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Abstract: In this paper we discuss some problems involving simple shear
in incompressible isotropic linear elastic materials within the framework of the
linearized finite theory of elasticity. First we obtain for a simple shear a uni-
versal relation in terms of components of the first Piola-Kirchhoff stress tensor.
Afterwards for a rectangular block deformed by a simple shear we evaluate the
absolute error and the relative error both for the Piola-Kirchhoff tractions and
the Cauchy tractions calculated by classical linear elasticity. Finally we discuss
two dead load problems corresponding to different Piola-Kirchhoff tractions
by using both the linearized finite theory of elasticity and the classical linear
elasticity. The first problem can be solved only in linearized finite theory of elas-
ticity and the solution is a simple shear. The second problem admits a simple
shear as a solution in both theories, so that we can compare the solutions.
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1. Introduction

Simple shear is one of the main modes of behaviour of incompressible bodies,
such as rubber-like materials. Although incompressible materials are usually
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described by the finite elasticity, the constraint of incompressibility can be also
used in connection with small-deformation problems. In this case it is worth
using a theory which guarantees the accuracy required by a linear model.

In this paper we study some problems concerning simple shear in incom-
pressible isotropic elastic materials according to the linearized finite theory of
elasticity, as formulated by Hoger and Johnson in [2], [3]. Such a theory, based
on a strict procedure of linearization of the corresponding finite constitutive
equations with respect to the displacement gradient, describes the behaviour
of constrained linear elastic materials with the accuracy required by a linear
theory. In fact, for such materials the classical linear theory of elasticity is com-
monly adopted, but, as shown in [2], [3], the constitutive equations of linearized
finite theory of elasticity contain some terms usually dropped in classical linear
elasticity, all of which are first order in the strain. In particular for incompress-
ible isotropic bodies by coincidence the constitutive equations provided by the
two theories for the Cauchy stress are the same, while the constitutive equa-
tions for the first Piola-Kirchhoff stress are different. In linearized finite theory
of elasticity the expression of the Piola-Kirchhoff stress contains a term which
is the product of the pressure and the displacement gradient; in classical linear
elasticity such a term disappears, since it is understood that small strains cor-
respond to small pressures, while this assumption leads to neglect an essential
characteristic of constrained materials.

Motivated by the previous remarks, in this paper we apply the linearized
finite theory of elasticity to the study of simple shear. In Section 2 we briefly
recall the field equations appropriate for the linearized finite theory of elasticity.
In Section 3 we show that in such a theory for a simple shear a universal relation
in terms of components of the first Piola-Kirchhoff stress holds; the distinction
between Cauchy stress and Piola-Kirchhoff stress imposed by this theory is
crucial in order to find such a relation. In Section 4 by means of a consistent
procedure of linearization we obtain this universal relation from a corresponding
universal relation in finite elasticity. Afterwards in Section 5 we determine
the Piola-Kirchhoff tractions and the Cauchy tractions on the boundary of a
rectangular block deformed by a simple shear both in linearized finite theory
of elasticity and in classical linear elasticity. Following [2], we show that the
absolute error in the Piola-Kirchhoff tractions calculated by classical elasticity
can be arbitrarily large, but the relative error is first order in the strain; the
same applies to Cauchy tractions. Finally, motivated by the unexpected results
obtained in [2], [8] for some dead load problems, in Section 6 we discuss two
dead load problems corresponding to different Piola-Kirchhoff tractions. We
show that the first problem cannot be solved in classical linear elasticity, while
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in linearized finite theory of elasticity it admits a simple shear as a solution.
Afterwards we show that the second problem can be solved in both theories,
so that we can compare the solutions which are two simple shears. For both
problems we define the range of tractions for which the linearized finite theory
of elasticity applies and we show that the shear modulus plays a central role in
determining such a range. Section 7 is devoted to concluding remarks.

2. The Linearized Finite Theory of Elasticity for

Constrained Materials

In this section we gather the field equations of the so-called linearized finite
theory of elasticity (LFTE in the following), derived in 1995 by Hoger and
Johnson in [2], [3]. For many reasons extensively exposed in [2], [3], LFTE
is the most suitable theory for constrained linear elastic materials, since only
this theory is based on constitutive equations having the accuracy required by
a linear model. Here we confine our attention to the constitutive equations of
LFTE appropriate for solid incompressible isotropic elastic materials.

