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Daz- and Pumilio-Like Genes Are
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in Pelophylax (Rana) Oocytes
and Are Expressed During Early
Spermatogenesis
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AND MATILDE RAGGHIANTI1
1Laboratory of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
2Department of Biology, Indiana University, Indiana
3Department of Animal and Human Biology, University of Turin, Turin, Italy

In many organisms, the specification of cell fate and the formation of embryonic axes depend on a
proper distribution of maternal mRNAs during oogenesis. Asymmetrically localized determinants are
required both for embryonic axes and germline determination in anuran amphibians. As a model
system of these processes, we have used a species complex of the genus Pelophylax (Rana),
characterized by a hybridogenetic reproduction that involves events of genome exclusion and
endoreduplication during meiosis in both sexes. With the aim of characterizing the still largely
unknown molecular events regulating Pelophylax gametogenesis, we have isolated in this animal
model homologues of the deleted in AZoospermia-like (DAZl) and pumilio gene families (named
RlDazl and RlPum1, respectively), which encode posttranscriptional regulators. Expression pattern
analysis of these genes showed that RlDazl is exclusively expressed in gonadal tissues, whereas
RlPum1 is expressed in both somatic tissues and gonads. In situ hybridization carried out on gonads
revealed that the two transcripts were asymmetrically localized along the animal–vegetal (A–V) axis
of oocytes. In particular, the RlDazl transcript progressively collected to the vegetal pole during
oogenesis, whereas the RlPum1 mRNA was preferentially enriched at the animal hemisphere. In
adult testes, RlDazl and RlPum1 were expressed in specific phases of spermatogenetic divisions as
shown by immunostaining with anti-H3 phosphohistone antibody. Our results indicate that RlDazl
and RlPum1 represent two early indicators of oocyte polarity in this hybridogenetic vertebrate
model. Additionally, RlDazl share with vertebrate DAZ-like genes a germ cell-specific expression
pattern. J. Exp. Zool. (Mol. Dev. Evol.) 316:330–338, 2011. & 2011 Wiley-Liss, Inc.
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RNA localization represents an evolutionarily conserved strategy

of translational control that plays a pivotal role in the establish-

ment of cell polarity and/or determination of cell fate

(Graindorge et al., 2006; Martin and Ephrussi, 2009). In oocytes,

RNA localization has profound implications for development, by

creating local concentrations of regulatory proteins that will

specify different cell fates in the embryo (King et al., 2005). In

both Drosophila and Caenorhabditis, genetic pathways regulating
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germ plasm assemblage are also involved in antero/posterior

(A/P) axis formation of the oocyte and embryo (Zhou and King,

2004). In anuran amphibians, germ plasm assemblage at the

vegetal pole contributes to the establishment of oocyte polarity

by determining the animal/vegetal (A/V) axis formation and by

setting up polarities in genetic information that drive cell fate

during embryogenesis (King et al., 2005).

Deleted in AZoospermia (DAZ)-like and pumilio-like proteins

represent a highly conserved class of translational factors

implicated in the different steps of germ cell development, from

determination to differentiation (Houston and King, 2000;

Wickens et al., 2002). Genes belonging to DAZ family comprising

the boule, DAZ-like (DAZL) and DAZ homologues, encode highly

conserved RNA-binding proteins that are specifically expressed

in germ cells and are essential for gametogenesis in metazoans

(Spassov and Jurecic, 2003). In Dazla defective mouse, female

germ cells are arrested at the prophase of meiosis I, whereas male

germ cells are affected at the proliferating stage (Ruggiu et al.,

’97; Saunders et al., 2003). The Xenopus XlDazl is expressed as an

RNA localized to the mitochondrial cloud of early oocytes and to

primordial germ cells (PGCs; i.e. precursors of gametes) of early

embryos (Houston et al., ’98). Interestingly, loss-of-function

studies have put in evidence a specific role of XlDazl in PGC

migration (Houston et al., ’98).

