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Abstract 

 

De-alloying occurs when a less noble metal is selectively removed from an alloy either by chemical 

or electrochemical means. Under appropriate experimental conditions and for suitable alloy 

composition, the resulting material is constituted by crystalline ligaments rich in the noble element 

and pores. The literature reports a substantial amount of information on de-alloying crystalline 

homogeneous solid solutions, mostly based on noble metals, whereas the process has been 

attempted in a limited number of cases with amorphous alloys. The latter case is reviewed here and 

new results are given for a Au-based metallic glass evidencing the role of the critical potential and 

surface roughness.  

It can be also of interest to remove selectively from the alloy a single phase leaving a sieve-like 

matrix. which might itself be porous. The size of the pores and of the remaining solid can be 

tailored by controlling the grain size of the phases. Examples are given for this second process and 

experiments are reported on successful selective etching of rapidly solidified Fe-C eutectics. 
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1. Introduction 

 

Porous metals can be made by selective removal of a phase or an element from a bulk alloy by 

chemical or electrochemical means. The topic has recently gained interest for tailoring nanoporous 

metallic materials aiming at improved properties in various field such as catalysis, sensors, 

hydrogen storage, molecular sieves. The recent literature reports significant examples which can be 
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classified according to the initial microstructure of the alloy. Dissolution of a phase in a two phase 

material gives porosity of various sizes, starting typically from the micron range. Examples include 

Ni-base superalloys [1, 2], Cu-Zr [3], Ti-Al [4]. In these an equilibrium phase is etched away after 

suitable thermal or mechanical processing aimed at tailoring its size. Instead, the non-equilibrium 

demixing of the melt before solidification has been exploited to create phase dispersions in Cu-Co 

and Cu-Fe alloys [5, 6] before etching. In some cases, the phase constitution of the material 

involves two solutions or a solution and a compound: the phase containing the less noble 

component is totally removed and the other phase originates a porous structure because of de-

alloying as in Au-Al, made of a Au rich solid solution and an Al2Au phase. The material has then a 

bimodal distribution of pore sizes [13]. De-alloying of an element from crystalline homogeneous 

solid solutions, mostly based on noble metals, has received much attention with both experiments 

and models to elucidate the structure and the mechanism of formation of the pore-ligament network 

of the remaining noble element; for a review see [7]. This process provides the finest pore size, in 

the nanometre range, as shown for Au-Ag [7], Au-Cu [7], Au-Sn [8], Cu-Mn [9] alloys. De-alloying 

of homogeneous amorphous alloys as well as of phase separated amorphous phases, has been 

attempted in a number of cases with success [10-12]. multicomponent, removal of elements bring 

composition outside the glass-forming range, nucleation  

The removal of a single phase from an alloys implies two steps: the design and production of a 

suitable microstructure and the careful use of etching methods, e. g. of Pourbaix diagrams for 

electrochemical techniques [1-7]. For obtaining porous structures by de-alloying of an element from 

a homogeneous solution, a substantial difference in electrochemical potential between alloy 

components is needed. It has then been shown that a critical potential exists for the morphology of 

corrosion as well as a “parting limit”, i.e. a limiting content of the most noble element, usually less 

than that of the less noble one. Finally, the mechanisms of crystal reconstruction is based on surface 

and volume diffusion of the noble species or even their re-deposition from the electrolyte [2, 14-

17].  



In this work the selective dissolution of two alloys referring to the different cases just made is 

described. A two-phase Fe-C alloy having a peculiar microstructure obtained by rapid solidification 

is first treated. Then, the electrochemical etching of an amorphous Au-based alloy containing 

embedded crystals, mostly on the surface, is reported. Here, the role of the underlying amorphous 

structure, of the surface roughness and crystallisation must be considered in addition to the 

conventional electrochemical parameters [18]. 

 

2. Experimental 

 

Fe-C ingots containing 3.8 and 4.3 wt% C and a Au42Cu29Ti8Si21 alloy were synthesized by arc 

melting elements of the following purity: 99.98 % Fe, 99.999 % C (electronic grade), 99.99% Au, 

99.99% Cu, 99,9995% Si, 99.99% Ti, after evacuating and purging the furnace several times with 

high purity Ar and using lumps of Zr and Ti as getters. Parts of the crushed ingots were melt spun 

from a silica crucible onto a hardened Cu wheel under high purity Ar, obtaining ribbons 2 mm wide 

and 25-30 m thick.  

For electrochemical de-alloying, samples have been used as working electrode in a cell composed 

of a Standard Calomel reference electrode (SCE) and a Pt counter electrode in a 

Potentiostat/Galvanostat Model 7050, Amel Instruments.  

