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ABSTRACT 

We analyze ten representative intrusions from two sets of inclined diabase (Ferrar Dolerite) sheets 

exposed at Allan Hills (South Victoria Land, Antarctica), using petrographic and rock magnetic methods to 

determine microfabrics and infer magma flow directions. At least one diabase sample was collected at the 

margins of each intrusion. Magnetite and pyrrhotite contribute to magnetic fabrics of the samples. Thirty-

six magnetic fabric directions, inferred from the mutual arrangement of either the magnetic lineation, or 

the magnetic foliation plane and local macroscopic flow indicators (e.g. horn-shaped apophyses and 

kinks) at the tips and margins of each intrusion reveal composite (i.e. both lateral and vertical) flow paths 

recorded along each intrusive segment. 

Petrographic textures and multiple flow directions inferred at sheet-segment tips reveal that 'passive' 

injection of magma via hydrofracturing produced the local shallow LIP plumbing as a sill-dominated 

intrusive complex very close to, or intersecting the paleosurface. This contrasts with ‘classic’ arrays of 

either vertically or laterally injected blade-like dykes. 

 

1. INTRODUCTION AND PREVIOUS WORK 

Coinciding with the edge of the east Antarctic craton, the Ordovician proto-Transantarctic Mountains were 

the result of episodes of convergence and divergence that occurred during the early Paleozoic to 

Neoproterozoic Ross Orogeny. Products of the orogeny are metasedimentary rocks and granitoids. The 

orogeny was followed by over 100 million years of erosion, represented by the regional ‘Kukri erosion 



 

 

surface’ disconformity at the top of the basement rocks (Isaac et al., 1996). More than 200 million years of 

almost undisturbed sedimentation (400 ~ 180 Ma) followed, taking place along the western flank of the 

Transantarctic Mountains and resulting in today’s widespread but discontinuous outcrops of Beacon 

Supergroup sedimentary rocks, which have an overall estimated thickness of ~2.5 km (Barrett, 1981, 

Barrett, 1991). In the early Jurassic breakup of the Gondwana supercontinent began along its Pacific 

margin. Jurassic rifting between west and east Gondwana was related to impingement of the Bouvet 

plume below the supercontinent. Initial rifting coincided with the evolution of a triple junction located in the 

Weddell Sea rift basin (Elliot, 1999, Elliot and Fleming, 2000). The Ferrar large igneous province (LIP) 

formed along one of the arms of the triple junction, along the western edge of the Transantarctic 

Mountains. Products of the magmatic event are both extrusive (mafic volcaniclastic deposits grouped 

within the Mawson Formation, and lava flows, or Kirkpatrick basalts, cf. Fig. 1) and tholeiitic sills and 

inclined sheets. Such Antarctic diabase bodies are commonly referred to as “Ferrar Dolerite” intrusions 

(since Gunn and Warren, 1962), thus the term ‘dolerite’ will be used throughout this paper.  

Fig. 1  

The Ferrar province is defined by extensive sills, which range from less than one metre to hundreds of 

metres in thickness and are exposed for several hundreds of kilometres along the eastern flank of the 

Transantarctic Mountains (Elliot and Fleming, 2008, Leat, 2008 and references therein). In only a few 

cases these intrusions seem to have been connected to the surface by networks of interlinked inclined 

dolerite sheets (e.g. Coombs Hills, Guegan, 2006). Recent investigations of two localized arrays of 

intrusive sheets and transgressive sills at Allan Hills and Terra Cotta Mountain, South Victoria Land, 

reveal hydrofracture emplacement mechanics of the ~183 Ma Ferrar magmas at shallow crustal levels 

(Airoldi et al., 2011, Muirhead et al., 2011). Airoldi et al. (2011) show some evidence that magma may 

have once travelled close to the surface and injected inclined, and in places coalescing, magma-filled 

fractures. White et al. (2009) and Muirhead et al. (2011) demonstrate that sheet injection occurred locally 

as branch-outs from sill peripheries. This has important implications for the transportation of magma and 

the nature of eruptive activity at shallow levels in the Ferrar Large Igneous Province. 



 

 

Similar findings are documented in other LIPs, such as the South African Karoo province (Polteau et al., 

2008) and the North Atlantic Igneous Province (Thomson, 2007). Recent experimental and numerical 

studies (e.g. Galland et al., 2009, Menand, 2009) imply that sills are a key element in LIP intrusive 

systems. The concept of magma emplaced as ‘peripheral sheets’ classically implies uplift and buckling of 

strata during sill injection and subsequent exploitation of accompanying fractures by magma sheets 

(Johnson and Pollard, 1973). Although experimental, numerical, and field studies demonstrate that the 

intrusion of sills can be strongly influenced by the presence of weak layering (Mudge, 1968, Kavanagh et 

al., 2006, Maccaferri et al., 2011) more so than by any particular tectonic regime, the predominance of 

sill-fed sheets rather than steeply dipping dykes in the Ferrar LIP suggests that an extensional tectonic 

regime did not influence the overall geometry of the plumbing system at shallow depths (i.e. < 4 km 

depth; Muirhead et al., 2011). These considerations, combined with evidence that some Ferrar sills 

breached the surface to feed eruptions, lead to the conclusion that the evolution of the province needs to 

be reconsidered in terms of its magma dynamics and mechanical interaction with the country rocks. 

Although emplacement mechanisms of laccoliths and tabular intrusions are well studied (Menand 2009 

and references therein), it is still poorly understood for many intrusive systems whether their geometry 

results from magma-driven fracturing during emplacement, or from "passive" occupation of either pre-

existing structures or those opened tectonically during magma emplacement.  