The pumilio family is constituted by genes encoding

translational repressor proteins characterized by a carboxyl

terminus pumilio homologous domain (PUM-HD), responsible

for binding to specific 30UTR mRNA sequences, reported as nanos

response elements (Moore et al., 2003). The pumilio RNA of

Drosophila is enriched at the posterior pole of the egg and is

involved in regulation of asymmetric divisions of germline stem

cells in the Drosophila ovary (Wickens et al., 2002). In

vertebrates, two pumilio paralogous genes have been described

(Crittenden et al., 2002; Lee et al., 2008). The Xenopus Pumilio 2

homologue plays an important role in translational control of

cyclin B1, a component of the Maturation Promoting Factor

(Wickens et al., 2002; Padmanabhan and Richter, 2006).

Recently, it has been shown in Xenopus embryo vegetal cells

that the Pumilio 1 protein represses the translation of the

maternal determinant xCR1 that is required for A/P patterning

during Xenopus embryogenesis (Zhang et al., 2009). Human

PUM2 is expressed predominantly in human embryonic stem and

germ cells, and the PUM2 protein colocalizes with DAZ and

DAZL in germ cells, although the role of this interaction remains

to be explored (Moore et al., 2003).

We have used, as an animal model, water frogs belonging to

the Pelophylax (Rana) esculentus complex, a group of frogs

containing P. esculentus, which has arisen by natural hybridiza-

tion between the two parental species Pelophylax ridibundus and

Pelophylax lessonae. P. esculentus hybrid represents an unusual

example of fertile hybrid in vertebrates, thanks to a modified

gametogenesis known as hybridogenesis (see Ragghianti et al.,

2007). In the developing germ cells of the hybridogenetic hybrid

P. esculentus, one set of the parental genomes is excluded and the

remaining one endoreduplicates and then is hemiclonally

transmitted to gametes (Tunner and Heppich-Tunner, ’91). In

this article, we describe the isolation of homologues of DAZL and

pumilio genes in Pelophylax and analyze their expression pattern

during oogenesis and spermatogenesis.

MATERIALS AND METHODS

Animals

In this study, juveniles and adults of P. lessonae, P. ridibundus,

and P. esculentus, from near Poznan (Poland), were identified by

morphometric and molecular analyses (cf. Ragghianti et al.,

2007). Frogs were anaesthetized with MS222 (tricaine methane-

sulfonate, Sigma) and sacrificed, after which ovaries containing

oocytes at different stages of development (cf. Ogielska and

Kotusz, 2004) and somatic tissues were collected.

To obtain defolliculated oocytes, the ovarian tissue was

incubated in 0.2% collagenase (type II, Sigma) in 0.1 M sodium

phosphate pH 7.4. Testes were explanted from male individuals

after they were MS222-anesthetized and sacrificed.

We followed the guidelines for animal care established by the

University of Pisa.

RNA Isolation, cDNA Cloning, and Sequencing

Total RNA was isolated from adult organs using Nucleospin RNA

II kit (Macherey-Nagel, Germany). A SMART cDNA library was

synthesized from P. lessonae testis using a RACE cDNA

Amplification kit (BD Biosciences). The testis library was used

for isolating partial cDNA clones of DAZL and pumilio-like genes

by RT-PCR with the following degenerate primers, respectively.

RlDazl

FOR 50-TTCTCGAGTTYGTIGGIGGIATHGA-30

REV 50-TTAAGCTTRAAICCRTAICCYTT-30

RlPum1

FOR1 50-GAYCARCAYGGNTCNCGNTTYATHCA-30

FOR2 50-GTNATHCARAARTTYTTYGARTTYGG-30

REV1 50-TARTTNGCRTAYTGRTCYTTCATCAT-30

REV2 50-TGYTGDATNACRTARTTNCCRTAYTG-30

To obtain complete sequences, 50 and 30 RACE reactions were

performed using a SMART 50/30 RACE cDNA amplification kit

(BD Biosciences) with sequence-specific oligonucleotides:

RlDazl

FOR 50-CGGATTGATCAGCATGAAATTAAAG-30

REV 50-AACCAGCGCGATCAGTAATTATTTTC-30

RlPum1

FOR 50-TGATATGGTCCGAGAACTGGATGGGCAC-30

REV50-CAACCTTACGGATGCGTCGAGAGTGC-30
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In order to isolate full-length clones, the following sequence-

specific primers, designed on the 50 UTR and 30 UTR of

corresponding transcript sequences, were used:

RlDazl

FOR 50-CTTCGGTTGTTCTAGGTTTTGTTG-30

REV 50-TTATTAGCCTGGGTGCAGTTTTAC-30

RlPum1

FOR 50-GACCTAATCCGACTCCCTCCTCCCG-30

REV 50-AAGAGCTACACCCTGATTCTCCCACG-30

The PCR products were TA-cloned into pGEM-T easy vector

(Promega, Italy) and sequenced by automated fluorescent cycle

sequencing (ABI) (by Primm, Italy).

Sequence Analysis

We used a BLAST search (Altschul et al., ’97) to identify sequences

related to RlDazl and RlPum1. Sequence alignments were

performed using MAFFT (Katoh et al., 2005). Phylogenetic trees

were built using the Neighbor-joining method implemented in the

MEGA 4.0 package (Tamura et al., 2007). Sequences were obtained

from GenBank through the National Center for Biotechnology

Information Web site (http://www.ncbi.nlm.nih.gov).

RNA Extraction and RT-PCR Analysis

Total RNA was extracted from different fresh or frozen adult

tissues, as previously described. First strand cDNA was synthe-

sized using Superscript II Reverse Transcriptase (Invitrogen,

Italy), from 1mg of total RNA. RT-PCR analysis was performed

using gene-specific sets of primers. b-Actin primers were used for

standardization, as described by Marracci et al. (2007). For

control reactions, reverse transcriptase was omitted.

In Situ Hybridization

Whole-mount in situ hybridizations were carried out on oocytes

at various stages of maturity, from P. ridibundus, P. lessonae, and

P. esculentus, using digoxigenin-labeled antisense and sense RNA

probes generated from the full-length clones (cf. Ikenishi and

Tanaka, 2000). Paraffin-embedded in situ hybridized oocytes were

cut into 12mm sections with a microtome. For in situ hybridiza-

tion on cryostat sections (8–10mm), testes and ovaries were fixed

in 4% paraformaldehyde at room temperature for 2hr, cryopro-

tected with 30% sucrose in PBS overnight at 41C, and stored at

�801C until cryosectioning. Both testis and ovary cryosections

were hybridized, as described by Marracci et al. (2007).

Immunofluorescence Reactions With Serine-10 Phosphorylated H3
Histone Antibody

Phosphorylated H3 histone was used as a marker of mitotic and

meiotic prophase and metaphase. Immunofluorescence experi-

ments with antibody against Ser-10 phosphorylated H3 histone

have been carried out on sections of adult testis previously in situ

hybridized, using methods described by Marracci et al. (2007).

RESULTS

Isolation of RlDazl and RlPum1

We isolated from P. lessonae full-length cDNA several clones,

some homologous to DAZL and others to Pumilio1; and these

were named RlDazl (GenBank accession no. AM490198) and

RlPum1 (GenBank accession no. FN547888), respectively.

A phylogenetic analysis of DAZL proteins from several verte-

brates confirmed that RlDazl belongs to the DAZ gene family

(Fig. 1A). Interestingly, the DAZL gene seems to evolve faster in

anurans than in other vertebrates (Fig. 1A). The 849bp long

sequence of RlDazl encodes a predicted protein of 282 amino

acids that shares 92% amino acid identity with Lithobates (Rana)

pipiens RpDazl, although it showed less than 60% identity with

DAZL proteins of other vertebrates, including Xenopus (Table 1).