Let B0 be a fixed reference configuration of the body; denote by X a ma-
terial point in B0 and by x = f(X) the corresponding point in the deformed
configuration B = f (B0), where f is the deformation function. Let u be the
displacement, F the deformation gradient, H the displacement gradient, given
by

u (X) = f(X)−X, (1)

F = Grad f , (2)

H = Gradu = F− I; (3)

in (2), (3), Grad denotes the gradient operator taken with respect to X and I

is the identity tensor.

Since LFTE is a theory appropriate for small deformations, H is assumed to
be small and everywhere only terms that are at most linear in H are retained.

If we linearize about the zero strain state the finite Green strain tensor

EG =
1

2

(

FTF− I
)

(4)

and if we use (3), we obtain the infinitesimal strain tensor

E =
1

2

(

H+HT
)

. (5)
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In finite elasticity the possible strains EG for an elastic material subject to a
constraint must satisfy the constraint equation

ĉ (EG) = 0. (6)

If we linearize (6) we obtain the linear constraint equation

c̃(E) = 0, (7)

where c̃(E) ≡ ∂ĉ

∂EG

(O) · E is the linear constraint function and O denotes the

zero tensor.
We now devote our attention to the constitutive equations of the body,

which is assumed to be elastic and homogeneous. In finite elasticity for con-
strained hyperelastic materials the Cauchy stress T is the sum of the deter-
minate stress and the reaction stress, that is the constitutive equation for T

is

T =
1

detF
F

∂Ŵ

∂EG

(EG)F
T + qF

∂ĉ

∂EG

(EG)F
T , (8)

where Ŵ (EG) is the strain energy function and q is a Lagrange multiplier. In
(8) both Ŵ (EG) and ĉ (EG) are functions of the polynomial invariants of the
strain EG appropriate for the material symmetry required.

The first Piola-Kirchhoff stress S is defined in terms of the Cauchy stress
T as follows

S = (detF)TF−T . (9)

In LFTE the constitutive equations for T and S are derived by linearization
of the corresponding finite constitutive equations (8), (9) with respect to the
displacement gradient. It is worth noting that the procedure of linearization of
LFTE is based on the following requirements: the strain energy function for the
constrained material is taken to be that one of the unconstrained material with
the same material symmetry; the strain energy function for the unconstrained
material is retained until all differentiation is carried out; the linearized con-
straint equation (7) is substituted after the differentiation is complete; the

linearizations of
∂Ŵ

∂EG

and
∂ĉ

∂EG

must be parallel.

The final expressions for T and S appropriate for LFTE are

T =
∂2Ŵ

∂EG∂EG

(O)

∣

∣

∣

∣

∣

c

E + q
∂ĉ

∂EG

(O)+

+ qH
∂ĉ

∂EG

(O) + q
∂ĉ

∂EG

(O)HT + q
∂2ĉ

∂EG∂EG

(O)E

(10)
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S =
∂2Ŵ

∂EG∂EG

(O)

∣

∣

∣

∣

∣

c

E + q
∂ĉ

∂EG

(O) + q trE
∂ĉ

∂EG

(O)+

+ qH
∂ĉ

∂EG

(O) + q
∂2ĉ

∂EG∂EG

(O)E,

(11)

respectively (see [3], formulas (3.22), (3.23)); in (10), (11) the subscript c indi-
cates evaluation on the linear constraint equation (7).

For the constraint of incompressibility, (6), (7) take the form

det(2EG + 1) = 1 (12)

trE = 0, (13)

respectively. Moreover, for isotropy Ŵ is a function of the polynomial invariants
I ·EG, I ·E2

G
, I ·E3

G
. Then, for incompressible isotropic materials in LFTE the

Cauchy stress (10) and the Piola-Kirchhoff stress (11) reduce to

T = 2µE− pI (14)

and
S = 2µE − p

(

I−HT
)

, (15)

respectively (see [3], formulas (4.15), (4.16)); in (14), (15) µ is the shear modulus
and p = −2q is the pressure.