Magma flow modes (e.g. lateral vs vertical) can be reconstructed either from macroscopic flow-indicators 

preserved in places along the intrusions(e.g. Baer et al., 2006), or by means of optical and/or magnetic 

petrofabric studies (Callot and Guichet, 2003, Bascou et al., 2005). Anisotropy of magnetic susceptibility 

(AMS) is frequently measured to study the fabrics of mafic intrusions. In fact, magnetic fabric is known to 

reliably mimic microscopic petrofabrics (Tarling and Hrouda, 1993) and, consequently, AMS data can be 

used to systematically interpret directions of magma flow during emplacement. Magnetic studies 

substantiate the hypothesis of dominantly lateral feeding of magma from small localized chambers into 

large dyke swarms of LIPs, such as the Proterozoic McKenzie Dyke Swarm (Ernst and Baragar, 1992), or 

dykes exposed along the volcanic margin of east Greenland (Callot et al., 2001). In a few cases, 

magnetic fabric data has been used to indicate the focus of magma injection (Ernst and Buchan, 1997, 

Craddock et al., 2008). 



 

 

The present paper presents petrophysical characteristics of Ferrar Dolerites intrusions exposed at Allan 

Hills, South Victoria Land. Allan Hills represents an inferred paleodepth of <1 km within the Ferrar 

plumbing system. Petrologic and magnetic fabric data obtained from forty-five segments on ten 

representative intrusions exposed in its central area, integrated with field relationships previously 

described by Airoldi et al. (2011) and with macroscopic flow-indicators, were studied to reconstruct the 

magma emplacement mechanisms and flow directions.  

 

2. FIELD OBSERVATIONS AND PETROLOGY OF ALLAN HILLS FERRAR 
INTRUSIONS 

 

Field relationships of intrusions 

Ferrar Dolerite sills prevail in the western and eastern arms of the Allan Hills nunatak. Large sills crop out 

in the northern periphery of the northwest area, where blocks of country rock are locally engulfed within 

dolerite. Networks of thin sills and dolerite sheets predominate in the northeast arm of the nunatak. Here, 

there is no evidence for significant breakup of their roof of country rocks. Despite their rather complex 

geometries, such intrusions at Allan Hills define consistent NW-SE structural trends.  

This is especially true in the nunatak's central area (map in Fig. 2), where Ferrar intrusions can be 

separated into two sets based on their crosscutting relations and geometric characteristics: the older AI 

set forms an overall parallel swarm of both continuous and segmented, transgressive diabase bodies with 

NNW dominant strike. The younger set AII is a weakly radial swarm of asymmetric dolerite segments (SE 

to SE dominant strike). Intrusions in this second set thicken towards their area of intersection, which is 

some 300 m west of Roscollyn Tor (Fig. 2).  

 

Fig. 2   

 

All intrusions have dip magnitudes between 0° and 90°, with most values < 60° and in directions opposite 

to that of host rock bedding (dipping shallowly to the east).  



 

 

The Allan Hills dolerite sheets have lengths varying from 30 to 1500 m. Individual segments measured in 

the central sector of the nunatak vary from 300 to 7 m length. The intrusions have a relatively narrow 

range in thickness (20-600 cm, and over 70% are <2 m wide, cf. Airoldi et al., 2011), and exhibit only local 

macroscopic textural variations along their length.  

 

Macroscopic flow indicators and thermomechanical deformation 

Field relationships at Allan Hills indicate a complex succession of multiple intrusions, and intersection and 

interaction of adjacent magma-filled cracks. Simple or complex, bifurcated terminations such as horns 

and small apophyses formed as a result of these processes, and now infill fractures of the damage zone 

between adjacent sheets. Simple sheet terminations and horns are either straight or curved, which is 

considered a result of the stability of the stress field around the propagating cracks (Weinberger et al., 

2000). The average trend and plunge of such features unequivocally constrain the local crack and 

magma flow direction of propagation (i.e. both lineation and sense of propagation, see Pollard et al., 

1975, Baer et al., 2006). 

Thermomechanical effects of intrusion are minimal: contact aureoles consist of a few cm thick rims of 

both chilled dolerite and baked and indurated sedimentary host rock. Hook-shaped irregularities of 

indurated sandstone, or ‘cusps’ (Pollard et al., 1975) are exposed at one location along sheet #03 (Fig. 

2). Mineralized veins and slickensides, unmineralized striae and other surface-irregularities are locally 

carved in the indurated host rock walls of many intrusions. Disruption of the host sandstone is localized at 

some of the sheets' tips; macroscopically visible structureless volcaniclastic sediment (possibly liquefied 

during intrusion) around intrusions occurs locally in the Roscollyn Tor area. 

 

In terms of both deformation and kinematics the features described above can be accounted for by 

several processes. Pollard et al. (1975) related 'cusps and grooves' to peripheral fingering of magma 

radially away from the centre of the Shonkin Sag laccolith (Montana, U.S.). Although the cusps observed 

at Allan Hills are very localized, it is plausible that lateral fingering of magma occurred along some of the 

most shallowly-dipping intrusions, such as #03. 



 

 

Unmineralized and mineralized striae could be the result of either simple shear between the host rock and 

the intruding magma (Pollard et al., 1975), or relative displacement of country rock walls at either side of 

the intrusion during magma injection and solidification (e.g. Correa-Gomes et al., 2001, Féménias et al., 

2004). However, in the absence of either other macroscopic features, or AMS data (see Knight and 

Walker, 1988, Correa-Gomes et al., 2001), their trend and plunge cannot be used to infer the absolute 

direction of the magmatic flow.  

Kinematic information obtained from unmmineralized and mineralized striae along intrusions in the field 

area do not define a unique sense of motion around the intrusions. These differences, and the fact that 

these features are concordant with the local orientation of each dolerite sheet, suggest that the 

considered surface lineations are not related to post-Ferrar tectonics as inferred, for instance, by Craw 

and Findlay (1985) for the Taylor Glacier area, rather to syn-intrusive deformation. Whether such 

phenomenon is associated with relative movement between the host rock walls and rapidly solidifying 

intrusive magma, or with flow-related thermomechanical effects along such surfaces, cannot be 

conclusively demonstrated for all the observed striae. The striae represented in Fig. 2c are interpreted as 

‘marks’ left by magma passing over a shallowly dipping wall before it transgresses laterally as a sill. 

