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GABAergic synapses exhibit a high degree of subcellular and molecular specialization,
which contrasts with their apparent simplicity in ultrastructural appearance. Indeed, when
observed in the electron microscope, GABAergic synapses fit in the symmetric, or Gray’s
type II category, being characterized by a relatively simple postsynaptic specialization. The
inhibitory postsynaptic density cannot be readily isolated, and progress in understanding
its molecular composition has lagged behind that of excitatory synapses. However, recent
studies have brought significant progress in the identification of new synaptic proteins,
revealing an unexpected complexity in the molecular machinery that regulates GABAer-
gic synaptogenesis. In this article, we provide an overview of the molecular diversity of
GABAergic synapses, and we consider how synapse specificity may be encoded by selec-
tive trans-synaptic interactions between pre- and postsynaptic adhesion molecules and
secreted factors that reside in the synaptic cleft. We also discuss the importance of devel-
oping cataloguing tools that could be used to decipher the molecular diversity of synapses
and to predict alterations of inhibitory transmission in the course of neurological diseases.
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INTRODUCTION
One of the most striking aspects of inhibitory synaptic circuits
is the remarkable diversity of GABAergic systems. GABAergic
interneurons occur in many different subtypes, that play exquis-
itely precise functions in neural networks (Markram et al., 2004).
Each type of interneuron is highly selective, making synapses with
particular populations of target cells and only with specific subcel-
lular compartments (Huang et al., 2007). Moreover, the diversity
of GABAergic interneurons matches a corresponding multiplicity
of synaptic and extrasynaptic GABAA receptor (GABAAR) sub-
types, that support neural circuit operations under an extensive
range of behavior-dependent brain states (Monyer and Markram,
2004; Freund and Katona, 2007; Klausberger and Somogyi, 2008;
Olsen and Sieghart, 2009). For example, in hippocampal and cor-
tical circuits, basket cells containing either parvalbumin (PV) or
cholecystokinin (CCK) target the cell body of pyramidal cells at
synapses containing mainly α1β2/3γ2 GABAARs, which display
fast kinetics of deactivation, or α2β2/3γ2 GABAARs, which have
slower kinetics compared to receptors containing the α1 sub-
unit (Klausberger et al., 2002; Klausberger and Somogyi, 2008).
While PV-basket cells appear to control the temporal coordina-
tion of principal neurons and network oscillations, CCK-positive
interneurons modulate synchronous activities by integrating sub-
cortical and local modulatory signals (Freund and Katona, 2007;
Sohal et al., 2009; Thomson and Jovanovic, 2010). Notably, these
differences can be extended to the level of pathology, as the two
types of GABAARs appear to be implicated in different types of
neurological and psychiatric disorders (Lewis et al., 2005; Freund
and Katona, 2007). Similarly, genetic manipulations of individual

GABAAR subunits in mice produce selective alterations in behav-
ior, reinforcing the idea that specific neuronal networks character-
ized by respective GABAAR subtypes are involved in the regulation
of defined behavioral patterns (McKernan et al., 2000; Möhler,
2006, 2007; Whiting, 2006).

This extraordinary diversity contrasts with the apparent sim-
plicity in the ultrastructural appearance of GABAergic synapses.
When observed in the electron microscope, GABAergic synapses
fit in the symmetric, or Gray’s type II category (Gray, 1959;
Colonnier, 1968; Peters and Palay, 1996). These synapses are char-
acterized by a thin postsynaptic density (PSD), similar in size to the
presynaptic active zone. In contrast, glutamatergic synapses belong
to the asymmetric, or Gray’s type I group, which is distinguished by
a prominent PSD. Asymmetric synapses also show a conspicuous
electron dense material in the synaptic cleft, which is less obvious
in symmetric synapses. Not surprisingly, the morphological differ-
ences between type I and type II synapses are proportional to their
molecular complexity. Proteomic studies of the excitatory PSD
have revealed a number of proteins greater than 1000 (Collins
et al., 2005; Bayés et al., 2011), which exceeds by two orders of
magnitude the number of molecules that have been found in the
inhibitory PSD (Lüscher and Keller, 2004; Charych et al., 2009).
It would be hazardous, however, to conclude that all GABAer-
gic synapses share the same basic molecules and mechanisms to
sustain their exquisite specificity. In this essay, we review recent
work that points to a remarkable heterogeneity of the molecular
machinery that regulates GABAergic synaptogenesis in vivo and
we provide a personal view of the mechanisms that may under-
lie synapse specificity during the development of neural circuits.
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Understanding these mechanisms is of interest for both basic and
clinical neuroscience, as disruption of inhibitory synapse develop-
ment is now regarded as a major cause of brain disease (Lewis et al.,
2005; Südhof, 2008; Charych et al., 2009). A detailed description
of the molecular organization of GABAergic synapses falls outside
the scope of this paper and can be found in other excellent review
articles (Lüscher and Keller, 2004; Tretter and Moss, 2008). Here
we rather focus on the evidence that the diversity of GABAergic
synapses may be generated by the interplay of multiple molec-
ular mechanisms with partially overlapping functions. We also
discuss the importance of a classification scheme that could be
used to identify distinct types of synapses based on the differential
expression of groups of interacting proteins.