In classical linear elasticity for constrained materials the typical method
followed in order to construct linear constitutive equations is very different. As
shown in [3], Section 5, it is assumed that the constitutive equation for the
Cauchy stress, denoted by Tcl, is

Tcl =
∂W̃c

∂E
(E) + q

∂c̃

∂E
(E), (16)

where c̃(E) is the linear constraint function and W̃c is the quadratic strain en-
ergy function of the corresponding unconstrained material that has been eval-
uated with c̃(E) = 0 (see [3], formula (5.1)). In general, there are several terms
missing from (16) as compared to (10), both for the determinate stress and the
reaction stress; such terms are first order in the strain, so that the constitutive
equation (16) usually adopted in classical linear elasticity is not correct at first
order in the displacement gradient.

For incompressible isotropic materials equation (16) reduces to (14), so
that casually the constitutive equations provided by classical linear elasticity
and LFTE coincide (see [3], Section 5, for more details).



358 M.L. Tonon

Now we turn to first Piola-Kirchhoff stress tensor S. In classical linear
elasticity for constrained materials it is stated that the Piola-Kirchhoff stress
and the Cauchy stress coincide (see [2], Section 7), as occurs for unconstrained
materials. Then for isotropic linear elastic bodies the classical constitutive
equation for the Piola-Kirchhoff stress is

Scl = 2µE− pI. (17)

If we compare (15) to (17), we see that the two constitutive equations differ
by a term that is linear in H. Then, only if the pressure p is small, so that in
(15) the term pHT can be neglected, the two constitutive equations coincide.
In classical linear elasticity it is a priori assumed that small strains correspond
to small pressures. Since for incompressible materials the strains can be small
even under large pressures, LFTE must be adopted.

Finally, we list the field equations of linearized elastostatics for incompress-
ible isotropic materials according to LFTE

H = Gradu

E =
1

2

(

H+HT
)

W =
1

2

(

H−HT
)

trE = 0

S = 2µE− p I+ p (E−W) , p = − trS

DivS+ b = 0.

(18)

These equations hold on the undeformed body. In (18)3, W is the infinitesimal
rotation tensor; in (18)6 Div denotes the divergence operator taken with respect
to X, while b is the body force density measured per unit volume of B0.

For completeness’ sake we also recall the corresponding field equations ap-
propriate for classical linear elasticity

H = Gradu

E =
1

2

(

H+HT
)

trE = 0

Scl = 2µE− p I, p = − trScl

DivScl + b = 0.

(19)
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3. Simple Shear According to LFTE. A New Universal Relation.

Comparison to Classical Linear Elasticity

In this section we study the problem of simple shear within the context of
LFTE; we obtain a new universal relation in terms of components of the Piola-
Kirchhoff stress S. Finally we compare our results to those of classical linear
elasticity.

Let {e1, e2, e3} be an orthonormal basis. A simple shear of a rectangular
block is a homogeneous deformation x = f(X) defined with respect to such a
basis as

x1 = X1 + γX2

x2 = X2

x3 = X3,
(20)

where γ > 0 is an arbitrary dimensionless constant called the amount of shear.
Simple shear was first considered in 1948 by Rivlin [5] within the framework
of the nonlinear elasticity; various problems related to simple shear have been
analyzed since, both for compressible and incompressible isotropic solid elastic
materials (see, among many others, [1], [4], [9]). An important result concerning
simple shear is the Poynting effect, which is a typical feature of the nonlinear
elasticity. In fact, constitutive equations for compressible or incompressible
isotropic nonlinear elastic bodies provide for the components of the Cauchy
stress T the well-known universal relation due to Rivlin

T11 − T22 = γ T12 : (21)

not only are the normal stresses not equal to zero, but in general they cannot
even equal one another (Poynting effect). Moreover (21) shows that the normal
Cauchy stresses T11 and T22 determine the shear stress T12, while T11 and T22

cannot be determined by T12.
In classical linear elasticity the normal Cauchy stresses are of the order

of terms neglected, the Poynting effect disappears and shear stress suffices to
produce simple shear.

The previous remarks hold both for compressible and incompressible isotropic
materials.