Based on field evidence alone, magma flow is thus inferred to be ‘upward’ and oblique towards the 

transgression. At the nearby Coombs Hills nunatak, calcite veins were attributed to either syn-magmatic 

mineralizing fluids circulating at 180 Ma, or to post-Ferrar hydrothermalism at c. 100 Ma (Ballance and 

Watters, 2002). Calcite slickenfibres (see Fig. 14d in Airoldi et al., 2011) may be regarded as the result of 

‘dip-slip fault’ behaviour, with the hanging wall of the intrusion moving relative to the footwall, but this 

conclusion cannot be supported on field relations alone. 

As a consequence of the above considerations the orientations of horns and ‘cusps and grooves’ 

preserved on host rock walls were confidently used as local flow indicators. Conversely, the reliability of 

slickenfibres and veins as flow indicators was evaluated on a case-by-case basis, taking into account 

both field relationships and directional information derived from the petrophysical data (later in this paper).  

 



 

 

Petrology of Ferrar dolerites 

One fresh specimen per intrusion was sectioned to be analyzed petrographically. Nonweathered material 

was reduced to a fine powder to prepare fused glass beads and pressed powder disks for X-ray 

fluorescence (XRF) major and trace element analyses, to be run at the University of Otago, NZ. 

All intrusions are compositionally and texturally similar, with small variations in crystal size depending on 

their thickness. Dolerites are porphyritic to glomeroporphyritic, with phenocrysts >4 mm in size common in 

AI sheets e.g. in Fig. 3a-b. AII intrusions have finer crystalline texture (3c). Mineralogy is dominated by 

plagioclase and less abundant clinopyroxene (pigeonite demonstrating green-brown pleochroism, in Fig. 

3b, and augite, orange-brown coloured, top right corner of 3c). A few of the largest clinopyroxene 

phenocrysts subophitically enclose prisms of plagioclase (3a). 

 

Fig. 3 

 

Plagioclase crystals demonstrate either normal zoning under polarized light or appear hollow and infilled 

with dark-brown to golden cryptocrystalline material (‘hopper’ texture, 3b). Clinopyroxene crystals can be 

both zoned and unzoned. Groundmass is commonly formed by randomly oriented microlites of 

idiomorphic, tabular and acicular plagioclase crystals (500 - 100 µm in size); acicular pyroxene crystals 

are intergranular. Clusters of radiating blades of plagioclase occur in thin sections of dolerite with finer 

crystal size (average ~200 µm, 3c). The cryptocrystalline glass constitutes an intersertal matrix containing 

dispersed granules of both pyrrhotite and magnetite, and locally stained by iron oxide alteration. Where 

abundant, the quenched glass groundmass is observed to be altered to optically isotropic palagonite and 

clay minerals (3d). 

 

No clear compositional distinction can be made between the intrusive sets on the base of the normalized 

whole rock major elements and trace element data of twelve fresh representative samples (see Airoldi, 

2011). 

Geochemically all the investigated samples are considered basaltic andesites and andesites of 

intermediate composition (Table 1). The linear trends on variation diagrams in Fig. 4 are expected for 

typical differentiation series by fractional crystallization controlled by precipitation of plagioclase and 



 

 

clinopyroxene. The same linear relationship is reflected in the Cr-Mg# variation, with Cr a trace element 

highly compatible with clinopyroxene, and further demonstrated by the Sr vs. Rb trend. 

 
Table 1 
 
Fig. 4  
 

3. SAMPLING AND ANALYTICAL TECHNIQUE 

Seven AI intrusive sheets and three AII segmented dykes were selected for rock magnetic, petrographic 

and geochemical analyses on the grounds of their good exposure and geometric characteristics (Fig. 2). 

Intrusions are either long and continuous or variably segmented, and in places multiply intruded. Locally, 

they exhibit kinematic indicators such as horn-apophyses and sidesteps along their selvages and/or 

surface lineations on their host rock walls.   

Block samples of ~10 x 10 x 15 cm were oriented with both solar and magnetic compasses and a 

clinometer. A total of 84 samples were collected close to the intrusion margins, where both flow direction 

and sense of propagation may be preserved as mineral arrays and imbrications upon rapid cooling of 

magma (Knight and Walker, 1988). Sampling across dykes and in interiors used by other authors (e.g. 

Féménias et al., 2004) was not possible due to the geometrical features and size of Allan Hills sheets.  

At Allan Hills, collection of one sample at each margin was accomplished at a few locations along 

intrusions #04-07 and #14, because only one dyke margin is commonly exposed (Fig. 2). The mutual 

arrangement of the samples along each intrusive segment varied according to the length and thickness of 

each segment, and the alteration and jointing of the dolerite. Ideally, two samples would be collected at 

the tips of the segments, where flow indicators recurred, and one from the thickest, central portion of the 

segment. All samples were subsequently prepared for analysis in the Otago Palaeomagnetic Research 

Facility (OPRF) of the Geology Department of the University of Otago, NZ.  

Between 5 and 15 core-specimens for rock magnetism analyses were obtained from each of the oriented 

block samples, for a total of 653 specimens. Magnetic susceptibility and its anisotropy were measured at 

OPRF using an AGICO MFK1-A Kappabridge. Susceptibility versus temperature analyses were run for 

selected specimens (at least one per intrusion) using  a CS-3 furnace. Isothermal remanent 



 

 

magnetization was studied at the ALP laboratory. IRM acquisition and thermal demagnetization, and 

backfield curves were measured for selected specimens (at least one per sheet) according to the Lowrie 

(1990, 1997) method and using a JR-6 spinner magnetometer. IRM anisotropy was measured for at least 

5 specimens per sheet. Each specimen was first tumbling demagnetized at 60 mT peak-field, given an 

IRM applying a 20 mT direct field, and then measured. The procedure was repeated in six different 

orientations of the specimen relative to the field (after Potter and Stephenson, 1988, Potter, 2004). 

 

4. FERRAR DOLERITE PETROPHYSICAL PROPERTIES AND MAG NETIC 
CARRIERS 

The low-field magnetic susceptibility and coercivity spectra of at least one dolerite specimen per intrusion 

were analyzed both in isothermal conditions and upon thermal treatment. Dolerite specimens of both 

intrusive sets reveal a wide range of mean magnetic susceptibilities (415 - 30428 µSI, with an average km 

value of 5620 µSI for the entire dataset) but show, otherwise, comparable thermomagnetic and isothermal 

behaviours, Curie temperatures and values of the remanence coercive force. The degree of anisotropy PJ 

is normally below 1%, but may reach values as high as 1.045. For simplicity of analysis, the Allan Hills 

specimens are subdivided into three susceptibility groups, where 'low-’, ‘intermediate-’ and ‘high-

susceptibility’ specimens are characterized, respectively, by Km values in the orders of 10-4, 10-3 and 10-2 

SI (Fig. 5). 

