonium (NH+

4), nitrates (NO−3), orthophosphate (PO3−
4 ), chlorides (Cl−), sul-

phates (SO2−
4 ), calcium (Ca2+) and magnesium (Mg2+). These concentrations were measured

using a DR LANGE Lasa 100 spectrophotometer. The BOD5 index was also evaluated. The
measured ion concentrations were considered to be constant because we sampled the sites
during normal flow regimens. We made this consideration even though ion concentrations are
not generally conservative variables.
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> CLIMATE VARIABLES

The software DIVA-GIS version 5.4.0.1 (www.diva-gis.org) was used with raster data taken
directly from BIOCLIM. This software consists of a bioclimatic prediction system that uses
surrogate terms (bioclimatic parameters) derived from mean monthly climate estimates in
order to approximate energy and water balances at given locations (Nix, 1986). BIOCLIM
derives its bioclimatic parameters through the use of monthly or weekly values of maximum
temperature, minimum temperature, rainfall, radiation and evaporation.
In this research project, the following parameters were used: (1) the annual mean temperature
(= the mean of all the weekly mean temperatures, where each weekly mean temperature is the
mean of that week’s maximum and minimum temperatures); (2) the maximum temperature of
the warmest period (= the highest temperature of any weekly maximum temperature); (3) the
minimum temperature of the coldest period (= the lowest temperature of any weekly minimum
temperature); (4) the annual precipitation (= the sum of all the monthly precipitation estimates);
(5) the precipitation of the wettest period (= the precipitation of the wettest month); and (6) the
precipitation of the driest period (= the precipitation of the driest month).

> DATASET PRE-PROCESSING

Data was proportionally normalised before using a dataset to build the different models. Nor-
malisation was done in such a way that the minimum and maximum of all the environmental,
physical-chemical and climate data ranged between 0.05 and 0.95.
We built models both without performing feature selection (hereafter: NFS) – i.e. with the use
of all 27 measured variables. We also built models that depended on previous feature selec-
tions – i.e. with the exclusive use of features that came out of a previous feature selection.
Feature selections were performed generally by searching the space of attribute subsets
through combining an attribute-subset evaluator with a search method. Filter methods were
applied, methods that selected features on the basis of the measures of feature predictability
and redundancy. Supervised filters are very flexible and allow researchers to combine vari-
ous search and evaluation methods. In particular, the five supervised-filter evaluators were
combined with the Ranker search method: (1) χ2 (Chan and Wong, 1991), (2) information
gain, (3) gain ratio (Quinlan, 1990), (4) symmetrical uncertainty, and (5) OneR, available in the
package WEKA (http://www.cs.waikato.ac.nz/ml/weka; Witten and Frank, 2005). Moreover,
the Cfs Subset Evaluator (Hall, 1998) was combined with Goldberg’s genetic algorithm (1989)
search method. Genetic algorithms like Goldberg’s are commonly used in river ecology, but
they are used in combination with such classifiers as (1) classification and regression trees,
and (2) artificial neural networks (Obach et al., 2001; Schleiter et al., 2001; D’heygere et al.,
2006; Tirelli et al., 2009). The algorithms used in each evaluator are described thoroughly by
Witten and Frank (2005). Each evaluator establishes the particular method used in order to
assign a worth to each subset of features. Thus, the search method fixes the style of the
performed search.
Feature selection can be done either by using the full training set or by cross-validation.
We used ten-fold cross-validation for each of the five methods. These techniques involved
searching among the attributes for the subsets most likely to predict the class. They yielded
two subsets of inputs. We used SVMs for the classification phase, including both the initial
set of 27 features and the two feature subsets resulting from the feature selection.