The predicted RlDazl protein sequence contains a conserved RNA

recognition motif (RRM) and a single DAZ motif (Fig. 1B). The

RlPum1 clone is 3,728pb long and encodes for a predicted protein

of 1,228 amino acids. The evolutionary tree of vertebrate Pumilio

genes indicates that RlPum1 belongs to the Pumilio1 gene family

(Table 2; Fig. 1C). The RlPum1 protein shares a very high

sequence identity (485%) with Pumilio1 proteins from other

vertebrates, especially with other anuran Pumilio1 proteins

(Table 2). The RlPum1 predicted amino acid sequence contains

the PUM-HD domain, including the N-terminal conserved region,

eight tandem imperfect Puf repeats, and the C-terminal region

(Fig. 1D). The PUM-HD region shows the highest level homology

(490%) with other vertebrate species (data not shown).

Spatial Expression of RlDazl and RlPum1 in Different Pelophylax
Tissues

The expression pattern of these genes was investigated by RT-

PCR on both somatic and gonadal tissues and showed that RlDazl

was exclusively expressed in gonadal tissues, similar to DAZL

genes characterized in other organisms (Fig. 2A). RlPum1 is

expressed not only in germline tissues, but also in somatic tissues,

such as heart and spleen (Fig. 2B). The expression pattern of these

genes seemed to be conserved in P. lessonae, P. ridibundus, and

P. esculentus (data not shown).

Expression Profile of RlDazl and RlPum1 During Pelophylax Oogenesis

In situ hybridization carried out on both juvenile and adult

ovaries of P. ridibundus, P. lessonae, and P. esculentus females

showed that RlDazl and RlPum1 were expressed at early stages of

oogenesis, with distinct profiles of mRNA distribution along the

A/V oocyte axis. RlDazl is distributed throughout the cytoplasm

of some but not all pre-vitellogenic stage I oocytes (Fig. 3a).

Hoechst staining of hybridized sections, obtained from immature

ovaries of metamorphosed froglets, highlighted the presence of

the RlDazl transcript in oocytes at the beginning of meiotic

prophase I (Fig. 3b and c). The intensity of the hybridization

signal increases in the cytoplasm of oocytes I as meiotic prophase

MARRACCI ET AL.332
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Figure 1. Sequence, structure, and phylogeny of RlDazl and RlPum1 proteins. Phylogenetic trees of Dazl proteins (A) and Pumilio1 family

proteins (C) from the alignment of amino acid sequences. Neighbor-joining algorithm, 1,000 bootstrap replicates. Abbreviations correspond to

species names shown in Tables 1 and 2. (B) Amino acid sequence alignment of Dazl proteins of P. lessonae (RlDazl; AM490198), L. pipiens (RpDazl;

AAV30542), X. laevis (XlDazl l; AAH97658), and mouse (Dazl; NP_034151). Identical amino acids are in black, conservative substitutions are in

gray. The RNA recognition motif (RRM) and DAZ motif are highlighted in frame and are boxed with continuous and dotted lines, respectively.

(D) Alignment of the deduced amino acid sequences of the Pumilio proteins of P. lessonae (RlPum1; FN547888), X. laevis (XlPum1; BAC57980),

mouse (Pum1; AAG42319), and Homo sapiens (PUM1; NP_055491). Identical amino acids are in black, conservative substitutions are in gray.
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progresses. From stage II, the RlDazl transcript has been found

progressively accumulated at the vegetal pole of oocytes, and in

later stages of oogenesis (III–VI) it has been detected in the

subcortical region of the vegetal pole (Fig. 3d–j). This pattern

was consistently observed in P. ridibundus, P. lessonae, and the

P. esculentus.

The RlPum1 gene is expressed in early stages of oogenesis

(Fig. 4a). In situ hybridization on sections revealed a strong signal

uniformly diffused through the cytoplasm of stage I oocytes

(Fig. 4b). Unlike RlDazl, RlPum1 mRNA has been detected

preferentially located at the animal pole of oocytes from stage II

of oogenesis in P. ridibundus, P. lessonae, and P. esculentus

(Fig. 4c; data not shown). Neither gene was expressed in ovarian

somatic cells (data not shown).