Fig. 5 

 

Ferrar Dolerite kb(T) curves of representative specimens (top row in Fig. 6) are irreversible. This 

phenomenon is commonly related to occurrence of alteration i.e. transformation/production of 

ferromagnetic oxides upon heating (Henry, 2007). Almost reversible, however, is the thermomagnetic 

behaviour observed in intermediate-susceptibility specimens, where the kb(T) heating path frequently 

shows a Hopkinson peak between 300° and 460° C (6b). The occurrence of such Hopkinson peaks, and 

shape of a few thermomagnetic curves, are features normally related to assemblages of both SD and MD 

grains in the rock fabric, where the anomalous peaks reveal remanence unblocked at higher 



 

 

temperatures due to domain-wall freedom, and therefore indicate predominance of MD magnetite among 

the rock magnetic carriers (Potter and Stephenson, 1988, Rochette et al., 1999). 

Magnetic minerals with both soft (BCR<0.5 T) and medium (0.5<BCR<1 T) remanence coercivity share 

most of the total magnetization of the dolerite (J/T curves in Fig. 6). Over ~60% of the magnetization of 

low- and high-susceptibility specimens is due to low coercivity magnetic fractions; medium remanence 

coercivity phases contribute ~35% or less. In intermediate-susceptibility specimens similar quantities of 

soft and medium remanence coercivity fractions contribute ≥80% of the rock magnetization (example 6b). 

Less than 20% (<10% in the intermediate susceptibility specimens) of the total magnetization is carried by 

a ‘hard’ magnetic fraction (BCR>1 T). All remanence coercivity fractions show a steeper decay of 

magnetization approaching 200°C, which translates into steepening of the remanent magnetization 

curves for soft and medium fractions, and complete erasure of hard coercivity phases between 200° and 

300°C. Kb paths are relatively regular during the progressive thermal demagnetization of the Lowrie 

analyses, and show that thermomagnetic behaviours were not controlled by mineralogic transformations. 

Both thermomagnetic methods allow identification of Curie temperatures between 550° and 650° C, but 

more frequently above 600° C.  

IRM saturates at values of applied field (BS) around 300 mT. A coercive remanence field (BCR) of normally 

30-40 mT, and in a few instances around 70-80 mT (Fig. 6a), cancels the magnetization of the rock. 

 

Fig. 6 

 

The wide distribution of magnetic susceptibilities observed, as well as the evidence for both 'high' (70-80 

mT) and 'soft' (BCR=30 mT) magnetic remanence coercivity fractions, can indicate the presence of either 

different ferromagnetic minerals and/or variable grain-size of the magnetic carrier(s), or both. The 

magnetic susceptibility values are, however, typical of many igneous rocks where Fe-Ti oxides are 

distributed inhomogeneously (Tarling and Hrouda, 1993).  

Curie temperatures and BS and BCR values are characteristic of at least two principal magnetic phases in 

the Allan Hills Ferrar Dolerites: Curie points up to 575° C and low remanence coercivity values are typical 

of magnetite, whereas similar BCR values corresponding to higher Curie temperatures (Tc=590°-675° C) 



 

 

may either indicate maghemite and/or magnetite oxidized to haematite (Borradaile, 1988, deBoer and 

Dekkers, 1996).  

The presence of magnetite (or maghemite) and pyrrhotite justifies the Curie temperatures identified with 

thermomagnetic measurements. Coercivity and IRM properties are also consistent with the presence of 

such minerals within the dolerites' petrofabric. Specifically, the common inflection of the remanent 

magnetization curves of different coercivity fractions around 100 - 300° C is typical reflection of the 

breakdown of pyrrhotite.  

 

5. MAGNETIC FABRIC 

Magnetic anisotropy of rocks 

The anisotropy of magnetic susceptibility (AMS) in rocks is modelled as an ellipsoid with mutually 

orthogonal axes k1>k2>k3 (respectively, maximum, intermediate and minimum axes), graphically plotted 

as lineations on equal area stereographic projections. AMS is commonly studied to investigate the overall 

magnetic fabric of a rock, whereas anisotropy of remanence magnetization (ARM) analyses are 

performed only occasionally (i.e. when specific investigation of the type of magnetic domain is needed) 

(Potter and Stephenson, 1988). Mean magnetic susceptibility (km), magnetic lineation (L) and foliation (F), 

anisotropy degree (P or PJ, corrected anisotropy degree) and shape parameter (T) are the anisotropy 

parameters defined for any magnetic fabric ellipsoid. They are mathematically expressed as reported by 

Tarling and Hrouda (1993, Table 1.1, p. 18). The anisotropy degree defines the absolute anisotropy of a 

rock specimen. L, F and T concur to define the geometry of the AMS ellipsoid. Prolate fabric ellipsoids are 

elongate (L>F) and characterized by -1≥T>0, whereas oblate ellipsoids are flattened (F>L) and 

characterized by 0>T≥1. In the directional analysis of AMS fabrics, magnetic lineation and foliation 

correspond respectively to the maximum susceptibility axis direction k1, and to the plane perpendicular to 

k3 and defined by k1 and k2. Analogous considerations can be made for the ARM. 

 

Magnetic fabric of igneous dykes and sills 

AMS fabrics of igneous intrusions result from the hydrodynamic alignment of crystals during magma flow 

(e.g. Knight and Walker, 1988). Ferromagnetic minerals such as magnetite, titanomagnetite and other Fe-



 

 

Ti oxides crystallize late i.e. after the flow ceased, in textural gaps and/or along the edges of preformed 

crystals, thus mimicking the alignment of the earlier-crystallized, non-ferromagnetic minerals.  