> MODEL DEVELOPMENT

SVMs use Platt’s sequential minimization algorithm (SMO) for training a support vector clas-
sifier (Platt, 1998, 1999; Keerthi et al., 2001). This implementation replaces all missing values
and transforms nominal attributes into binary ones. Platt’s sequential minimization algorithm is
also included in the machine-learning package WEKA (http://www.cs.waikato.ac.nz/ml/weka;
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Witten and Frank, 2005). We chose SMO because it is extremely easy to implement, because
it is often faster than other algorithms, and because it has better scaling properties.
We applied the polynomial Kernel. We did not modify the default values of the parameter
settings in the WEKA toolbox except for the exponents of the polynomial Kernel. Different
exponents from 1.0 to 5.0 were tested to improve the performance of the SVM models (Hoang
et al., 2010). The model with the best-performing exponent was chosen.
For each of the two subsets from feature selection as well as for the 27 inputs, we used k-fold
cross-validation. Goethals et al. (2007) suggest that the best k-value can be determined by
building three different models: (1) models using a set of combinations of k between 3 and
10, (2) models using a set of combinations of k corresponding to the number of cases/2, and
(3) models using a set of combinations of k corresponding to the number of cases – 1. For
these reasons, we determined the optimal k value empirically by comparing the performances
of different cross-validated SVMs using the Mann-Whitney U test.
Both for SVMs built using all the measured inputs and for SVMs built using the two feature
selection subsets, the model with the best-performing exponent and the best-performing
k value was run ten times after randomisation to estimate any eventual reliable error. At this
point, we ran the non-parametric Mann-Whitney U test to compare the performance of the
models built before feature selection and those built afterwards.
The performance of predictive models can be assessed by calculating the percentage of
sites where the presence/absence of the studied taxa is predicted correctly (Manel et al.,
2001). However, correctly classified instances (CCI) are affected by the frequency of occur-
rence of the test organism(s) being modelled (Fielding and Bell, 1997; Manel et al., 1999;
Dedecker et al., 2002). To compensate, we used the following additional performance mea-
sures to assess the models, namely: (1) model sensitivity (ability to predict species presence
accurately); (2) model specificity (ability to predict species absence accurately); (3) Cohen’s k
coefficient (Cohen, 1960); (4) and the area under the receiver-operating-characteristic (ROC)
curve. Cohen’s k is a measure of the proportion of all possible cases of presence or absence
that are predicted correctly after accounting for chance effects. Thus, Cohen’s k interprets the
predictive performance of the models better than CCI alone because Cohen’s k is negligibly
affected by prevalence (e.g. Dedecker et al., 2004, 2005; D’heygere et al., 2006). Cohen’s k
gives a rather conservative estimate of prediction accuracy because it underestimates agree-
ments due to chance (Foody, 1992). Models with k > 0.4 and CCI > 70% are to be considered
reliable (D’heygere et al., 2006; Dakou et al., 2007; Goethals et al., 2007; Hoang et al., 2010).
Moreover, Gabriels et al. (2007) suggest that different disciplines may show differences in k
threshold values. Hence, they assess the following k values in a freshwater ecological con-
text too, confirming the ranges suggested by Landis and Koch (1977), which are classified as
0.00–0.20, poor; 0.20–0.40, fair; 0.40–0.60, moderate; 0.60–0.80, substantial; and 0.80–1.00,
almost perfect. Regarding the area under the ROC curve, a value of 0.7 indicates satisfactory
discrimination, a value of 0.8 good discrimination and a value of 0.9 very good discrimination
(Hosmer and Lemeshow, 2000).

RESULTS AND DISCUSSION

> FEATURE SELECTION PHASE

The first subset, resulting from using Goldberg’s genetic algorithm search method (1989), is
made up of the following 11 inputs: (1) PO3−

4 , (2) NH+
4, (3) BOD5, (4) Ca2+, (5) water hardness,

(6) pH, (7) conductivity, (8) % of bedrock, (9) maximum temperature of the warmest period,
(10) annual precipitation, and (11) precipitation of the wettest period. Hereafter, we indicate
the SVMs built using these inputs with GA.
The second subset is made up of a unique core of relevant features, resulting from using
five filter evaluators combined with the Ranker search method. The selected core is made up
of the features present in the first 15 positions of the rankings. They are: (1) PO3−

4 , (2) NH+
4,

(3) NO−3 , (4) Ca2+, (5) BOD5, (6) DO percentage saturation, (7) pH, (8) conductivity, (9) % of
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Table I
Results of the Mann–Whitney U tests performed to compare the performances of the different models
(models without feature selection = NFS; models built after genetic algorithm feature selection = GA;
models built after selecting inputs using the four supervised-filter evaluators = 15I; percentage of cor-
rectly classified instances = CCI; sensitivity = Sen; specificity = Spe; Cohen’s k = k; area under the ROC
curve = ROC).

Tableau I
Résultats du test U de Mann-Whitney pour la comparaison des performances des différents modèles
(modèles sans sélection = NFS ; modèles construits après sélection selon l’algorithme Genetic = GA ;
modèles construits après entrées sélectionnées utilisant les quatre estimateurs gérés par filtres = 15I ;
instances correctement classées (CCI), sensitivité (Sen), spécificité (Spe) et kappa de Cohen (k), et aire
en dessous de la courbe ROC (ROC)).

k-fold CCI Sen Spe Cohen’s k ROC
NFS 10 vs. 87 n.s. n.s. n.s. n.s. n.s.
GA 9 vs. 10 n.s. n.s. n.s. n.s. n.s.
15I 10 vs. 87 n.s. n.s. n.s. n.s. n.s.

