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REVIEW
MINERVA BIOTEC 1 997;9;85-92

Motogenic growth factors: HGF/SF and MSP

MASSIMO M. SANTORO. GIOVANNI GAUDINO

Cell movement is a critical step in norrnal ernbryonic
development, tumour metastasis, inflammatory
responses, and wound healing. Cell migration has
been described as continuous cycles of specific and
subsequent morphological changes of the cell body,
due to cytoskeletal modifications and forrnation of
adhesive contacts. There is increasing evidence that
growth îactor receptors can modulate cell motility,
interfering either with the assembVdisassembly of
the focal adhesion sites and with the mechanism of
polymerisation,/depolymerisation of the actin fila-
ments. One particular subfamily of growth factors
has treen characterised by its ability to induce deve-
lopmental, as well as growth, cell dissociation, and
motility stimuli: Hepatocyte Growth Factor/Scatter
Factor (HGF/SF) and Macrophage Stirnulating Protein
(MSP). HGF/SF protein has the property of dispersing
or scattering epithelial cell colonies into single isola-
ted cells, with enhanced random, non-polarised moti-
lity. The biological activity of the recepto! Met tyrosi-
ne kinase, depends on the presence of two pho-
sphotyrosine residues in the carboxy-terminal tail,
acting as a multifrrnctional docking site for SH2-con-
taining effectors. Macrophage Stimulating Protein
(MSP), originally discovered by its effect on rna-
crophages, is also active on several epithelial cells. Its
receptor, the Ron tyrosine kinase, can be constituti-
vely activated in the absence of the ligand. In these
conditions the signalling evoked by active tyrosine
kinase induces a strong motile and invasive phenoty-
pe. The îact that HGF/SF and MSP elicit motile-invasi-
ve respoflses indicates the important role played by
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these factors and their receptors in cell physiology
and pathology.
KEv wonos: Cell movement - Growth substances - Sisnal
transduction HGF/SF - Macrophage stimulating proiein
(MSP) Hepatocyte growth facror (HGF/SF).

f eÌ1 migration plays a crucial role in a wide
\--r spsclpm of lriological events not only for sim-
ple organisms but also for animals. The aptitude of
several cells to migrate is an important process
during embryogenesis, ranging from gastrulation to
development of the nelvous system. Moreover it
lasts also during the adult 1ife, remaining promi-
nent during physiological processes (e.g. inflamma-
tory response, wound healing, and tissue regenera-
tion) as well as in disease, during the metastatic
process.l Not every ce1l type is specialised for loco-
motion, but in given circumstances some of them
(e.g. neutrophils, fibroblasts, neurons) are able to
move. In many tissues cell motility is normally
repressed but it is activated only by certain physio-
logical and pathological conditions (e.g. oncogenic
transformation, inflammatory process, tissue rege-
neration).

Cell locomotion has been described as conti-
nuous cycies of specific and subsequent morpholo-
gical changes of the cell body.z These ma1or
morphological changes can be summarised as fol-
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lows: (i) cytoskeletal-mediatecl extensions (prc.ttru-
sion), (.i1) fbrmation of adhesive contacts at the cell
leading edge (.aclhesicti), (11i) movement along the
substrate (trctctictn), (iv) breaking adhesive contacts
( cle acl h e s ion'), (.v') q-t()skeletrl-dè penclent retraction
of the trailing eclge (tail retrctctiori). Every step of
these cycles neecls a complex array of molecular
events, that requires the physically co-ordinated
involvement, both spatially and temporally, of cyto-
skeletal network, plasma-membrane compartment,
and adhesion system.

Cell migration has been described as the fctrma-
tion of intimate and extensive adhesive contacts
between cells and substratum. This results from a
co-operation between the adhesive system and the
actin cytoskeleton, followed by generation of for-
ces across the cell.: Therefore. it's of paramount
importance to investigate the mechanisms control-
ling: (i) the status of adhesive contacts n irh the
matrix or with the sr:bstrate, deterrninecl by the
assembly/disassembly of the focal adhesion sites;
(ii) the cytoskeletal reorganisation inside the cell.
visible as stress fibers and lamellipodia formation.
based on polymerisation/de-polymerisation of the
actin filaments.