Ideally, dykes present a magnetic fabric characteristically prolate, with magnetic lineation (k1, or i1 in the 

case of anisotropy of isothermal remanence magnetization, or AIRM fabrics) parallel to the plane of the 

intrusion and indicating the flow direction (Tarling and Hrouda, 1993, Rochette et al., 1999). The magnetic 

foliation plane and the dyke plane can either be co-aligned, or imbricated with respect to it. The 

imbrication angle is characteristically ≤30° ('normal fabrics' - Knight and Walker, 1988, Tauxe et al., 

1998), but can be up to 45° ('intermediate' fabrics, e.g. Dragoni et al., 1997). Intermediate fabrics are 

commonly related to either mixing, or alternating magnetic behaviour, of AMS sources with different 

properties, such as prolate and oblate magnetic particles within the rock, and are reflected by the 

exchange of the intermediate and minimum axes of the fabric ellipsoid (e.g. Knight and Walker, 1988, 

Raposo and Ernesto, 1995, Ferré, 2002, Herrero-Bervera et al., 2002, Cañón-Tapia and Herrero-Bervera, 

2009 and references therein). 

Finally, ‘inverse’ fabrics are ‘anomalous’ fabrics characterized by minimum susceptibility axis aligned 

within the dyke plane, and the magnetic foliation perpendicular to the dyke; such fabrics are relatively 

uncommon and related to the presence of single-domain magnetic grains within the rock fabric (e.g. 

Rochette et al., 1999).  

 

Allan Hills magnetic fabric data 

Over 60% of the Allan Hills fabric data can be interpreted as either ‘normal’ or ‘intermediate’ magnetic 

fabrics. Normal fabrics are about 20% of the dataset. For dykes sampled along both their margins, the 

resulting magnetic fabric is also ‘scissored’ (Fig. 7). Such fabric is formed by two distinct k1 clusters, 

grouped at either side of the sheet intrusion, which converge along the trace of the dyke plane and thus 

identify the mean magnetic lineation and the absolute flow direction (Knight and Walker, 1988, Correa-

Gomes et al., 2001). In the example given in Fig. 7, data clusters come from both AMS and AIRM 

measurements (later in text). 

 



 

 

Fig. 7 

 

Intermediate magnetic fabrics are over 40% of the dataset: they are here subdivided into three classes, 

each one characterized by a specific arrangement of the fabric ellipsoid axes:  

 I1, commonly prolate, with the magnetic lineation lying on, or within 45° from the dyke plane and 

other two axes of the fabric ellipsoid dispersed on a girdle (top right corner in Fig. 8). 

 I2, i.e. a magnetic fabric with both maximum and minimum axes of the magnetic fabric ellipsoid 

aligned in the plane of the intrusion and magnetic foliation plane perpendicular to it (Fig. 8). 

 I3, nearly normal planar fabric, where the magnetic lineation is anomalous and the intermediate 

susceptibility/remanence axis lies closest to the plane of the dyke. Dyke and magnetic foliation 

planes are subparallel, as in normal fabrics, but imbrication (or intersection, bottom right stereoplot in 

Fig. 8) angles are >30°. 

 

Fig. 8 

 

Finally, 26% of the data are either inverse fabrics or nearly isotropic AMS results and were disregarded 

from the interpretation (i.e. with low values in tests of anisotropy and/or corrected anisotropy degree PJ 

<1.005, cf. Jelinek, 1978). Only in a few cases, where the magnetic fabric is characterized by PJ ≤1.004 

but the clusters of magnetic fabric axes show little dispersion, data were still considered for directional 

interpretation.  

 

AIRM results 

The anisotropy of isothermal remanent magnetization was measured on dolerite specimens from eleven 

sites with either inverse AMS fabric or fabric characterized by chaotic clusters and low anisotropy 

parameters (about 30% of the overall dataset). Three normal and six intermediate resulting AIRM fabric 

types provide reliable directional information. In the example given in Figure 8b, for instance, a ‘normal’ 

arrangement of the AIRM axes underlies a reverse AMS fabric and yields a steeply plunging westward 



 

 

flow direction, consistent with the orientation and AMS measurements from other sites of intrusion #11. 

Two inverse AIRM fabrics were discarded.  

AMS ellipticity or fabric do not seem to correspond to a specific AIRM fabric type (diagram 8c); SD 

particles are not strikingly highlighted by inverse correlation of AMS and AIRM normalized vectors (Potter 

and Stephenson, 1988, cf. diagram 8d). 

 

From the above considerations, magma flow directions of Allan Hills dolerite sheets can be reliably 

inferred from normal and intermediate fabrics. In oblate intermediate fabrics, all mean 

susceptibility/remanence axes may not lie directly in the flow plane, but the intersection between dyke 

plane and magnetic foliation plane is a good proxy of the magma flow direction. Where the intermediate 

susceptibility/remanence axis is within 30° of the plane of the intrusion (all four I3 fabrics and one normal 

fabric with imbrication angle <30°, cf. Tables 2.a,b) it may be used as a flow indicator (lineation, see 

Herrero-Bervera et al., 2001 and references therein) that coincides with the dyke/magnetic foliation 

planes intersection. 

 



 

 

6. INTEGRATION OF RESULTS 

Previous field reconstructions by Airoldi et al. (2011) and Muirhead et al. (2011) (1) locate the overall 

intrusive system at very shallow depth, as also inferred for other nearby locations (Shapeless Mountain: 

Korsch, 1984, Coombs Hills: White et al., 2009), and (2) relate the two intrusion sets to a hidden 'sill' 

source. Additionally, Airoldi et al. (2011) infer a localized point of injection for the AII set intrusions. From a 

structural point of view, AI and AII sheets, coupled with the Ferrar sills exposed throughout the province, 

are unusual in an extensional rift-system scenario such as that inferred for the Ferrar LIP and its south-

african co-respective, the Karoo LIP (Muirhead et al., 2011 and references therein). Field and 

petrophysical data reported here are integrated to clarify these points. 