The Fe-C alloys were etched in 14 M NaOH and 2 V, conditions suited to remove the cementite 

phase. The critical potential for de-alloying Au42Cu29Ti8Si21 was determined by performing anodic 

polarization experiments as 1,75 V . Potentiostatic and galvanostatic methods were employed with 

an electrolyte made of a 0.1 M HNO3 aqueous solution; in the former, samples have been etched for 

20 hours at 1,80-1,90 V (versus SCE electrode), in the latter, samples have been etched at 15 mA 

for 6 hours. During processing, the potential and current fluctuated around the average of tens of 

V and units of mA, respectively. 



Samples have been analysed before and after etching using X-ray diffraction (XRD) in Bragg-

M), 

Energy Dispersive X-ray Spectroscopy (EDS) (calibrated with a pure Co sample) 

 

3. Results and Discussion 

 

3.1 Fe-C eutectics 

 

Microstructural studies of binary cast irons produced with elements of high purity, have shown that 

the formation of the expected conventional eutectics can be kinetically suppressed by solidification 

at the rates achievable in the melt spinning process. A mixture of metastable cementite, slightly off-

stoichiometry, and supersaturated ferrite is obtained directly from the liquid in eutectic form with 

the phase proportion of 61vol% and 39 vol% respectively [19]. Phase diagram calculation 

confirmed that the composition of the metastable eutectic is 3.8 wt% C. A cross section of a  ribbon 

of this C content is reported in Fig. 1 showing the completely eutectic microstructure. Only in 

thicker ribbons a transition from the  microstructure of Fig. 1 to ledeburite was found.  

Conditions for electrochemical etching were chosen to obtain the highest current efficiency which 

corresponds to oxidising the iron present in carbides to ferrate ions and carbon to carbonate ions 

[20]. This allows selective removal of cementite from the alloy. Fig. 2 shows the former air side of 

the ribbon which displays now widespread porosity within a Fe network. The size of the pores is on 

average of the order of two microns. They clearly extend into the inner part of the ribbon. Complete 

etching was achieved after 70 minutes. Other samples which remained for different times at 

potential in excess of 1 V were fully etched as well. The resulting material was rather loose so it 

was not possible to embed it in resin and polish to show a cross section. However, it was strong  

enough for XRD which demonstrated it is constituted entirely by Fe. The Fe is dissolved in the 

same conditions although definitely more slowly being protected to some extent by a passivating 



oxide film [20]. The etching must therefore be terminated at a given stage to avoid further extensive 

Fe corrosion. 

The same electrochemical procedure was applied to slices of various thickness of an arc melted 

ingot of Fe-4.3%C which displayed fine alternate lamellae of ferrite and cementite after 

solidification. The cementite was removed and the material displayed pores one to two microns 

wide and of various length up to tens of microns (Fig. 3). The selective etching could be prolonged 

for various hours to obtain thick porous iron. Fig. 4 shows a view in lateral perspective of a foil, 

originally 80 m thick, which appears fully etched after about 18 hours at 2 V. The ferrite lamellae 

only remain.  

It is, therefore, concluded that porous patterns of different size and shape can be obtained on 

account of the starting alloy microstructure. 

 

3.2 Au based amorphous alloy 

 

The Au-Si system is the early prototype of a metallic glass-former by rapid solidification [21]. More 

recently, bulk metallic glasses have been obtained with atomic content Au49Ag5.5Pd2.3Cu26.9Si16.3 

[22], a composition clearly related to the Au-Cu-Si ternary eutectic. It has also been shown that the 

addition of Ti, having a negative heat of mixing with Au, Cu and Si, improves the glass forming 

ability of the ternary system, although the resulting alloy is not a bulk glass-former [23]. Among the 

compositions now available, Au42Cu29Ti8Si21 is below, but close to the parting limit of Au content 

for de-alloying. Melt spun ribbons display diverse microstructures from the amorphous wheel side 

to the air side where quenched-in crystals are found. These belong to a metastable cubic phase, 

Cu15Si4 type which was identified in XRD patterns by comparison with other rapidly quenched 

ribbons of Au37.5Cu37.5Si25 composition [23, 24]. These crystals are quickly removed by 

electrochemical etching as shown by the disappearance of their reflections from the diffraction 

pattern leaving an incipient porosity of micrometer size on the ribbon surface. With prolonged 



etching at different potential above the critical one, XRD patterns show that gold rich crystals were 

obtained on both sides of the ribbon surfaces. Their lattice constant corresponds to that of pure gold 

within the data scatter [25]. SEM images of the air-side of the ribbon, show, in addition to the 

microporosity due to the removal of the crystalline phase, a finer porosity found in between 

particles of pure Au connected to each other (Fig. 5). Similar microstructure is found on the wheel-

side where the general morphology of gold appears related to the pre-existing roughness of the 

ribbon surface with longitudinal hillocks and isolated channels (Fig. 6). Galvanostatic experiments 

provided similar morphology of gold [25]. 

Crystals and porosity displayed different morphology as a function of applied potential. With 

potential just above the critical value (e. g. 1.80 V), the appearance of the surfaces is more patchy. 