Focal adhesion is the common tvDe of adhesive
contact made by cells with the Extiicellular Matrix
(nClf).+ Focal adhesions are characterisecl by inte-
grins as the major adhesion receptors s e and by
associated cytoplasmic plaque proteins, including
vinculin, talin, paxillin and a number of protein
tyrosine kinases, such as FAK (Focal Adhesion
Kinase).4 r They are the major sites of actin fìlament
attachment at the contact interface. their formation
is associatecl with the process of cell spreading and
are sites for co-ordination between cell adhesion
and cell migration.s

The assembly of the fbcal adhesions is regulated
by ECM ligancl binding events. The combination of
integrin receptor occupancy and clustering, indu-
ced by the ECM ligands triggers a synergistic
response that includes re-orÉlanisation of the cyto-
skeleton, association of cytoplasmic plaque pro-
teins, and activzttion of a local signalling pathway.6'r
On the other hand, adhesive complexes assembly
and disassembly can also be regulated hy intracel-
lular signal5,10 11 These signals are Éaenerated by
biochemical modifications and oroduction of soh,r-
ble second messengers typical of the signal tran-
sduction pathways.

N{()TOGllNtC GRONTII lìAC-lOlìS: HGF/ SF AND ì\,lSP

It has been postr-rlated that one of the mechanisms
of adhesive complexes formation is tyrosine pho-
sphorylation ctf integrins, paxillin, tensin, and FAK
by specific tyrosine kinases. The phosphorylation on
tyrosine residues generates ctn the focal aclhesion
components, specific recognition sites for proteins
containing SH2 (Src-homology 2) clomains 12 f i In
adclition, FAK exhibits tyrosine kinase activity ancl
phosphorylates cytoskeletal-associated substrates
such as talin, Src ancl paxilli1.15 16 This might be
necessary fbr recruiting aclclitìonal structural and
signalling components of the focal adhesion cc-rm-
plex. FurthermoÍe, the focal adhesion prcteins can
aiso bind to each other and to actin filaments. throu-
gh SH3 (Src Homology-3)-binding domains or by
LIM domains.t; The mctlecular interconnections
between the components of the focal adhe.sion com-
plex and cytoskeletal actin can be enhanced and
modified by these multiple biochemical interactions,
in order to transmit mechanical forces for cell loco-
motlon.

Focal adhesions and actin-membrane interactions
are also regulated by the Rho subfamily of thc
GTP-binding proteins.tE Cdc 42, Rac, and Rho sti-
mulate the assembly of structuÍes resembling focal
adhesions in association witl-i filopodia, lamellipct-
dia, and actin stress fibers, respectively.le Inte-
restingly, Rho can regulate actin polymerisation 20

through a pathway involving the increase in phcts-
phatidylinositol 4,5 bisphosphate (PIP,) levels.2t
PIP, promotes actin filament polymerisation by
direct interaction with actin-binding proteins.22 In
addition, Rho and other related GTPases may also
function in a local signaliing pathway, coupling
ligand binding of integrins to focal aclhesion
assembly.'r Given the roles played by Cdc42, Rac
and Rho in the regulation of the different actin-
membrane interactions. these transclucers cor-rld be
sr,rfficient to clrive the entire process co-ordinating
the cycles of cell extension, adhesion, and detach-
ment that are implicated rn cell n-rotility. Howcver,
the mechanisms exerted by Cdc42, Rac ancl Rho in
the processes relevant to cell locomotion are not
well characterised yet. Many protein tyrosine kina-
ses and tyrosine phosphatases as well as lipid
enzymes, including the focal adhesion kinase
(FAK), phosphatídylinositol (PI) 3-kinase (PI 3-
kinase), phosphatidylinositol phosphate (PIP) 5-
kinase (PIP 5-kinase), and the phospholipase C-
(PLC-y) have been iclentified as key mediators of
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the signalling pathway induced by these small G
proteins.l FAK probably initiates formation of acll-re-
sions, PIP-5 kinase generates PIP, implicated in the
assembly of actin filaments, PI 3-kinase is involved
in chemotactic responses ancl in the modulation of
integrin affinitv, PLC-y mobilise actin-binding pro-
teins uia h).drolysis 9f PIP,.r