Expression Profile of RlDazl and RlPum1 During Pelophylax
Spermatogenesis

In males of the P. esculentus complex, the seminiferous tubules

contain groups or cysts of spermatogenic cells synchronously

differentiating (Ogielska and Bartmańska, ’99). In situ hybridiza-

tions on adult testis sections of P. ridibundus, P. lessonae, and

P. esculentus revealed that both RlDazl and RlPum1 are

expressed in single primary spermatogonia and groups of

primary spermatocytes, whereas their mRNAs are absent in

secondary spermatocytes, spermatids, and spermatozoa (Fig. 5a

and d). Using serine-10 phosphorylated H3 as marker of meiotic

division, we observed that both genes share the highest

expression signal in nondividing primary spermatocytes, whereas

the signal decreased as they entered in prophase-I and then

disappeared in subsequent spermatogenic stages, such as

secondary spermatocytes, spermatids, and spermatozoa (Fig. 5b

and c). Hoechst staining of the hybridized sections have been

used for recognizing spermatogenic cell types (Fig. 5c and f ).

Neither of the two genes was expressed in somatic cells of the

testis (data not shown).

DISCUSSION
We have isolated from species of Pelophylax genes homologous

to Dazl and Pumilio1 and examined their expression patterns.

Both genes encode for proteins with conserved RNA-binding

motifs. Like DAZL genes characterized in other species, RlDazl

showed an RRM and a single DAZ motif that has been

demonstrated to be involved in multiple protein–protein inter-

actions (Moore et al., 2003). RlPum1 revealed a highly conserved

PUM-HD region shared by all the other members of the Pumilio

family. The crystal structures of Drosophila Pumilio and human

PUM-HD domain have revealed that the Puf repeats are aligned

in tandem to form an extended curved molecule (Wang et al.,

2002). The RNA binds to the concave surface of the molecule,

where each of the eight repeats makes contact with a different

RNA base via three conserved amino acid residues positioned in

the middle of the repeats (Wang et al., 2002). The presence of

Table 2. Identity of RpPum1 to Pumilio proteins from other

vertebrates.

Protein

Protein

length

%

Identity Coverage

Accession

number

XlPum1 1,185 93 100 CU075675.1

XtPum1 1,185 92 100 AB091091.1

GgPum1 1,189 87 100 DQ275191.1

HsPum1 1,188 87 100 NM_001020658.1

MmPum1 1,188 86 100 NM_001193123.1

BtPum1 1,186 86 100 BC048174.1

GgPum2 1,061 74 89 NM_001039292.1

HsPum2 1,064 73 89 NM_015317.1

MmPum2 1,066 72 89 NM_030723.2

Coverage indicates the proportion of RpPum1 that aligned with each Pum

protein. Xl, Xenopus laevis (Anura); Xt, Xenopus tropicalis (Anura); Gg,

Gallus gallus; Hs, Homo sapiens; Mm, Mus musculus; Bt, Bos taurus.

Figure 2. RT-PCR analysis of the expression pattern of RlDazl

(A) and RlPum1 (B) in adult tissues of P. lessonae; RT is the

negative control and b-actin was used as a positive control.

Table 1. Identity of RpDazl to Dazl proteins from other vertebrates.

