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Spherical interpolation using the partition of unity method: an efficient and

flexible algorithm

Roberto Cavoretto∗, Alessandra De Rossi

Department of Mathematics “G. Peano”, University of Torino, via Carlo Alberto 10, I–10123 Torino, Italy

Abstract

An efficient and flexible algorithm for the spherical interpolation of large scattered data sets is proposed. It is based

on a partition of unity method on the sphere and uses spherical radial basis functions as local approximants. This

technique exploits a suitable partition of the sphere in a number of spherical zones, the construction of a certain

number of cells such that the sphere is contained in the union of the cells, with some mild overlap among the cells,

and finally the employment of an optimized spherical zone searching procedure. Some numerical experiments show

the good accuracy of the spherical partition of unity method and the high efficiency of the algorithm.

Key words: partition of unity method, spherical radial basis functions, fast interpolation algorithms, scattered data

interpolation.
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1. Introduction

In [4] we presented a fast and accurate algorithm for the spherical interpolation of large scattered data sets. It

is based on a modified spherical Shepard’s method and involves spherical radial basis functions (SRBFs) as local

approximants (see [5]), but the main novelty of the paper is the employment of a partition of the unit sphere in a

suitable number of parallel spherical zones and the construction of local neighbourhoods. The combination of these

two processes gives rise to an optimized spherical zone searching procedure used in the nearest neighbour node

searching, thus producing a good accuracy and a high efficiency (see also [3]).

The aim of this paper is to generalize the interpolation algorithm, extending the idea proposed in [4] to the more

general Partition of Unity Method (PUM) on the sphere. The partition of unity method was suggested in [1, 13] in the

mid 1990s in the context of meshfree Galerkin methods for the solution of partial differential equations (PDEs), but

now it is also an effective method for fast computation in the field of approximation theory (see, e.g, [7, 15, 16]). This

approach is here combined with spherical radial basis functions. The final result is an efficient and flexible algorithm

for scattered data interpolation on the sphere.

The paper is organized as follows. Section 2 is devoted to a general description of the partition of unity method

on the sphere. In Section 3 we present in detail the spherical interpolation algorithm which is based on a partition

of unity. In Section 4 we show some numerical results concerning accuracy and effectiveness of the spherical PUM

algorithm. Finally, Section 5 contains conclusions and future work.

2. Partition of unity method on the sphere

The basic idea of the spherical partition of unity method is to consider a partition of the unit sphere Ω = S
2 ⊂ R

3

into d cells Ω j such that Ω =
⋃d

j=1Ω j with some mild overlap among the cells. At first, we choose a partition of
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unity, i.e. a family of compactly supported, non-negative, continuous functions W j with supp(W j) ⊆ Ω j such that
∑d

j=1 W j(x) = 1, for all x ∈ Ω. Then, for each cell Ω j we consider a spherical radial basis function Z j as local

approximant and form the global approximant given by

I(x) =

d
∑

j=1

Z j(x)W j(x), x ∈ Ω. (1)

Note that if the local approximants satisfy the interpolation conditions at data point xi, i.e. Z j(xi) = f (xi), then the

global approximant also interpolates at this node, i.e. I(xi) = f (xi), for i = 1, 2, . . . , n.

In accordance with the statements in [15] we require some additional assumptions on the covering {Ω j}dj=1
.

Definition 2.1. Suppose that Ω = S
2 =
⋃d

j=1Ω j ⊂ R
3 and Xn = {xi, i = 1, 2, . . . , n} ⊆ S

2 are given. An open covering

{Ω j}dj=1
is called regular for (Ω,Xn) if the following properties are satisfied:

(a) for each x ∈ Ω, the number of cells Ω j with x ∈ Ω j is bounded by a global constant K;

(b) the local fill distances hX j,Ω j
are uniformly bounded by the global fill distance hXn,Ω, where X j = Xn ∩Ω j.

Moreover, we consider the following theorem, which yields the polynomial precision and controls the growth of

error estimates. For this reason, we denote by πs(S
2) the set of spherical polynomials of degree s (see, e.g., [10, 16]).

Theorem 2.1. Suppose that Ω = S
2 =
⋃d

j=1Ω j ⊂ R
3 and Ω j is a spherical cap (cell) with centre at x ∈ S2 and radius

r, where 0 < r ≤ π/2. Let s ∈ N be fixed and there exists a constant hr,s = tan(r/4)/{4[1 + 2/(
√

3 cos(r/2))]s2}, such

that hX j,Ω j
≤ hr,s. Then, for all X j = {xi, i = 1, 2, . . . , n j} ⊆ Ω j, X j is a πs(S

2)-unisolvent set and there exist functions

uk : Ω j → R, k = 1, 2, . . . , n j, j = 1, 2, . . . , d, such that

(1)
∑n j

k=1
uk(x)p(xk) = p(x), for all p ∈ πs(S

2) and all x ∈ Ω j;

(2)
∑n j

k=1
|uk(x)| ≤ 2, for all x ∈ Ω j.