Tlre multitucle of intracellular comolex interac-
tions, leading to cell motility arc dcpènclent upon
several stimuli evoked by the extracelh,rlar enl iron-
ment, as grou'th and clifferentiation f:rctors, cltoki-
nes, and chemoattractants. In particular, the rapid
effects on cell adhesion ancl on celi motility, ererted
by some growth factors and their receptors are
mediated by some of the transducers and effectors
mentioned above. In additkrn, growth factor recep-
tors trigger signalling pathn'ays very similar to the
Iocal signals of focal aclhesion regulation. For exam-
ple, Cdc42, Rac and Rho are activated by rnany
growth factors,23 2a ancl PI netabolisn is linkecl tcr
the growth factor receptor-mecliated ceil rnotility.:; :-
In this review, attention will be focusecl on the spe-
cific gror,vth factors inclucing cell migration.

Motogenic growth factors

In general, tissue growtl-ì factors are soluble pro-
teins acting on the gror,vth and on the proliferation
of specific target cells. Nevertheless, mzrny gror,vth
factors work as nultifr-Lnctional agents. thzLt induce
not only cell proliferation, but also a variety of
additional effects including cell movement.

Gror.r'th factors exefi their effect through binding
to the ceil surface, where a specific transmembrane
receptor rvith protein tyrosine kinase activity (PTK-R)
is located. Binding of the gr()wth factor to the extra-
celluiar domain of these receDtors leads to the tran-
sient activation of the kinase ancl of rhe sienzrl tran-
sduction cascade reactions.2il 31 Ligand bincling intlu-
ces dimerization of receptor molecules, which in
turn leads to an increase in catalytic activity. This
al1ows auto-transphosphorylation of the intracellular
domain of the receptor on tyrosine residues embecl-
ded in specific amino acid sequences. These pho-
sphotyrosines and their flanking sequences become
clocking sites for proteins containing conserved
structural modules. known as SH2 domains. This
module is a typical feature of sequences encocling
molecules involved in signal transcluction.sz

SANTORO

As nentioned above, tl-rere is increasing eviden-
ce that growth factor receptors can modulate cel1
motility. interfering either with the assembly/disas,
sembly of the focal adhesion sites and with the
mechanism of polymerisation/clepolyrnerisation of
the actin filaments. It is u'orth nothing that signals
elicited by growth factor receptors can activate the
same specific intracellular signalling pathweys
induced by integrins and,/or other components of
the focel adhesion..r3 For example, PDGF, insulin,
and IGF-1 are able to índuce re-orp;anisation of ti-re
actin cytoskeleton, as during formation of lamelli-
podia and menbrane ruffles, following activation
of PI 3-kin25s.31-36 Many data have shed light on
the mechanisms by which PI 3-kinase and its lipicl
prodllcts can initiate cell movement. Some eviden-
ce suggest that the lipid products of the PI 3-kinase
may be involvecl in mecliating interactions with
actin filanents and,/or microtubular motor5.37 38

Recentlv, it h:rs been clemonstratecl that one of the
don'nstrearn effectors of PI 3-kinase is the small
GTP-bincling protein Rac, that can be directly
responsible for the PDGF-incluced chemotactic
response by fibroblasts in uitro.3e 10

There are several examples of invoivement of
gros'tll factors in the regulation of fbcal adhesion
and actin filanents assembly. It has been clemon-
strated that the platelet-derived growth factor
receptor (PDGF-R), upon ligand activation is able
to interfere with adhesion and cytoskeletal systems.
Phosphorylated PDGF-R induced cytoskeletal re-
organisation in the skeletal muscle cell, as well as
the tyrosine phosphorylation of paxillin, FAK, and
talin in Sn-iss 3T3 fibroblasts.+l 12 ln adherent Swiss
3T3 cells the activated PDGF-R induced the asso-
ciation of PI 3-kinase n'ith làK.2.) PDGF bindins to
its receptor indnced tyrosine phosphorylarion òf a

190 kDa protein that co-immunoprecipiteted specr-
fically urith integrin o..B,.13 Furthermore, PDGF
induces neurite outgrowth of PC12 ce11s in a PI 3-
kinase and PLC-y dependent manner.4l

Another growth factor, the Epidermal Grctwth
Factor (EGF) is directly involved in the cyoskeletal
organisation of the cell, because its receptor (EGF-R)
contains an F-actin binding domain in its intracellu-
lar region.as