Protein

Protein

length

%

Identity Coverage

Accession

number

RpDazl 280 92 100 AY645797.1

XlDazl 286 57 91 BC071023.1

CyDazl 302 56 97 AB164065.1

AxDazl 266 57 93 AF308872.1

GgDazl 289 53 92 NM_204218.1

HsDazl 295 56 92 U66726.2

MmDazl 298 56 92 NM_010021.4

BtDazl 295 58 92 EF501823.2

Coverage indicates the proportion of RpDazl that aligned with each Dazl

protein. Rp, Rana pipiens (Anura); Xl, Xenopus laevis (Anura); Cy, Cynops
pyrrhogaster (Urodela); Ax, Ambystoma mexicanum (Urodela); Gg, Gallus
gallus; Hs, Homo sapiens; Mm, Mus musculus; Bt, Bos taurus.
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Figure 3. Expression pattern of RlDazl during oogenesis. Whole-mount in situ hybridization showing the localization of the RlDazl transcript in

some pre-vitellogenic stage I oocytes of P. lessonae (a); sections from immature ovaries hybridized with RlDazl probe (b) and Hoechst staining of

the hybridized section (c). Whole-mount in situ hybridization (d, f, h) in oocyte stage II (d), late stage II (f ), stage III (h) with RlDazl probe of both

the parental species and hybrid. Paraffin sections of whole-mount in situ hybridized oocytes (e, g, i) and of oocyte stage VI (j) showed that the

RlDazl transcript progressively accumulated at the vegetal pole (downwards). The white arrowhead points to a pre-vitellogenic oocyte; the black

arrowheads indicate RlDazl transcript detected in the subcortical region of the vegetal pole. Scale bars represent 50mm (a, b); 100mm (d–j).

Figure 4. Expression pattern of RlPum1 during oogenesis. (a) Whole-mount in situ hybridization showed a strong signal in stage I oocytes.

This signal declined in oocyte stages II and III. (b) Paraffin section of whole-mount in situ hybridized stage I oocyte showed that RlPum1

mRNA was widely distributed in the ooplasm. (c) Paraffin sections of whole-mount in situ hybridized stage III oocyte shows that the RlPum1

transcripts are located at the animal pole (upwards). Scale bars represent 400mm (a); 25mm (b); 100mm (c).
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highly conserved RNA-binding domains suggested for these two

genes a possible role as translational regulators.

The spatial expression analysis performed on different adult

tissues showed that RlDazl is exclusively expressed in germ line

tissues, whereas the RlPum1 transcript has been also detected in

some somatic tissues. Both RlDazl and RlPum1 were expressed

during the early oogenesis, revealing a differential mRNA

distribution along the A/V axis of the oocyte. Because maternally

localized mRNAs are differentially segregated into blastomeres

during early development, the unequal distribution of RlDazl and

RlPum1 mRNAs along the A/V axis suggests that the two genes

differentially contribute to the embryo axis formation as well as

the specification of the cell fate. The RlPum1 transcript was

preferentially enriched at the animal hemisphere of oocytes of

P. ridibundus, P. lessonae, and P. esculentus. Some localized

mRNAs so far identified are enriched at the animal pole, but their

developmental significance remains to be demonstrated (Schnapp

et al., ’97; Mowry and Cote, ’99; King et al., 2005).

Like XlDazl of X. laevis and RpDazl of L. pipiens, the RlDazl

transcript, from stage II of oogenesis, was found progressively

localized to the oocyte vegetal pole. Molecular studies carried out

in Xenopus highlighted that some vegetally localized RNAs are

involved in germ cell specification (Nakahata et al., 2001, 2003);

RlDazl may play an analogous role in these water frogs. The

expression of RlDazl is variable in stage I oocytes, just as is the

expression of XlDazl (Houston et al., ’98) and RpDazl (Nath et al.,

2005). In particular, the intensity of the hybridization signal of

RlDazl increased in the cytoplasm of stage I oocytes as the

meiotic prophase progresses, suggesting that RlDazl expression

could be regulated in oocytes advancing through meiosis.