Let us now consider the homogeneous deformation of simple shear (20)
according to LFTE. From (1) we have

u1 = γX2

u2 = 0
u3 = 0 ;

(22)
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then by (3), (22) we obtain

[H] =





0 γ 0
0 0 0
0 0 0



 . (23)

In virtue of (5), (23) the infinitesimal strain tensor is

[E] =





0 1
2γ 0

1
2γ 0 0
0 0 0



 . (24)

For an incompressible isotropic material subject to simple shear (20) constitu-
tive equation (15) for the Piola-Kirchhoff stress provides

[S] =





−p µγ 0
pγ + µγ −p 0

0 0 −p



 . (25)

Since the deformation (20) is homogeneous and the body is assumed to be
homogeneous, the equilibrium equation (18)6 in the absence of body force is
satisfied if and only if p is constant.

We now consider the components of S in (25): matrix (25) shows that the
non-zero components of S satisfy the relations

S12 − S21 = γ S11 = γ S22 = γ S33. (26)

Moreover the following relation holds

S12 − S21 =
1

3
(trS) γ. (27)

Relations (26), (27) are first obtained in this paper; when a simple shear is
applied, they are satisfied by every isotropic incompressible linear elastic body
in LFTE, so that they are universal relations. From (26) we see that the
components S12 and S21 of S determine the normal components S11, S22, S33,
while the opposite is untrue.

It is worth noting that (26), (27) exhibit terms as γSii (i not summed),
or (trS) γ; since γSii = −pH12 and (trS) γ = −3 pH12, such terms must be
retained in order to have accuracy to first order in the strain, since the pressure
can be large even if the strain is small.

A second remark concerns the comparison of LFTE to classical linear elas-
ticity. The classical linear elasticity for constrained materials is valid if the
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pressure is small, so that the constitutive equation for the Piola-Kirchhoff stress
is given by (17). In this case the symmetry of Scl forces to vanish the left-hand
side of (26); on the other hand, for small pressures the terms in the right-hand
sides of (26) must be neglected, so that in (26) all sides reduce to zero.

In this sense, the well-known results for simple shear in classical linear
elasticity can be obtained by the more general results for simple shear in LFTE.

A final remark concerns the choice of the stress tensor. The distinction
between S andT, as clearly claimed in LFTE, is crucial in order to find universal
relation (26), since no relation involving the components of T can be obtained.

4. Universal Relation for Simple Shear:

Comparison to Finite Elasticity

In this section we show that universal relation (26) obtained for S in LFTE
follows from a universal relation for S in finite theory, if a suitable procedure
of linearization is applied.

First we recall the constitutive equations for an incompressible isotropic
elastic material within the framework of the finite elasticity, both for the Cauchy
stress T and the Piola-Kirchhoff stress S. For the Cauchy stress T the consti-
tutive equation is

T = −pI+ ϕ1FF
T + ϕ

−1F
−TF−1, (28)

where the coefficients ϕ1 and ϕ
−1 are functions of the first two invariants of the

tensor FFT (see [9], formula (49.5)).
If we substitute in (9) constitutive equation (28) and the constraint con-

dition detF = 1 we obtain the following constitutive equation for the Piola-
Kirchhoff stress S

S = −pF−T + ϕ1F+ ϕ
−1F

−TF−1F−T . (29)

Let us now consider simple shear (20); in virtue of (2) the matrix corresponding
to the deformation gradient F is

[F] =





1 γ 0
0 1 0
0 0 1



 . (30)

Then equation (28) provides for T the matrix

[T]=







−p+ϕ1

(

1+γ2
)

+ϕ
−1 (ϕ1−ϕ

−1)γ 0
(ϕ1−ϕ

−1)γ −p+ϕ1+ϕ
−1

(

1+γ2
)

0

0 0 −p+ϕ1+ϕ
−1






, (31)
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while (29) gives for S the matrix

[S]=







−p+ϕ1+ϕ
−1

(

1+γ2
)

(ϕ1−ϕ
−1)γ 0

pγ−2ϕ
−1γ−ϕ

−1γ
3 −p+ϕ1+ϕ

−1

(

1+γ2
)

0

0 0 −p+ϕ1+ϕ
−1






. (32)

Note that in (31), (32) according to finite elasticity the terms of second order
and third order in γ must be retained.