Upon activation of their respective receptors,
both PDGF and EGF incluce the formation of focal
adhesion throursh the stimulation of the GTP-bin-
ding proteins oi the Ras family. In addition, PDGF
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and EGF receptors phosphorylated PLC-y1,16 a pre-
requisite for the dissociation of the profilin:PlP, '+;

and gelsolin:PIP, complexes,4s important steps in
the regulation of actin polymerisation/depolymeri-
sation. Moreover, stimulation with insulin has been
found to induce the direct association between the
phosphorylated specific Insulin Receptor Substrate-1
(IRS-1) and the integrin cr,.Br. Similarly, the o"B,
ligand enhanced several fold DNA synthesis indu-
ced by insulin, in ce1ls plated on vitronectin.is This
result reveals the existence of a direct cross-talk
between these two classes of molecules: Integrins
and Tyrosine Kinase Receptors.

On the other hand, there are synergistic effects
among Growth Factors anC integrins involved in
the regulation of cell rnigration and cell adhesion.
The misration of FG carcinoma cells on vitronectin
matricei needs the activation of the signal tran-
sduction pathway by EGF-R, including PKC and
PlC-activation.25 50 In addition, Stem Cell Factor
(SCF) enhanced mast ce1ls adhesion to fibronectin,
uia PI J-kinase aclivation upon hinding tt-r it:
receptor Kit.;t This synergism is strictiy reqttired ior
a complete biological effect conveyetl hy a growth
factor. The addition of PDGF to non-adherent
fibroblasts, does not induce 1,5 PIPz hydrolysis
(althor-rgh PLC-y becomes activated), neither Car+
mobilisation and PKC activation, three well known
events exerted by PDGF and involved in its prolife-
rative response. The failure of PLC-y to hydrolyse
PIP, stems from the lack of substrate (.4,5 PIP),
whose synthesis depends on PIP 5-kinase activity,
induced hy integrin binding to ECM. The full
responsiveness of fibrobiasts to growth factor sti-
mulation can be rescued, only after plating on
fibronectin.iz r; Adherence to the ECM. and subse-
quent integrin activation stimulated the small GTP-
binding protein Rho, resulting in an increase of PIP
5-kinase actlvity and synthesis of 4,5-PIPr, substrate
of PLC-Y.54

According to this model, mitogenic stimuli are
under the double control of growth factors and
extracellular matrices: cell oroiiferation is induced
by the growth factor, through the activation of a
specific enzyme (PLC-y), but is modulated by inte-
grins, that influence the cellular responsiveness to
growth stimuli, regulating the level of the substrate
(PIPr) for the effector enzyme.

One particular subfamily of growth factors has
been characterised by its ability to induce a wide

NIOTOGENIC GRO\VTII FACTORS: HGF/SF AND N{SP

spectrum of biological activities. Among thesc are
differentiative) as well as growth, cell dissociation,
and motility stimuli, all conveyed by two heterodi-
meric proteins, known as Hepatocyte Growth
Factor,/Scatter Factor (HGF/SF) and Macrophage
Stimulating Prorein (MSP).

Hepatoclte Growth Factor/Scatter Factor
(HGF/SF)

This protein has the property of dispersing or
scattering epithelial cell colonies into single isola-
ted celis, by rupture of intercellular junctions and
desmosomes. The scattered cells have enhanced
motilit)-, shc,u-ing random, non polarised move-
ment.:: The determination of its amino acid
seqlÌence showed that it is identicai to a strong
mitogen for hepatocytes and for a witle variety of
other epithelial ce11 types.r6 Hepatocyte Growth
Factor/Scatter Factor (HGF/SF), as it is now named,
has been generally found to be secreted by mesen-
chymal ce1ls (fìbroblasts and smooth mr-rscle cells)
rather than by epithelial and endothelial cells,
although its effects are mainly obvious on the latter
two cell types.