 

Petrological constraints 

No significant petrological differences distinguish dykes of the AI and AII sets, which have similar bulk 

compositions and geochemical signatures typical of Ferrar Dolerite rocks (see Leat, 2008, Ross et al., 

2008). Rock textures are characteristic of magma solidified at shallow crustal depths (see Rollinson, 

1993, Winter, 2001). Evidence of rapid cooling is provided by chilled dolerite margins and minimal 

thermomechanical deformation of the host rock around the intrusions. 

Plagioclase and clinopyroxene (pigeonite and augite) are the principal mineral phases; intergranular 

clinopyroxene crystals, ferromagnetic granules (pyrrhotite and magnetite) and clay minerals are enclosed 

in both main phases and in places within the glassy groundmass (cf. Airoldi, 2011). The presence of 

ferromagnetic pyrrhotite and magnetite is also demonstrated by rock magnetic properties, and validates 

the interpretation of 'normal' and 'intermediate' magnetic fabrics on the basis of the magnetic lineation 

direction k1 and magnetic foliation plane. Intermediate fabrics may be either a result of co-existing normal 

and inverse particles (MD and SD magnetic grains), or prolate and oblate particles (magnetites and 

pyrrhotites, respectively). The occurrence of SD particles, however, is not conclusively demonstrated in 

specimens with inverse fabric and tested with AIRM technique. 

 



 

 

Magma flow close to the surface 

Magnetic fabrics of Allan Hills dykes are related to dyke orientations and matched with kinematic 

information on dyke propagation provided by both the arrangement of segments (e.g. en echelon) and 

lineations obtained from horns at segment tips and striations on their walls. Magma flow directions are 

defined by the orientation of either the magnetic lineation k1, or the intersection between the magnetic 

foliation and dyke plane. Tables 2.a,b summarize the average AMS and/or AIRM parameters and flow 

directions from 36 dyke sections obtained from the Allan Hills dykes; ‘sections’ comprise magnetic fabric 

of all specimens collected from the same sheet segment. Where magnetic fabrics of specimens from 

distinct but adjacent and co-aligned segments are consistent with one another, they are also grouped into 

a single dyke section. Despite a slight prevalence of ‘anomalous’ intermediate magnetic fabrics, no 

particular fabric type characterizes any specific intrusion. 

Table 2a 

 

Table 2b 

 

A distinct mode of magma propagation (lateral vs. vertical) is difficult to establish for each intrusive set, 

because vertical and lateral flow are both recorded along sheet segments belonging to larger intrusions. 

In general, lateral flow in the N-S (or NW-SE) direction is shared by more-continuous and regular dykes of 

both the AI and AII sets, whereas heterogeneous and generally steeper magma flow paths are defined by 

magnetic fabrics of highly segmented intrusions (Fig. 9). Horizontal flow is recorded at the tips of a few 

dyke segments. 

 

Fig. 9 

 

Overall, magnetic fabrics define flow paths that are strongly conditioned by the geometry of the host crack 

and/or local stress conditions. This is exemplified by the westernmost segment tip section #01-2t (Fig. 

10). Here, the shape of the tip is complicated by two horns formed only a few tens of cm from where dyke 



 

 

propagation was arrested. AMS results show an anomalous inverse fabric, whereas the AIRM fabric is 

intermediate with a subvertical flow lineation. This contrast could represent a composite microscopic 

fabric, which resulted when magma became trapped in a highly strained and fractured area. 

Consequently, magma began infilling fractures of the damage zone, with resulting, distinct flow-paths 

recorded by magnetic properties within localized areas. 

 

Fig. 10 

 

The rock fabric evidence given here may confirm both the model first proposed by Dragoni et al. (1997) 

for the Prince Albert Mountains sills (and thus the hypothesis of a cyclical evolution of magnetic fabric, as 

in Cañón-Tapia and Herrero-Bervera, 2009), and the inference of complex flow within the magma-filled 

cracks. Both conclusions may be interpreted in terms of either complex magnetic mineralogy, as seems 

reasonable from evidence in this paper, or of 'turbulent' flow during emplacement. Turbulent flow is 

considered unlikely, however, because Ferrar magmas would not have had a sufficiently high Reynolds 

number during intrusion in the thin tension fractures exposed at Allan Hills (see Fialko and Rubin, 1999). 

As an alternative, the hypothesis of crack-led injection of rapidly solidifying magma into highly strained 

areas (narrow and segmented tension cracks with greatest geometrical complexity at their tips) is 

preferable. At the large scale, addition of magma into the intrusive magma-filling body stresses the 

surrounding rock and causes the fracture to propagate. The magma just behind the tip is not the main 

driver in pushing the crack forward, and instead experiences an underpressured zone, into which it is 

drawn, as the crack opens. Fracture propagation may be uneven and/or intermittent, and thus cause 

locally complex flow paths as the magma flows to the tip. 

In this sense, ‘passive’, crack-led magma propagation can be regarded as a style of magma injection that 

yields irregular flow paths without implying turbulent flow. Specifically for the Allan Hills example, 'simple' 

cooling of magma emplaced at shallow depths by this process accounts for both field and magnetic 

evidence. 

 



 

 

Regional volcanological constraints 

Data from this study reveal shallow intrusion dynamics over length scales no greater than 3 km. Many 

studies investigating regional magma flow paths sparsely sample dyke swarms over distances of 100s to 

1000s of km. Sheet swarms in the Ferrar Dolerite, however, have not been traced over distances > 10 

km. These short length scales suggest that shallow-level sheet arrays in Ferrar Dolerite were not 

responsible for the mass lateral transport of magma through the province, in agreement with recent 

studies revealing that exposed Ferrar sheets represent localized distribution networks within the overall 

magma system (White et al., 2009, Airoldi et al., 2011, Muirhead et al., 2011). 