POSTSYNAPTIC SCAFFOLDS OF INHIBITORY SYNAPSES
One of the main achievements in the field of synapse research
has been the characterization of the molecular components of
the PSD. Molecular investigations of glutamatergic synapses have
shown that the PSD is a specialized microdomain characterized
by core scaffolding proteins, such as PSD-95, that link glutamate
receptors to the subsynaptic cytoskeleton and also interact with
different types of regulatory proteins and with cell adhesion mole-
cules via specific PDZ domains (Kennedy, 1997; Ziff, 1997; O’Brien
et al., 1998; Garner et al., 2000; Kim and Sheng, 2004; Boeckers,
2006). Importantly, there is increasing evidence that protein–
protein interactions within the PSD are not static and that dynamic
modulation of the PSD provides a mechanism for the regulation
of synaptic plasticity (Scannevin and Huganir, 2000; Kim et al.,
2007; Steiner et al., 2008). The inhibitory PSD cannot be readily
isolated, and progress in understanding its molecular composition
has lagged behind that of excitatory synapses. The multi-domain,
93 kDa protein gephyrin has emerged as a major scaffolding mol-
ecule of the inhibitory PSD (Kneussel and Betz, 2000; Fritschy
et al., 2008). Here we briefly summarize the proposed functions
of gephyrin and we describe other scaffolding molecules that may
contribute to assemble postsynaptic specializations in at least some
subtypes of inhibitory synapses.

GEPHYRIN
Gephyrin was originally copurified with the glycine receptor
(GlyR; Pfeiffer et al., 1982), and was later found also at postsy-
naptic sites of GABAergic synapses (Sassoè-Pognetto et al., 1995;
Sassoè-Pognetto and Fritschy, 2000). This molecule lacks PDZ
domains, but can form aggregates by spontaneous oligomeriza-
tion, although the precise mechanisms by which gephyrin forms
postsynaptic scaffolds is still unresolved (for review, see Fritschy
et al., 2008). Gephyrin binds a cytoplasmic loop of the GlyR β

subunit (Meyer et al., 1995), and is essential for postsynaptic clus-
tering of GlyRs (Kirsch et al., 1993; Feng et al., 1998). This scaffold
protein also contributes to stabilize postsynaptic GABAARs, as its
knockdown in cultured neurons causes a disruption of GABAAR
clusters (Essrich et al., 1998; Yu et al., 2007). Similarly, knockout
of the gephyrin gene in mice results in an extensive loss of post-
synaptic GABAAR aggregates (Kneussel et al., 1999, 2001; Fischer
et al., 2000; Lévi et al., 2004).

The precise mechanisms by which gephyrin clusters GABAARs
are poorly understood, although there is evidence that this

molecule restrains the lateral mobility of the receptors in the
plasma membrane (Jacob et al., 2005; Thomas et al., 2005). Most
likely, this function involves interactions with the cytoskeleton,
as gephyrin binds with high affinity polymerized tubulin (Kirsch
et al., 1991; Kirsch and Betz, 1995) and serves as an adaptor for
regulators of microfilament dynamics (Mammoto et al., 1998;
Giesemann et al., 2003; Bausen et al., 2006). Interestingly, the clus-
tering of gephyrin and GABAARs are to some extent mutually
dependent on each other, since synaptic gephyrin clusters are dis-
rupted after deletion of GABAARs (Essrich et al., 1998; Schweizer
et al., 2003; Li et al., 2005; Kralic et al., 2006; Studer et al., 2006).
Alldred et al. (2005) have identified the fourth transmembrane
domain of the GABAAR γ2 subunit as essential to mediate postsy-
naptic clustering of GABAARs, whereas the major γ2 cytoplasmic
loop is required for recruitment of gephyrin to GABAAR clus-
ters. Direct interactions between gephyrin and the GABAAR α2
and α3 subunits have emerged only recently (Tretter and Moss,
2008; Saiepour et al., 2010). The binding of gephyrin to the α sub-
units appears to be detergent sensitive, which may explain why
it has been remarkably difficult to reveal these interactions using
biochemical approaches. However, whether gephyrin binding to
GABAARs involves multiple interactions with distinct α and γ sub-
units is presently unclear. The relevance of the numerous gephyrin
isoforms generated by alternative splicing is also not understood
(Paarmann et al., 2006; Fritschy et al., 2008). Moreover, gephyrin
function may depend on post-translational modifications. Indeed,
recent studies indicate that phosphorylation of gephyrin at spe-
cific residues contributes to regulate the anchoring of GlyRs and
GABAARs at postsynaptic sites (Zita et al., 2007; Charrier et al.,
2010; Tyagarajan et al., 2011).