Although the theory of SRBFs is here mentioned, for brevity we do not report basic definitions and theorems,

referring to the papers [2, 11] for a more detailed analysis. However, in order to formulate the following theorem, we

say that a strictly conditionally positive definite function ψ of order m on S
2 has α-Fourier decay if there exist positive

constants c1, c2, such that

c1(1 + k)−(2+α) ≤ ak ≤ c2(1 + k)−(2+α), α > 0, k ≥ m,

with ak spherical Fourier coefficients which are related, via the additional theorem, to Legendre coefficients of ψ (see

[11]). Moreover, we define the normed native Hilbert space of ψ by

Hψ = { f ∈ L2(S2) : || f ||ψ < ∞},

where || · ||ψ is the norm induced by the inner product.

Therefore, we consider the following convergence result (see, e.g., [9, 10, 11, 16] and references therein).

Theorem 2.2. Suppose that Ω = S
2 =
⋃d

j=1Ω j and the assumptions of Theorem 2.1 hold. Let Xn = {xi, i = 1,

2, . . . , n} ⊆ Ω. Let ψ be strictly conditionally positive definite function of order m on S
2. Let {Ω j}dj=1

be a regular

covering for (Ω,Xn) and let {W j}dj=1
be a family of compactly supported, non-negative, continuous functions for

{Ω j}dj=1
. Then the error beetween f ∈ Hψ(Ω) satisfying the α-Fourier decay and its partition of unity interpolant (1)

can be bounded by

| f (x) − I(x)| ≤ Ch
α/4

Xn,Ω
|| f − I||Hψ

,

where C is a positive constant independent of hXn,Ω.

Note that the partition of unity preserves the local approximation order for the global fit. Hence, we can efficiently

compute large SRBF interpolants by solving small SRBF interpolation problems (in parallel as well) and then combine

them together with the global partition of unity {W j}dj=1
. This approach enables to decompose a large problem into

many small problems, and at the same time ensures that the accuracy obtained for the local fits is carried over to the

global fit. In particular, the spherical PUM can be thought as a spherical Shepard’s method with higher-order data,

since local approximations Z j instead of data values f j are used (see [12]).
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3. Spherical zone algorithm based on partition of unity

In this section we propose a new fast algorithm for spherical interpolation of large scattered data sets lying on

S
2 ⊂ R

3. This technique is based on the partition of the unit sphere in a suitable number of spherical zones, the

construction of a number of d cells Ω j such that the domain Ω = S
2 =
⋃d

j=1Ω j with some mild overlap among

the subdomains (cells), and then the employment of an optimized spherical zone searching procedure. Finally, the

partition of unity method for spherical interpolation is combined with spherical radial basis functions.

This process can be briefly described as follows: (i) partition the sphere into a suitable number of parallel spherical

zones; (ii) consider a spherical zone searching procedure establishing the minimal number of zones to be examined, in

order to localize the set of nodes for each cell; (iii) apply the spherical PUM method which uses spherical radial basis

functions as nodal functions. These three steps correspond to data distribution, localization and evaluation phases,

respectively. We remark that only one spherical zone structure is used for both localization and evaluation phases.

Let us now consider in detail the algorithm for scattered data interpolation on the sphere.

INPUT: n, number of data; Xn = {(xi, yi, zi), i = 1, 2, . . . , n}, set of data points; Fn = { fi, i = 1, 2, . . . , n}, set of data

values; d, number of cells; Cd = {(x̄i, ȳi, z̄i), i = 1, 2, . . . , d}, set of cell points (centres of PU cells); s, number of

evaluation points; Es = {(xi, yi, zi), i = 1, 2, . . . , s}, set of evaluation points.

OUTPUT:As = {Ii ≡ I(xi, yi, zi), i = 1, 2, . . . , s}, set of approximated values.

Stage 1. The set Xn of nodes and the set Es of evaluation points are ordered with respect to a common direction

(e.g. the z-axis), by applying a quicksortz procedure.

Stage 2. For each cell point x̄i, i = 1, 2, . . . , d, a local circular cell (a spherical cap) is constructed, whose half-size

(the spherical radius) depends on the cell number d, that is

δcell =
3.809
√

d
. (2)

This value is suitably chosen by considering the result in [14].

Stage 3. After the number of spherical zones to be considered is found taking

q =

⌈

π

δcell

⌉

,

the spherical zones are numbered from 1 to q. Such a choice follows directly from the length, that here holds π, of the

(shorter) great circle arc joining north pole and south pole, and the cell spherical radius δcell.