Some areas are close in morphology to those just described, whereas others contain gold of different 

shapes. This is more evident on the wheel side as shown in Figs. 7 to 9. The surface displays 

corrosion cracks and island of Au (Fig. 7). These are more clearly seen in the magnified image of 

Fig. 8. Cracks can be associated to stress corrosion and to the misfit and volume reduction between 

the de-alloyed layers and the underlying alloy. Au particles appear deposited on top of the islands. 

A closer inspection of some of them reveals that they are layered instead of porous (Fig. 9). This is 

clearly indicative of a different growth mechanism with respect to the previous ones (Figs. 5 and 6). 

The mechanism of formation of Au crystals must involve a first stage, common to all cases shown 

here, in which nucleation of crystals occurs very likely heterogeneously on emerging asperities, 

contrary to de-alloying of crystalline alloys which are composed already of a single face-centered 

cubic phase. Then, the microstructure of Figs. 5 and 6 made of three dimensional aggregates of gold 

particles implies surface diffusion of gold when the less noble elements are dissolved. Volume 

diffusion of Au to the surface could also be invoked, but it is less likely to be effective: in fact, it 

should cause the formation of crystallization products of the alloy of which no evidence was ever 

encountered. Instead, the morphology of Figs. 7 to 9 is compatible with local passivation due to 



noble element layers and elemental re-deposition from the electrolyte possibly because of 

fluctuations of the potential around the critical value [26]. 

Microanalysis has been performed on both sides of uniform areas of the de-alloyed ribbons showing 

surface enrichment in gold and depletion in copper while the titanium and silicon percentage was on 

average decreased less. This results are not in contrast with the XRD results that shows reflections 

of pure gold after de-alloying: microanalysis data give an average composition between the de-

alloyed layer, made of pure gold, and the layers below that have not been etched yet. Elemental 

maps and fine spot EDS analyses showed enrichment of Si and Ti in the pores accompanied by 

higher Oxygen signal. A current density of the order of tens of mA/cm2 was recorded in different 

experiments. It then decreased progressively as a function of time becoming almost halved after 

about 50 minutes remaining then substantially constant during the etching time (20 hours). This 

passivating effect is likely due to both surface gold enrichment and progressive coverage and to 

enrichment in Si and Ti possibly as oxides in the pores. 

Having verified the feasibility of de-alloying of amorphous metallic phases, the mechanism at 

atomic level is not disclosed, however, and would need detailed examination of the early stages of 

the process. 

 

4. Conclusions 

 

The present work shows that porous patterns of different size and shape can be obtained on account 

of the starting alloy microstructure in Fe-C eutectics providing a cheap mean to obtain materials for 

catalysis and sieving. 

De-alloying of a partially crystalline/amorphous alloy has been performed obtaining porosity of 

different size. Porous gold networks have been obtained from crystalline alloys in many instances 

[7-9] containing often finer pores, i. e. in the tens of nanometre range, than those shown in Figs. 5 to 

9. The larger Au crystals obtained here can be related to the alloy composition close to the parting 



limit for de-alloying although necessary for glass formation. The role of the initial amorphous 

structure does not appear decisive. On removing the less noble components, nucleation of gold 

crystals must be very quick, being facilitated by local heterogeneity and the apparent fast surface 

diffusion. Using glassy alloys for de-alloying could, however, be interesting to obtain a starting 

single phase in cases when no crystalline homogeneous phase can be obtained and to promote 

patterns by controlled crystallisation.   
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Figure Captions 

 

Fig. 1. SEM image (secondary electrons) of a cross section of as-quenched 3.8 wt% C ribbon. 

Fig. 1 
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Fig. 2. SEM image (secondary electrons) of as-quenched 3.8 wt% C ribbon after electrochemical 

etching to remove cementite. 
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Fig. 3. SEM image (secondary electrons) of as-solidified 4.3 wt% C cast iron after electrochemical 

etching to remove cementite. 
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Fig. 4. SEM image (secondary electrons) of as-solidified 4.3 wt% C cast iron after prolonged 

electrochemical etching to remove cementite. Left: perspective view of a foil originally 80 m 

thick. Right: magnification of ferrite lamellae. 
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Fig. 5. SEM image of the air side of the Au42Cu29Ti8Si21 ribbon after dealloying with the 

potentiostatic method at 1.90 V (left). Higher magnification image on the right. 
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Fig. 6. SEM image of the on the wheel-side of the Au42Cu29Ti8Si21 ribbon after dealloying with the 

potentiostatic method at 1.90 V. Porous gold with longitudinal hillocks and isolated channels. 
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Fig. 7. SEM image of the on the wheel-side of the Au42Cu29Ti8Si21 ribbon after dealloying with the 

potentiostatic method at 1.80 V. Corrosion cracks and Au islands. 
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Fig. 8. Magnification of part of Fig. 7 showing corrosion cracks and locally re-deposited Au. 
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Fig. 9. Magnification of part of Fig. 7 showing re-deposited Au in layer form. 



Fig. 9 

 

 

2 m2 m2 m
  