 

The magnetic fabric data do not conclusively point to a definite source(s) for the Allan Hills dykes. As for 

the AII intrusions, their magnetically inferred flow directions are somewhat chaotic and the greatest 

evidence about a localized point of injection lies in the geometry of the intrusion array itself; magma flow 

appears to have been mostly vertical at the core of individual segments, and lateral at their tips. Similarly, 

magnetic lineations indicate both lateral and vertical flow in the continuous segments and transgressive AI 

intrusions, with a slight predominance of lateral flow-paths, but do not indicate a source. Based on solely 

on their sub-parallel alignment, these dolerite sheets could be considered part of a regional dyke swarm 

developed in the (inferred) early-Jurassic extensional boundary of east Gondwana. Their formation as 

part of a regional dyke swarm has, however, been dismissed by previous authors, who considered: (1) 

the shallowly dipping, transgressive geometry of the described intrusions; (2) that the sheets exhibit 

remarkably short lengths and are not observed in neighbouring nunataks; (3) the lack of observable 

steeply dipping, parallel dyke swarms throughout the entire Ferrar LIP; (4) the inferred environment of 

emplacement (White et al., 2009, Muirhead et al., 2011), which is not conducive to forming long, sub-

parallel dyke sets. Instead, magma-filled cracks of varying orientations seem to have formed as a 

consequence of a predominantly brittle response of the host rocks to magma injection (White et al., 2009, 

Airoldi et al., 2011). Additionally, parallel dykes should exhibit lateral flow directions consistently pointing 

to a major area of injection (e.g. from distal parts of giant dyke swarms, Ernst and Baragar, 1992, Callot 

et al., 2001), or vertical flow paths indicating ascent of magma through dykes or fissures in rift-systems 



 

 

(cf. Ernst and Buchan, 1997, Callot and Geoffroy, 2004, Craddock et al., 2008), but this is not the case at 

Allan Hills. 

One explanation for the complex relationships between intrusion geometry and complex magma flow 

directions may be that magma was ‘passively’ fed into clusters of inclined fractures resulting from multiple 

sill inflation events. This hypothesis is in part supported by Airoldi et al. (2011) and Muirhead et al. (2011) 

who interpret the shallow dips and sub-parallel alignment of Allan Hills intrusions to reflect stresses 

associated with the emplacement of an underlying sill. It is additionally feasible that a second sill 

intersected this zone, and exploited the same discontinuities formed during contemporaneous doming of 

the underlying sill, which controlled the overall geometry of the resulting swarm. Given that 

contemporaneous emplacement of sills at multiple stratigraphic levels is expected in sill complexes (see 

Muirhead et al., 2011, and references therein) this hypothesis merits further investigation, and could be 

addressed through AMS studies of sheet swarms in South Victoria Land in areas such as Coombs Hills, 

Mt Gran, and Terra Cotta Mountain. Nonetheless, the magnetic fabric directions presented in this paper 

provide sufficient evidence that the intrusions at Allan Hills represent a distinctly magmatic style of crustal 

deformation. Although it is unlikely that these intrusions form a swarm responsible for distribution of 

proportionally large volumes of magma through the province, the swarm may yet indirectly reflect the 

regional magma flow at depth or in the Beacon Supergroup in the South Victoria Land region. 

 

Other Ferrar analogues to the Allan Hills intrusive network 

Large Ferrar Dolerite sills make up most of the Convoy Ranges and greatest proportion of the northern 

highlands at Coombs Hills (< 5 km south of Allan Hills, Fig. 3 in Ross et al., 2008). Ross et al. (2008) and 

White et al. (2009) related the hydromagmatic activity at Coombs Hills to interaction between shallow-

seated magma and groundwater, prior to the emplacement of Kirkpatrick flood lavas in this region, based 

on the evidence provided by intra-vent primary volcaniclastic deposits cut by large clastic dykes, but the 

dolerite intrusions exposed here were otherwise poorly studied. 

A > 200 m thick sill is well exposed along the northern top margin of the nunatak; it shows horizontal 

layering and intra-sill cooling margins related to multiple intrusions. Large rafts of both Beacon sediments 

and Mawson rocks 'float’ within the dolerite and are intruded by dolerite sheets of all orientations (White 



 

 

and Garland, 2007). Specifically, Beacon rafts are pervasively fractured and/or ductilely bent, with locally 

mingled magma and sediment forming fluidal peperite structures. Measurements of preserved bedding 

planes show that the rafts were tilted < 30° (Garland, 2006).  

Inclined dolerite sheets (0.5 – 2 m thick) and rare sills (< 2 m thick) crop out both within in-place stratified 

Victoria Group sediments and unbedded volcaniclastic Mawson deposits, in a ~2 km2 area north-west of 

Mount Brooke (Fig. 9, and see Guegan, 2006). Although heterogeneously distributed and highly 

segmented, subvertical dykes and inclined sheets define two distinct N-S and NW-SE oriented sets 

(Guegan, 2006). Dolerite bodies propagated across Beacon rocks have either en echelon geometry, with 

a dextral sense of displacement, or form irregular braided networks. Individual intrusion segments exhibit 

stepped and swirly geometries; crosscuts are localized and do not permit assessment of specific 

chronologic relationships among dykes. Joints in the country rock replicate the geometry of the intrusions, 

forming two intersecting arrays of N-S and NW-SE fractures, and in places those dip shallowly to the west 

(~40°). No other sign of either brittle or ductile deformation subsequent to intrusion is documented. 

The above synthesis of intrusive field relationships leads us to conclude that the Coombs Hills sill, 

progressively thickened below the Jurassic paleosurface, breached through a 'weak' blanket of Beacon 

and Mawson sedimentary rocks and eventually intersected the surface. It cannot be said whether this 

same sill, or a different one, fed the intrusive network at Allan Hills, but factors such as the geometrical 

similarity between sheet intrusions, and the structural evidence of the evolution of large sills very close to 

(or intersecting) the Jurassic paleosurface (White et al., 2009, Airoldi et al., 2011) leave such an inference 

as a possibility.  

A way to further investigate this hypothesis would be to test it with AMS analyses, i.e. by comparing flow 

directions of both the Coombs Hills sill and some of the largest sills exposed at Allan Hills, and those of 

the above exposed sheet and dyke networks. 