Stage 4. A suitable family of q spherical zones of equal width δzone ≡ δcell (with possible exception of one of them)

on the sphere and parallel to the xy-plane is constructed. Then, the following two structures are considered:

• the set Xn of nodes is partitioned by the spherical zone structure into q subsets Xnk
, whose elements are

(xk1, yk1, zk1), (xk2, yk2, zk2), . . . , (xknk
, yknk

, zknk
), k = 1, 2, . . . , q. These are counted and the number of nodes

in the k-th spherical zone is stored in nk;

• the set Cd of cell points is partitioned by the spherical zone structure into q subsets Cdk
, whose elements are

(x̄k1, ȳk1, z̄k1), (x̄k2, ȳk2, z̄k2), . . . , (x̄kdk
, ȳkdk

, z̄kdk
), k = 1, 2, . . . , q. These are counted and the number of cell points

in the k-th spherical zone is stored in dk;

• the set Es is partitioned into q subsets Epk
, k = 1, 2, . . . , q, so that the evaluation points of Epk

belong to the k-th

zone. These are counted and the number of evaluation points are stored in pk.

This stage can be summarized as follows:

1: Set count1, count2, count3 = 0;

2: zs = −1;

3: for (k = 1, 2, . . . , q) do

4: Set nk, dk, pk = 0;
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5: i = count1 + 1;

6: j = count2 + 1;

7: l = count3 + 1;

8: uk = k · δzone;

9: vk = zs + (1 − cos(uk));

10: while (zi ≤ vk ∧ i ≤ n) do

11: Set nk = nk + 1;

12: count1 = count1 + 1;

13: i = i + 1;

14: end while

15: Set bszk = count1 − nk + 1;

16: eszk = count1;

17: while (z̄ j ≤ vk ∧ j ≤ d) do

18: Set dk = dk + 1;

19: count2 = count2 + 1;

20: j = j + 1;

21: end while

22: Set cell bszk = count2 − dk + 1;

23: cell eszk = count2;

24: while (zi ≤ vk ∧ i ≤ s) do

25: Set pk = pk + 1;

26: count3 = count3 + 1;

27: l = l + 1;

28: end while

29: Set eval bszk = count3 − pk + 1;

30: eval eszk = count3;

31: return (nk;Xnk
) ∧ (dk;Cdk

) ∧ (pk;Epk
);

32: end for

Stage 5. In order to identify the zones to be examined in the searching procedure, we adopt the following rule which

is composed of three steps: (i) the width δzone of a spherical zone is chosen equal to the cell spherical radius δcell, i.e.

δzone ≡ δcell, and the ratio between these quantities is denoted by i∗ = δcell/δzone; (ii) the value i∗ provides the number

j∗ of spherical zones to be examined for each node by the rule j∗ = 2i∗ + 1, which obviously here gives j∗ = 3. In

practice, this means that the search of the nearby nodes (or cell points) is limited at most to three spherical zones:

the zone on which the considered node lies, the previous and the next zones; (iii) for each zone k, k = 1, 2, . . . , q, a

spherical zone searching procedure is considered, examining the nodes from zone k − i∗ to zone k + i∗. Note that for

the nodes of the first and last spherical zones, in general, we need to reduce the total number of spherical zones to be

examined, because if k − i∗ < 1 or k + i∗ > q it will assign k − i∗ = 1 and k + i∗ = q, respectively.

After defining which and how many spherical zones are to be examined, a spherical zone searching procedure is

applied:

• for each cell point of Cdk
, k = 1, 2, . . . , q, to determine all nodes belonging to a cell. The number of nodes of

the cell centred at (x̄i, ȳi, z̄i) is counted and stored in mi, i = 1, 2, . . . , d;

• for each evaluation point of Epk
, k = 1, 2, . . . , q, in order to find all those belonging to a cell of centre (x̄i, ȳi, z̄i)

and geodesic radius δcell. The number of cells containing the i-th evaluation point is counted and stored in ri,

i = 1, 2, . . . , s.