Table II
Performances of support vector machine models built before and after feature selection (models with-
out feature selection = NFS; models built after genetic algorithm feature selection = GA; models built
after selecting inputs using the four supervised-filter evaluators =15I; percentage of correctly classified
instances = CCI; sensitivity = Sen; specificity = Spe; Cohen’s k = k; area under the ROC curve = ROC;
standard deviation = s.d.).

Tableau II
Performances des machines à vecteur de supports construites avant et après selection de variables
(modèles sans sélection = NFS ; modèles construits après sélection selon l’algorithme Genetic = GA ;
modèles construits après entrées sélectionnées utilisant les quatre estimateurs gérés par filtres = 15I ;
instances correctement classées (CCI), sensitivité (Sen), spécificité (Spe) et kappa de Cohen (k), et aire
en dessous de la courbe ROC (ROC) ; déviation standard = s.d.).

CCI Sen Spe Cohen’s k ROC
NFS exponent = 1.1 mean 73.92 83.71 61.45 0.46 0.73

k = 10 s.d. 1.09 0.94 2.28 0.02 0.01
GA exponent = 2.5 mean 70.84 84.44 53.44 0.39 0.69

k = 9 s.d. 1.69 2.22 2.47 0.03 0.02
15I exponent = 4.1 mean 76.62 79.03 73.60 0.52 0.76

k = 10 s.d. 2.33 2.25 3.42 0.04 0.02

bedrock, (10) water velocity, (11) amount of shade, (12) width at moderate flow, (13) altitude,
(14) minimum temperature during the coldest period, and (15) precipitation during the wettest
period. Hereafter, we indicate the SVMs built using these inputs with 15I.

> MODELS

The best-performing models were obtained using an exponent of 1.1 for NFS models, of 2.5
for GA models, and of 4.1 for 15I SVMs.
The optimal k value was determined empirically by comparing the performances of different
cross-validated SVM models using the Mann–Whitney U test. The results appear in Table I.
Thus, we used ten-fold cross-validation to build NFS models, nine-fold cross-validation for
GA SVMs, and ten-fold cross-validation for 15I models. Table II and Figure 2 illustrate the
performances of the three different models according to the inputs used to build the SVMs.
According to the CCI, k and ROC thresholds, the presence/absence of A. pallipes can be
predicted reliably by SVMs. The average CCI for NFS and 15I SVMs was higher than the
criteria for good model performance. Meanwhile, the mean CCI value for GA models was just
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(a) (b)

Figure 2
(a) Correctly classified instances (CCI), sensitivity (Sen), specificity (Spe); and (b) Cohen’s kappa and
area under the ROC curve (ROC) of SVMs obtained using the three different variable datasets (models
without feature selection = NFS; models built after genetic algorithm feature selection = GA; models
built after selecting inputs using the four supervised-filter evaluators =15I).

Figure 2
(a) Instances correctement classées (CCI), sensitivité (Sen), spécificité (Spe) ; et (b) kappa de Cohen
et aire en dessous de la courbe ROC (ROC) des SVM obtenus avec trois jeux de données différents
(modèles sans sélection = NFS ; modèles construits après sélection selon l’algorithme Genetic = GA ;
modèles construits après entrées sélectionnées utilisant les quatre estimateurs gérés par filtres = 15I).

slightly above 70%, which is the threshold-limit value for considering a model reliable. The
same trend is followed for the mean value of k, which has a k lower than 0.4 in GA SVMs. At
the same time, the mean k value obtained by NFS and 15I SVMs is higher than this threshold.
Moreover, we conducted Mann–Whitney U tests to assess the statistical differences in the
performances of the three types of models – (1) the 10 repeated ten-fold cross-validated NFS
models, (2) the 10 repeated nine-fold cross-validated GA models, and (3) the 10 repeated
ten-fold cross-validated 15I models. The tests showed that the NFS SVMs performed better
than the GA one (p < 0.01), except for sensitivity. Moreover, the test showed that the best
predictions were obtained with 15I SVMs (p < 0.01), except for sensitivity. Therefore, even
with quite a small dataset, support vector machines can make predictions well.

SVMs with GA feature selection performed worse than NFS SVMs. This may be explained by
the fact that selecting inputs can cause the loss of meaningful information about the impact
of environmental, physical-chemical and climate variables on crayfish presence. This result
absolutely confirms what Hoang et al. (2010) relate. Moreover, the performances of SVMs
improve after feature selection, when performed using the four supervised-filter evaluators.
This suggests that the choice of the proper subset of features is fundamental for SVMs too.