 



 

 

7. CONCLUSIONS 

AI and AII Ferrar Dolerite intrusions exposed at Allan Hills and thoroughly described in a recent study are 

studied with petrologic and rock magnetic methods. Ferromagnetic magnetite and pyrrhotite contribute to 

the magnetic fabric of the intrusions. 'Normal' and 'intermediate' relationships between each intrusion's 

plane and/or local field indicators and magnetic fabric allow the distinction of both lateral and vertical 

magma flow directions. Composite magma flow-modes can be described at the scale of single sheet 

segments, depending on their geometry. Such complex flow paths recorded in Allan Hills’ sheets diverge 

from classical depictions of magma flow in both localized sheet arrays and regional dyke swarms. In the 

absence of conclusive evidence for localized feeders, magma represented by the first-cooled sheet 

margins is considered to have been drawn into advancing crack tips, which are highly strained areas (i.e. 

narrow and geometrically chaotic hydrofractures) driven ahead of growing sheets formed above (a) 

shallow-seated magmatic source(s), one of which may be preserved at Coombs Hills. 
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Figure captions 

Fig. 1  – Location map and regional geology along the Transantarctic Mountains (TAM). Sketch of Ferrar 

Dolerite distribution, redrawn from Muirhead et al. (2011); boxed area localizes the Allan-Coombs Hills 

region, also represented on the right. CTM= Central Transantarctic Mountains; DV= Dry Valleys; SVL, 

NVL= South and North Victoria Land.  

Fig. 2  – Left – Map of Allan Hills most intruded region. Numbers refer to diabase sheets sampled for 

petro-physical analysis. Stereoplots show the average of macroscopic lineations (see text for further 

explanation). Right – a. sketch of sheet segments: I - curved offset and overlapping segment tips; II – 

‘horns’; III – ‘steps’. b-c . Kinematic indicators along the margins of #03. 

Fig. 3 – Photomicrographs of Allan Hills AI [a-b] and AII dolerites [c-d ]. Details of sample OU 78929, with 

a glomeroporphyritic texture: a. large clinopyroxene phenocryst immersed in (black) groundmass of both 

crystals and glass (polarized light); b. plagioclase with 'hopper' texture and dark groundmass (plane 

light). c. Radiating plagioclase blades in the groundmass of OU 78995, plane light; d. Plagioclase crystals 

immersed in glass in section of OU 78999, plane light.  

Fig. 4  – a. Representative bivariate diagrams of major and trace elements (see Table 1). b. Igneous rock 

classification diagrams; left – TAS classification after Le Maitre et al. (1989), right – Winchester and Floyd 

(1977). Major element data normalized to 100% on a volatile-free basis. 

Fig. 5  – Histogram of the mean susceptibility (Km) distribution for the 84 analyzed Ferrar Dolerite 

samples. For ease of visualization only part of the sample codes is represented. The inset histogram [a] 

shows the percentage of ‘low’-, ‘intermediate’ and ‘high-susceptibility’ specimens for sheet sets AI and AII 

(in SI). 

Fig. 6  – Thermomagnetic behaviour of a. ‘low-’, b. ‘intermediate-’ and c. ‘high-susceptibility’ specimens 

(see text). Each row of diagrams corresponds to temperature-dependent susceptibility, progressive 

demagnetization of three-component IRM and isothermal remanent magnetization acquisition and 

demagnetization measurements, from top to bottom. 



 

 

Fig. 7 – Relationship between magnetic fabric data and igneous intrusions. Left – Simplified sketch of 

#04-7 and enlarged detail of one of its segments (section #05, see Table 3.a). Top right – Theoretical 

model of imbrication of crystals along sheet's walls; MFP= magnetic foliation plane; DPL= dyke plane. 

Bottom right – Stereoplot of AMS and AIRM data, sections #05A/B; N= normal fabric. 

Fig. 8 –  Fabric types within Allan Hills AMS and AIRM dataset. Left –Site 78976: (a) inverse (R) AMS 

fabric (b) normal AIRM fabric. Data are superimposed on the rose diagram of sheet #11's strike. c. PJ-T 

diagram highlighting variable ellipticity of magnetic fabric within AMS and AIRM data. d. Linear 

relationship among the normalized values of the axes of magnetic susceptibility and magnetic remanence 

anisotropy ellipsoids. Right – Examples of intermediate fabric (see text). 

Fig. 9 –  Interpretation of Allan Hills sheet intrusions upon magnetically inferred flow directions. Left – 

Magma infilled AI cracks by predominantly lateral flow (flow plunge <45°). Right – segmented AII inclined 

sheets converge towards a common area of intersection (source?), but magma flow, as recorded by their 

rock magnetic fabric, varied greatly with intrusion geometry. 

Fig. 10  – Magma flow-fabric from small segments (AMS from their cores at the top left of the figure) and 

their tips (AMS and AIRM, bottom right). See Table 2.a and text. 

 



 

 

Figures 

 
Fig. 1 



 

 

 

 

 
Fig. 2 



 

 

 

 
Fig. 3 



 

 

 

 

Fig. 4 



 

 

 

 

 

Fig. 6 

 
Fig. 5 



 

 

 

 
Fig. 7 



 

 

 
Fig. 8 



 

 

Fig. 9 



 

 

 
 

Fig. 10 



 

 

Tables  

Table 1 – Normalized major element (wt % oxides) and trace element (ppm) concentrations 

were determined by a Phillips PW 2400 XRF spectrometer unit (operator D. Walls, procedure 

after Norrish and Chappell, 1977). LOI = loss on ignition. 'b.d.l.'= below detection limit. Mg# is 

the ratio MgO*100/(MgO+FeOT). Fe2O3
T was converted to FeOT using a 0.9 conversion factor. 



 

 

 

 



 

 

Table 2a (previous page) – AMS/AIRM fabric and average and/or local orientation of dolerite intrusions at 

Allan Hills. n/N= number of specimens; D= declination; I= inclination; D and I coordinates are given for the 

upper hemisphere of a reference stereographic projection. (*) Strike, dip, dip direction; (**) proximity/angle 

between k2 (or i2) and the dyke plane (characterizes nearly normal, oblate I3 fabric types); (***) trend, 

plunge, upper hemisphere; (s)=‘scissored’ fabrics; ‘imbr.’=angle of imbrication and not simply the angle 

formed by intersection between magnetic foliation and dyke plane (normal and I3 fabric types); #=local 

strike of the dyke parallel to the orientation of a macroscopic kinematic indicator. 

 

Table 2b (next page) – Continued from previous. 

 
 



 

 

 