Of course the components of T in (31) satisfy the Rivlin’s universal relation
(21); in addition to this well-known relation matrix (32) shows that another
relation involving some components of S holds

S12 − S21 = γS11 = γS22. (33)

Now we linearize relation (33). To this aim we first linearize the components
of S in (32). The requirement that the undeformed configuration be a natural
state provides in linear theory the condition

ϕ1(3, 3) − ϕ
−1(3, 3) = µ (34)

(see [9], formula (50.14)); moreover the requirement that the residual stress be
zero in the undeformed configuration (see [3], formulas (3.11), (3.12)) imposes
the further restriction

ϕ1(3, 3) + ϕ
−1(3, 3) = 0. (35)

Then linearization of (33), obtained by using (34), (35) and retaining only terms
that are of first order in γ, provides the first three sides of (26).

The anomaly represented by the last term in (26) is due to the different
powers of γ appearing in (32).

The results obtained for simple shear exhibit that, unlike the classical linear
elasticity for constrained materials, in one sense LFTE retains a clear memory
of finite elasticity. This particular feature of LFTE is emphasized also in [2],
where Hoger and Johnson show that in LFTE a dead load traction problem
may admit multiple solutions, as occurs in finite elasticity.

5. The Piola-Kirchhoff Tractions and the Cauchy Tractions in

LFTE. Absolute Error and Relative Error with Respect to

Classical Linear Elasticity

In this section we determine the Piola-Kirchhoff tractions and the Cauchy trac-
tions on the boundary of a rectangular block deformed by a simple shear both
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in LFTE and in classical linear elasticity. Moreover we show that the absolute
error in the Piola-Kirchhoff tractions calculated by classical elasticity can be
arbitrarily large, but the relative error is first order in the strain; such a dis-
crepancy will be significant when very high accuracy is required, for instance
in numerical simulations; the same applies to Cauchy tractions.

Let n0 be the outward unit normal to the surface of the undeformed body.
The Piola-Kirchhoff traction is defined as Sn0. For a simple shear in LFTE the
Piola-Kirchhoff stress S is given by (25), so that the Piola-Kirchhoff tractions
on the boundary of the rectangular block are

Se1=





−p
pγ+µγ

0



 , Se2=





µγ
−p
0



 , Se3=





0
0
−p



 . (36)

As noted in Section 2, in classical linear elasticity the Piola-Kirchhoff stress
tensor is given by (19)4. Since the values of the pressure in (18)5 and (19)4
are determined by appropriate boundary conditions, we give boundary condi-
tions such that trS = trScl; then the classical Piola-Kirchhoff tractions on the
boundary are

Scle1=





−p
µγ
0



 , Scle2=





µγ
−p
0



 , Scle3=





0
0
−p



 . (37)

Therefore we note that in LFTE simple shear (20) produces traction vectors
Se1 and Se2 such that |Se1| 6= |Se2|, while in classical linear elasticity |Scle1| =
|Scle2|.

From (36), (37) we see that for n0 = e1 the absolute error in the Piola-
Kirchhoff tractions is

|Se1 − Scle1| = |p| γ, (38)

while for n0=e2 and n0=e3 the tractions in the two theories coincide.

Thus, because p can be arbitrarily large, also the absolute error can be
arbitrarily large.

The corresponding relative error is defined as
|Se1 − Scle1|

|Se1|
, where before

linearization

|Se1| = |p|
[

1 +

(

p+ µ

p

)2

γ2

] 1

2

. (39)
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Then the relative error in the Piola-Kirchhoff tractions consistent with a linear
theory is

|Se1 − Scle1|
|Se1|

= γ, (40)

that is the relative error is first order in the strain.
We now determine the Cauchy tractions according to LFTE. In general, in

finite elasticity the outward unit normal n to the surface of the deformed body
is related to the normal n0 of the undeformed body through

n =
(

F−Tn0 · F−Tn0

)

−

1

2 F−Tn0 ; (41)

linearization of (41) yields

n =
[

(1 + n0 · En0) I−HT
]

n0 (42)

(see [2], formula (2.8)).
Then by linearizing (9) and using (42), (18)5 we obtain the Cauchy tractions

Tn on the deformed body in terms of the Piola-Kirchhoff tractions Sn0 on the
undeformed body

Tn = Sn0 − p (n0 · En0)n0 (43)

(see [2], formula (4.3)); (43) shows that in general in LFTE the difference
between Tn and Sn0 is first order in the strain.