Indeed, although feature reduction may not be mandatory for SVM-based classification, using
a proper feature selection method can increase the classification accuracy significantly, as
stated by Sanchez-Hernandez et al. (2007a, 2007b). These models are more able to deal with
a higher number of variables than other techniques such as decision trees and artificial neural
networks. Even so, these models still benefit from appropriate feature selection, improving
their performance.

Moreover, SVMs outperform both decision trees (DTs) and artificial neural networks (ANNs)
built using the same 175-sample site-presence data by Tirelli et al. (submitted). Both DTs and
ANNs had the same 15 inputs from the 15I feature selection. Therefore, we can assert that
SVMs are the most reliable, best-performing, and most useful tools for crayfish management,
better than the various techniques we had used in modelling presence/absence of A. pallipes
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in Piedmont – better than logistic regression (Favaro et al., 2010) and better than other data-
mining techniques (Tirelli et al., submitted).
In the first place, SVMs may very well be more suitable than DTs because SVMs can simulta-
neously assess the effect of all driving variables on the presence of the species. In contrast,
DTs can only evaluate one variable at each branch of the tree. In the second place, SVMs
produce more accurate and reliable classifiers than ANNs because SVMs can obtain more
subtle and complex decision boundaries. SVMs are more accurate even though ANNs can
assess the effect of all inputs simultaneously as well as SVMs can.
The inputs retained by the 15I feature selection are all used to build the SVMs, because
they are the result of an accurate and proper feature selection procedure. Therefore, we can
make some reflections on the environmental, physical-chemical and climate variables affect-
ing A. pallipes presence in a more confident way.

> SELECTED VARIABLES

All the chemical-physical variables used for building the best-performing 15I models are vari-
ables that had already been reported to be important for A. pallipes distribution (Barbaresi
et al., 2007; Trouilhé et al., 2007; Favaro et al., 2010). In particular, the present data underlines
the fact that the organic matter dissolved in the water – corresponding to the BOD5 index –
is an important factor for explaining white-clawed crayfish distribution in Piedmont (Favaro
et al., 2010). Moreover, water conductivity, the percentage of dissolved oxygen in water and
the concentrations of PO3−

4 , NO−3 and NH+
4 are variables that were selected since they are in-

dicative of water-body pollution. The importance of these variables for the species’ presence
in Piedmont has been discussed previously (Favaro et al., 2010).
There are the variables that relate to the mineral component of the underlined geology. Among
these, Ca2+ was selected since it is a key factor for determining the occurrence of crayfish.
One reason is that a minimal concentration of 2.56 mg·L−1 is essential for species exoskeleton
calcification (Smith et al., 1996). Another reason is that Ca2+ permits researchers to distinguish
the limestone areas – those less suitable for crayfish – from the granite or the siliceous areas
(Favaro et al., 2010). As a consequence, pH was selected in that it relates to the calcium
concentrations positively, as the water from areas with granite or siliceous rocks is less basic
than the water from areas with limestone.
The environmental inputs that can explain species presence consist of the amount of bedrock
and the amount of shade (due to canopy cover). Bedrock is important because it constitutes
a stable habitat, mostly during periods of high flow. Shade is important because it provides
relief during the hottest periods. The source of shade, riparian vegetation, provides shelter
for crayfish – roots as well as branches and leaves that fall into streams. The number of
shelters and burrows in a stream is a critical factor for the survival of adults – in fact, the most
important resource bottleneck in crayfish populations (Hobbs, 1975, Barbaresi et al., 2007).
The altitude and the minimum temperature during the coldest periods are essential for the
presence of the species because these features are strictly connected with the thermal con-
ditions of the sites. The precipitation during the wettest periods and water velocity are crucial
for the success of A. pallipes populations (Nardi et al., 2004) because they reflect the water
flow regimen.
In conclusion, our approach underlines the synergistic effects of the many factors tied in with
A. pallipes occurrence. Hence, it provides information vital for maintaining natural popula-
tions of indigenous crayfish and for selecting potential sites and streams where reintroduction
strategies may be planned.
Moreover, the present research project suggests that SVMs are most likely a tool that is
even more promising for freshwater management than traditional and other machine-learning
techniques. However, much remains to be learned about the potential of SVMs for freshwater
species conservation and many aspects of this issue deserve further investigation. We trust
that the present study can provide a solid basis for future research.
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