This stage can be summarized as follows:

1: for (k = 1, 2, . . . , q) do

2: Set f irst = k − i∗;
3: last = k + i∗;
4: if ( f irst < 1) then
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5: Set f irst = 1;

6: end if

7: if (last > q) then

8: Set last = q;

9: end if

10: for (h = cell bszk, . . . , cell eszk) do

11: Set mh = 0;

12: for (i = f irst, . . . , last) do

13: for ( j = bszi, . . . , eszi) do

14: if ((x j, y j, z j) ∈ Ih((x̄, ȳ, z̄); δcell)) then

15: Set mh = mh + 1;

16: S TOREh,mh
(x j, y j, z j, f j);

17: end if

18: end for

19: end for

20: return (x, y, z) ∈ Ih((x̄, ȳ, z̄); δcell);

21: end for

22: for (h = eval bszk, . . . , eval eszk) do

23: Set rh = 0;

24: for (i = f irst, . . . , last) do

25: for ( j = cell bszi, . . . , cell eszi) do

26: if ((x j, y j, z j) ∈ Ih((x̄, ȳ, z̄); δcell)) then

27: Set rh = rh + 1;

28: S TOREh,rh
(x j, y j, z j);

29: end if

30: end for

31: end for

32: return (x, y, z) ∈ Ih((x̄, ȳ, z̄); δcell);

33: end for

34: end for

Stage 6. A local interpolant Z j, j = 1, 2, . . . , d, is found for each cell point.

Stage 7. A local approximant Z j(x, y, z) and a weight function W j(x, y, z), j = 1, 2, . . . , d, is found for each evalua-

tion point.

Stage 8. Applying the global fit (1), the surface can be approximated at any evaluation point (x, y, z) ∈ Es.

Computational complexity and storage requirements. The spherical PUM algorithm involves the use of the

standard sorting routine quicksort, which requires on average a time complexity O(n log n) and O(s log s) in Stage

1. In order to compute the local SRBF interpolants, we solve d linear systems of small dimensions, thus requiring a

computational cost of order O(m3
i
), i = 1, 2, . . . , d, for each cell, where mi is the number of nodes in the i-th cell (see

Stage 6). Moreover, in Stage 5, 7 and 8 we also need of a cost of rk · O(mi), i = 1, 2, . . . , d, k = 1, 2, . . . , s, for the

k-th evaluation point of Es. Finally, the algorithm requires 4n, 4d and 4s storage requirements for the data, and mi,

i = 1, 2, . . . , d, locations for the coefficients of each local SRBF interpolant.

4. Numerical experiments

In this section we present some tests to verify performance and effectiveness of the spherical PUM algorithm on

scattered data sets. The code is implemented in C/C++ language, while numerical results are carried out on a Pentium

IV computer (2.1 GHz). In the experiments we consider two different node distributions containing n = (2k + 1)2,

k = 7, 8, 9, nodes: (a) near-uniform distribution generated by the spiral method of Saff and Kuijlaars (SK) [14] and

(b) uniformly random distribution obtained by the MATLAB (M) statements given in [8].

The spherical PUM method/algorithm is running by considering d cell points and s = 600 evaluation points, which

are generated by the SK’s method on S
2. Here, for the global interpolant (1) we use the spherical Shepard’s weight.
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Moreover, in Table 1 we compare the spherical interpolation algorithm implemented by combining the PUM with the

spherical zone structure and the algorithm where the sphere is not partitioned in spherical zones. It emphasizes that

the use of zonal structure gives a considerable saving of time. Finally, in Tables 2 - 3 we report the Root Mean Square

Errors (RMSEs), which are computed on the following two test functions

f1(x, y, z) =
9x3 − 2x2y + 3xy2 − 4y3 + 2z3 − xyz

10
, f2(x, y, z) = sin x sin y sin z,

using the spherical inverse multiquadric ψ [6] as local SRBF approximant

ψ(t) =
(

1 + γ2 − 2γc
)−1/2

, γ ∈ (0, 1) ,

where c = cos(t) and t measures geodesic distance on the unit sphere. Observing the errors in Tables 2 - 3, we note

that the method reaches a good level of accuracy.

zone no-zone

n d sph. PUM sph. PUM

16641 4096 1.188 13.454

66049 16384 7.953 205.062

263169 65536 60.735 3260.375

Table 1: CPU times (in seconds) obtained by running spherical PUM algorithms.

n 16641 66049 263169

SK 9.7840E − 7 6.3241E − 8 4.2746E − 8

M 1.6272E − 5 5.1237E − 6 9.2968E − 7

Table 2: RMSEs obtained by using ψ with γ = 0.5 for f1.

n 16641 66049 263169

SK 4.0711E − 7 2.3664E − 8 1.4662E − 8

M 4.7026E − 6 2.3114E − 6 6.8838E − 7

Table 3: RMSEs obtained by using ψ with γ = 0.5 for f2.

5. Conclusions

In this work we present a new local algorithm for scattered data interpolation on the sphere, which works well

and fastly also when the amount of data is very large. In particular, this optimized implementation of the PUM on the

sphere is obtained by applying a spherical zone nearest neighbour searching procedure. Moreover, the proposed algo-

rithm is flexible since different choices of local approximants are allowable, is easily parallelizable, and completely

automatic. However, as research and future work we expect to refine the spherical zone algorithm based on PUM

adopting suitable data structures like kd-trees and range trees.
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