We consider now simple shear (20). Since E is given by (24), we see from
(42) that the normals corresponding to n0 = e1, n0 = e2, n0 = e3, are n =




1
−γ
0



, n= e2, n= e3. The vector





1
−γ
0



 is a unit vector, since we deal

with a linear theory. Then in LFTE by (43), (36) we obtain for the Cauchy
tractions the expressions

T





1
−γ
0



=





−p
pγ+µγ

0



 , Te2=





µγ
−p
0



 , Te3=





0
0
−p



 ; (44)

comparison of (44) to (36) shows that for a simple shear in LFTE the Cauchy
tractions and the Piola-Kirchhoff tractions coincide.

Finally we determine the Cauchy tractions according to classical linear elas-
ticity. The usual assumption is

Tcln = Scln0 (45)
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(see [2], formula (7.4)): in classical linear elasticity for any deformation the
Cauchy tractions and the Piola-Kirchhoff tractions coincide. Then for simple
shear (20) by (45), (37) we have

Tcl





1
−γ
0



=





−p
µγ
0



, Tcle2=





µγ
−p
0



, Tcle3=





0
0
−p



. (46)

It follows that for the absolute error and the relative error in Cauchy trac-
tions calculated by classical elasticity the remarks concerning Piola-Kirchhoff
tractions hold.

6. Two Piola-Kirchhoff Traction Problems in LFTE and Classical

Linear Elasticity

In this section we consider two dead load problems corresponding to different
Piola-Kirchhoff tractions which are prescribed on the boundary of the rectan-
gular block.

We show that the first problem can be solved in LFTE and the solution is
a simple shear, while no solution exists in classical linear elasticity.

Afterwards we show that the second problem can be solved both in LFTE
and in classical linear elasticity; moreover we note that the simple shear ob-
tained as a solution in LFTE reduces to the simple shear which solves the
problem in classical linear elasticity when the pressure is small.

Finally for both problems we determine the range of tractions for which
LFTE applies.

(i) First we consider within the framework of LFTE the dead load problem
corresponding to the following Piola-Kirchhoff tractions

Se1=





α
β
0



 , Se2=





δ
α
0



 , Se3=





0
0
α



 , (47)

where β 6= δ. We will discuss the case β = δ in the second problem.
A homogeneous Piola-Kirchhoff stress which is in agreement with tractions

(47) is

[S] =





α δ 0
β α 0
0 0 α



 . (48)
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If we compare (48) to (18)5, we see that p = −α; moreover if α 6= 2µ we obtain
the components of the infinitesimal strain tensor (18)2 in terms of tractions
(47)

[E] =















0
1

2

β + δ

2µ− α
0

1

2

β + δ

2µ − α
0 0

0 0 0















. (49)

We now recall that the infinitesimal rotation tensor W is defined by (18)3; then
from (18)5, (48) we see that the components of W in terms of the tractions are

[W] =













0
1

2

δ − β

α
0

1

2

β − δ

α
0 0

0 0 0













. (50)

Finally the displacement u from the origin is

u = (E+W)X, (51)

where E and W are given by (49) and (50), respectively.
Then in LFTE simple shear (49) is the solution of the dead load problem

(47). When the pressure is such that α=2µ, we have β=−δ; it follows that E is
arbitrary up to trE = 0, while

W12=−W21=
δ

2µ
.

We now prescribe the same tractions in classical linear elasticity, that is we
set

Scle1=





α
β
0



 , Scle2=





δ
α
0



 , Scle3=





0
0
α



 , (52)

where β 6= δ. In this case no solution exists for the dead load problem (52),
because the Piola-Kirchhoff stress Scl given by (19)4 is symmetric, while in (52)
we have β 6= δ.

(ii) We now prescribe in LFTE the Piola-Kirchhoff tractions

Se1=





α
β
0



 , Se2=





β
α
0



 , Se3=





0
0
α



 . (53)
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Tractions (53) provide a symmetric stress S; moreover by (18)5 we have p = −α
and

[E] =













0
β

2µ − α
0

β

2µ − α
0 0

0 0 0













. (54)

if α 6= 2µ.