HGF/SF is a heterodimer with a larger cr chain of
about 60 fOa and a smaller $ chain of about 30
KDa, linked by a single interchain disulphide bond.
The protein is glycosylated to a significant extent.
It is translated from a single nRNA, and the active
form is produced by cieavage of the biologically
inert precursor chain. Anaiysis of the structure of
the molecule revealed several features that are not
shared with any other Élrowth factor. The cr chain
conlains four kringles, structural motifs that also
occurs in plasminogen, tissue-type and urokinase-
type plasminogen activators, factor XII and proth-
rombin. The B chain consists of a serine protease
domain that is inactive, because of substitution of
two criticai residues in the catalytic site.5r

The high affinity receptor of HGF/SF has been
identified as the MET proto-oncogene product. Met
is a transmembrane receptor tyrosine kinase, made
of a 745 KDa B subunit and a 50 KDa cr subunit,
that is synthesised as a single chain precursor. The
c, chain and the N-terminal portion of the B chain
are exposed on the cell surface, whereas the C-ter-
minal portion of the B chain is located in the cyto-
plasm and contains the tyrosine kinase domain and
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phosphorylation sites involved in the regulation of
enzyme activity and signal 112n5ds611en.58 5e

The biological activity of the receptor, including
cell motility, depends on the presence of two pho-
sphotyrosine residues in the carboxy-terminal tail,
which act as a multifunctional dockins site for SH2-
containing effectors and activlte ,n ìrrry of tran-
sductional pathways.6tr

The molecular mechanisms resoonsible for
HGF/SF and Met receptor mediateJ cytoskeletal
rearrangement and consequent cell migration are
not fully understood. The role played by the PI 3-
kinase in HGF/SF-mediated motility and scattering
seems well defined. The HGF/SF induced scatterins
on MDCK cells can be blockecl using thc selectivè
PI 3-kinase inhibitor, \fortmannin.6l Similarly,
\Tortmannin treatment abrosates HGF-induced che-
motaxis and tr-rbulogenesis in renal epithelial cells.63
These results show that the activation of the PI 3-
kinase is critical in HGF/Met-mediated cell dissocia-
tion and motility of epithelial cells.

An interesting point is the involvement of the
small GTP-binding proteins Ras, Rac and Rho, in the
regulation of the migratory responses induced by
HGF/SF. Different data have been reoofied on the
Ras involvement in Met-mediatecl cèI1 migration.
Expression of a dominant negative mutant Ras pro-
tein or the injection of a neutralising antibody for
Ras in MDCK cells blocked HGF/SF-mediatecl cell
dissociation and scatter. This demonstrates that the
Ras pathu,'ay is essential to mediate the motility
signal of HGF/SF-Met receptor to the cell-ceil adhe-
sion system and the cyoskeleton of MDCK epithe-
lial ce11s.6: In addition. microiniection of an activated
form of Ras promotecl constituent cell spreacling.6a
On the other hand. MDCK cultured cells transfected
with a Met mutant, where the Grb2 binding site was
specifically abrogated, but all other effectors could
bind, were still able to dissociate and migrate. This
shows that a direct link with Grb2lRas is required
for transformation, but it is not essential to trig€aer
the scatter response in MDCK cells.65

Moreover, microinjection of MDCK cells with a
dominant negative mutant of Rac inhibits cell
spreading and actin reorganisation induced by
HGF/SF, showing that Rac plays a cn:cial role in
mediating the HGF/SF induction of these events.61
On the other hand, it has been shown that the
HGF/SF-mediatecl cell motility of cultured mouse
keratinocytes requires the involvement of Rho, but

not of Rac and Ras.66 However, PI 3-kinase has
been shown to be involved in the selective activa-
tion of Rac and Rho,(,' therefore the possibility that
Met involves Rac and Rho via activation of the PI
3-kinase cannot be ruled out.

Interestingly those, has been observed a redistri-
bution of E-cadherin and desmoplakins I/II fo1-
lowing HGF/SF stimulation of epithelial ce11s,6s as
well as the phosphorylation of B-catenin and
plakoglobin,6e demonstrating the existence of a
control-effect of the Met tyrosine kinase receptor
on the adhesive elements connecting cells and
regulating cell locomotion. Moreover, it has been
demonstrated that HGF stimulates motility in oral
sqlramous carcinoma cells mediating the assem-
bly/disassembly of focal adhesions by involvement
of P12lnak.;o

Recently, an increasing number of signalling
molecules with properties similar to HGF/SF have
been characterised, both in physiological and in
pathoiogical cells. A Scatter Factor-like factor (SFL)
has been identified as a Daîàcrine effector molecu-
le. produced by a metastatic vrrirnt of a trrcinomr
cell line.rr Another newly discovered factor with
scattering activity has been identified in a monocy-
te-conditioned medium as stimulator of tumor cell
motility.T2 Many well characterised cytokines (e.g.
aFGF, IL-6, EGF, and TNFcr) have also been found
to induce dispersion of epithelial cell colonies,
migration, and invasion of human carcinoma
cells.6e 13 -1

These scattering agents all share the property of
scattering epithelial cell colonies, but have different
cell type specificity: SFL and HGF/SF do scatter
MDCK cells, whereas aFGF, TNFcx, EGF and the
Monocyte Factor do not. On the other hand, EGF
induces MDCK ce1l proliferation. Thus, the specific
effects elicited by a factor depends on the type of
target cells as n'ell as on the extracellular environ-
ment.