Interestingly, Haston et al. (2009) showed that, in DAZL-null

mice, female germ cells fail to progress through meiosis. In

C. elegans the DAZ-1 protein plays an essential role at premeiotic

and early meiotic stages in female germ cells and facilitates the

proper progression of oogenesis (Maruyama et al., 2005). In the

oocytes of the urodele amphibians Cynops pyrrhogaster and

Ambystoma mexicanum (axolotl), the Cydazl and Axdazl mRNAs,

respectively, show no specific localization in the ooplasm, which

is consistent with there being no germ plasm (Bachvarova et al.,

2004; Tamori et al., 2004).

RlDazl and RlPum1 showed a similar expression pattern

during spermatogenesis. Both genes are expressed in spermato-

gonia and primary spermatocytes entering into meiosis. A similar

pattern was shown by Xenopus XlDazl. The authors demonstrated

Figure 5. RlDazl and RlPum1expression in the testis. (a) Section of adult testis of P. lessonae hybridized with RlDazl probe (blue signal); (b)

Same hybridized section immunostained with anti-phosphohistone H3 expression (red signal) and counterstained with Hoechst (c); (d)

Rlpum1 hybridization signal (in blue); (e) same hybridized section immunostained with anti-phosphohistone H3 (red signal) and

counterstained with Hoechst (f). SGI, primary spermatogonia; SCI, primary spermatocytes; SCII, secondary spermatocytes; SZ, spermatozoa.

The asterisks denote primary spermatocytes undergoing meiotic division. Scale bars represent 250mm.
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that XlDazl can rescue meiotic entry of spermatocytes in

Drosophila Boule mutants, suggesting a possible role of this

gene as regulator of meiotic division (Houston et al., ’98). In

mouse models, the absence of the autosomal DAZL gene resulted

in a final block at zygotene of meiotic prophase (Reynolds et al.,

2005, 2007). The C. elegans pumilio homolog puf-8 is required

for a normal progression of meiosis of primary spermatocytes

and in puf-8 mutants, primary spermatocytes dedifferentiate into

mitotic germ cells (Subramaniam and Seydoux, 2003).

The genome exclusion and genome endoreduplication typical

of the Pelophylax hybridogenesis are believed to occur only

during the germline development in the hybrids. Given such a

massive reorganization of the germline genome, one would expect

to find substantial differences during the gametogenesis of the

hybrids when compared with the parental species. We have shown

in this article that the expressions pattern of RlDaz1 and RlPum1

during the gametogenesis does not differ among R. ridibundus,

R.lessonae, and R. esculentus. These results mirror our previously

reported molecular analyses of the expression pattern of other

genes (Marracci et al., 2007, 2008), and suggest that despite the

remarkable changes in the hybrids germline associated with the

hybridogenesis (cf. Ogielska and Kotusz, 2004), both oogenesis

and spermatogenesis follow similar genetic pathways of differ-

entiation in adults of hybrids and parental species.

In addition, we noticed strong similarities in the expression

pattern of DAZL during the gametogenesis of Pelophylax and

Xenopus species. Since the families Ranidae, which includes

Pelophylax, and Pipidae, comprising Xenopus, diverged about

230 million years ago (Roelants et al., 2007), our results indicate

that the expression pattern of genes involved in the gametogen-

esis is highly conserved between these distantly related anurans.

Intriguingly, the consistent expression pattern of DAZL in

Pelophylax and Xenopus is not reflected at the protein sequence

level, as we observed an accelerated evolution of this gene in

anurans compared with other vertebrates.

RlDazl joins RlVlg and RlYb2 (Marracci et al., 2007, 2008), as

the only specific markers of germ cells so far known in water

frogs. These genes constitute distinctive markers of specific

phases of oogenesis and spermatogenesis, useful in order to

explore the hybridogenetic process in these water frogs.

Overall, these findings point to the relevance of the Pelophylax

group of water frogs as a model system complementing our

knowledge in the development and maturation of the germline

derived from studies on other vertebrates, and highlight the

importance of gene expression analyses in the study of the

hybridogenetic gametogenesis.
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