Of course (54) can be also obtained from (49) by setting β = δ, but we
discuss the case β 6= δ and the case β = δ separately, in order to compare our
results with those ones of the classical linear elasticity.

Note that in this case the symmetry of S has as a consequence the symmetry
of the tensor H, so that W = O; the displacement from the origin is then

u = EX, (55)

where E is given by (54).

If α=2µ, we obtain β=0, E arbitrary up to trE=0, and W=O.

Finally we solve in classical linear elasticity the dead load problem corre-
sponding to the same tractions, that is we set

Scle1=





α
β
0



 , Scle2=





β
α
0



 , Scle3=





0
0
α



 . (56)

Equation (19)4 provides p = −α; moreover, denoting by Ecl the infinitesimal
strain obtained by classical linear elasticity, from (19)4 we have

[Ecl] =













0
β

2µ
0

β

2µ
0 0

0 0 0













. (57)

Since the infinitesimal rotationW is arbitrary, the displacement from the origin,
denoted by ucl, is given in terms of the infinitesimal strain (57) by the formula

ucl = EclX, (58)

to within an arbitrary infinitesimal rigid body displacement.
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Therefore the second Piola-Kirchhoff traction problem can be solved both
in LFTE and in classical linear elasticity. The corresponding solutions are the
simple shear (54) and the simple shear (57), respectively. Our aim is now to
compare solution (54) to solution (57). By (54) we see that β=2µE12+pE12;
in classical linear elasticity the pressure p is supposed to be small, the product
pE12 is neglected, so that strain (54) reduces to strain (57).

The same occurs also in [8], where another dead load problem is solved both
in LFTE and in classical linear elasticity and the corresponding solutions are
compared.

In one sense the qualitative behaviour of the solutions for LFTE and clas-
sical linear elasticity parallels the behaviour of the corresponding constitutive
equations.

Finally we turn our attention to the solutions obtained for LFTE both
for the first problem and the second problem in order to define the range of
tractions for which LFTE applies.

If we use (18)2, (18)3 and the condition E ·W = 0, we obtain

|E|2 + |W|2 = |H|2 . (59)

Since we deal with a linear theory, we impose a suitable restriction on |H|;
suppose for instance that |H| ≤ H̃ for a particular material. Then |E| and |W|
must satisfy the restriction

|E|2 + |W|2 ≤ H̃2. (60)

We now consider the first problem, for which E and W are given by (49),
(50) respectively; restriction (60) takes the form

(β + δ)2

2 (2µ− α)2 H̃2
+

(β − δ)2

2α2H̃2
≤ 1. (61)

The range of tractions (47) for which LFTE applies is then represented by the
region whose boundary is the ellipse

(β + δ)2

2 (2µ− α)2 H̃2
+

(β − δ)2

2α2H̃2
= 1. (62)

Finally we consider the second problem, for which E is given by (54), while
W = O. In this case restriction (60) shows that the region in which LFTE
applies is defined by

|β| ≤ 1√
2
|2µ − α| H̃. (63)
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Conditions (61), (63) emphasize that the shear modulus µ plays a central role
in determining the range of tractions for which LFTE applies; for instance for
rubber materials the shear modulus µ is 4.225 · 105 N/m2.

7. Conclusions

The stress-strain relations usually adopted to describe the behaviour of con-
strained materials within the framework of the linear elasticity are those of the
so-called classical linear elasticity. For many reasons such a theory is inadequate
in order to have the accuracy required by a linear theory, so that for constrained
linear elastic materials the constitutive equations of the linearized finite theory
of elasticity must be adopted (see [2], [3]). In this paper, by using the linearized
finite theory of elasticity, we obtain unexpected results concerning simple shear
in incompressible linear elastic materials.

Other results provided by such a theory which are unexpected for a linear
theory can be found in [2], [8] as regards static problems, and in [6], [7] as
concerns wave propagation; for instance, in [2] Hoger and Johnson show that a
dead load problem for incompressible linear elastic materials may have multiple
solutions. Therefore this paper represents a natural continuation of [2], [3], [6],
[7], [8].
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