Macrophage Stimulating Factor (MSP)

Macrophage stimulating Protein (MSP) was origi-
nal1y discovered by its ability to make resiclent
peritoneal macrophages responsive to the che-
moattractant C5a of the complement.T5

Macrophage stimulating Protein (MSP) is an 80

\,b1. 9 No. 2 MINER\A I]IOTECNOLOGICA 89



SA\'IOIìO

KDa clisurlphicle-linked heteroclimer which belongs
to the HGFr'SF farnily -t MSP is synthesizecl by liver
cells, circulates in bloocl as a biologically inactive
precLlrsor and is clea'u.ecl by members of the kallik-
rein family, as n'el1 as by nacrophage bouncl pro-
teases.'- tii

Functional stllclies har.e revealed that, in adclition
to macrophages, MSP acts :rlso on other ce11 linea-
ges. These inclucle gron'th stimr,rlation of certain
epithellal cell lines, suppression of colony forma-
tion of human bone m:rrrou,' cells indr,rcecl by steel
factor plr-rs GA4-CSF, and incluction of IL-6 produc-
tion in primary hurnan rnarrow megakaryctcvtes.
The receptol for NISP n-:rs icientified as the RON
gene prodLlct, zr transmemltrane receptor protcin
tyrosine kinase, clonecl fror-n a human keratinoel-tcs
cell line.r'r T1-re Ron gene encodes a 185 KDa hete-
roclimeric protein ccxnposecl ctf a 35 KDa extracel-
1ular cx-chain and a 150 KDa transmembrane B-
chain u'ith intrinsic tyrosine kinase acti\.ity.s0 sr Ron
belongs to a subfamill- of receptor t1'rosine kinase
tl-rat includes Sea and the proto-oncogene N{et.

As the HGF/SF plototypc r.,f thc family, À4SP is
eqr-raily able to incluce cell prolÌferation rìs q,ell :rs

celi rnotility on epithelial cells 82 ancl on mnrine
kcr:Ltinocytes.s3

The À4SP/Ron receptor can he constitlltiveiy acti-
vated in the absence of t1-re lisancl erther as I natu-
rally occnrling splicing verient r A-Ron) or by
exprcssing molecr-rl:rr chimaeras with constitr-ÌtÌvely
climelizecl kinase clomalns (Tpr-Ron). In these con-
ditions the signalling evoked by the active tyrosine
kinase incluces a strong nìotile and invasirre phe-
not,vpe.8'i

Recently it has been clemonstrated that the acti-
r.ation of PI 3-kinase is an absoluLte recluirement for
MSP-incluced cell migration in keratinocytes and
epitl-relial cel1s.85 Motility incluced by Ron is incle-
penclent of the threshold of N{AP-kinzrse level of
activation. suggesring that the Ras pathwey is not a

critic:rl step for MSP-induced cell r"nigration. The
Ras threshold required for the scattering response
is far lower that the necessary for grow'th and tran-
sfÌrrmation.s(r fte1 fulfils the requirements for acti-
vating cell dissoci:rtion and matrix invasion and
provides zr naturally occurring example of dissocra-
tion between the two arms of the biolosical
responses triggerecl by tyrosine kinase recept()rs.

Cell morrement is a critical steo in nornal
embryonic clevelopment, tlrmor metaitrsis, inflam-

NIOTOGENTC Cì}ìO\ÍI-H FACTORS: HGF/SF ANI) I,{SP

matory responses, and wound healing. The fact
that HGF/SF and MSP elicit motile-invasive respon-
ses indicates the important role played by these
factors anci their receptors in cell physiology ancl
pathology. In particular. a possible role for Met and
Ron can be envisaged in tumor progressictn towarcl
metastasis.
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