A still unresolved issue is whether gephyrin contributes equally
to the clustering of all major subtypes of synaptic GABAARs
(that is receptors that are highly concentrated in the postsynaptic
membrane and mediate phasic inhibition). Extensive experimen-
tal evidence indicates that receptors containing a γ2 subunit in
association with two α and two β subunits (α1β2/3γ2, α2β2/3γ2,
and α3β2/3γ2) are the predominant types of synaptic GABAARs
(for review, see Lüscher and Keller, 2004; Farrant and Nusser,
2005). The analysis of spinal cord sections, retina organotypic cul-
tures, and cultured hippocampal neurons derived from gephyrin
knockout mice lead to the idea that gephyrin mediates the post-
synaptic accumulation of GABAARs containing the α2 or the α3
subunit, and suggested the existence of additional clustering mech-
anisms (Fischer et al., 2000; Kneussel et al., 2001; Lévi et al., 2004).
However, in the brain gephyrin colocalizes with all major types of
postsynaptic GABAARs containing either the α1, α2, or α3 sub-
unit (Sassoè-Pognetto et al., 2000), indicating that its function is
not restricted to α2 and α3-containing synapses. Because gephyrin
knockout mice die at birth (Feng et al., 1998), a better appreciation
of gephyrin function at distinct types of GABAergic synapses may
derive from the study of mouse models with conditional deletion
of this protein in selected populations of neurons characterized by
the expression of distinct GABAAR subtypes. The complex situ-
ation regarding the role of gephyrin in the clustering of different
GABAARs may also be explained by redundancy between multiple
clustering factors with partially overlapping synaptic expression
profiles (see below).
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THE DYSTROPHIN–GLYCOPROTEIN COMPLEX
Another postsynaptic scaffold that is present in some GABAergic
synapses is dystrophin. This protein belongs to the dystrophin–
glycoprotein complex (DGC), a large, membrane-spanning pro-
tein complex that links the cytoskeleton to the extracellular
matrix (Ervasti and Campbell, 1991; Blake and Kröger, 2000;
Waite et al., 2009). Dystrophin is derived from a large gene
with at least seven internal promoters that enable the expres-
sion of several distinct isoforms (for review see Perronnet and
Vaillend, 2010). Interestingly, the full-length (Dp427) isoform
is derived from three independent promoters with differential
expression in muscle, forebrain, and cerebellar Purkinje cells. The
N-terminal domain of dystrophin binds to filamentous actin,
whereas the C-terminal domain interacts with dystrobrevins (α
and β) and syntrophins (α, β1–2, γ1–2), which are also cyto-
plasmic constituents of the DGC. Several dystrobrevin-binding
elements have been identified, including dysbindin, a protein that
has been associated with schizophrenia (Benson et al., 2001; Talbot
et al., 2009). However, immunohistochemical analyses suggest that
dysbindin is not enriched at GABAergic synapses (unpublished
observations). Syntrophins are adaptor proteins each contain-
ing a PDZ domain and two pleckstrin homology (PH) domains
mediating interactions with several other proteins, including
kinases, ion and water channels, and nNOS (Waite et al., 2009).

Syntrophin colocalizes with GABAARs in cultured hippocampal
neurons (Brünig et al., 2002), however the synaptic localization
of endogenous syntrophins in unknown. Of particular interest
is the fact that the γ2-syntrophin isoform has been reported to
interact with the PDZ binding motif of the adhesion molecules
neuroligin 3 and neuroligin 4 (Yamakawa et al., 2007), which
are present at inhibitory synapses (see below). It is therefore
possible that interactions between syntrophins and neuroligins
may help organize postsynaptic scaffolds at inhibitory synapses
(Figure 1).

A core component of the DGC is dystroglycan, which is
composed of an extracellular α subunit and a transmembrane
β subunit, derived by proteolytic cleavage from a single pre-
cursor protein (Ibraghimov-Beskrovnaya et al., 1992). The β-
dystroglycan subunit contains a single transmembrane domain
and its cytoplasmic tail binds dystrophin, whereas α-dystroglycan
is a secreted glycoprotein that binds to LNS (laminin G, neurex-
ins, and sex hormone-binding globulin)-domain-containing pro-
teins, such as laminin, perlecan, agrin, neurexin, and pikachurin
(Bowe et al., 1994; Gee et al., 1994; Talts et al., 1999; Sugita
et al., 2001; Sato et al., 2008). The fact that α-dystroglycan binds
neurexin is particularly intriguing, as it suggests that the DGC may
mediate trans-synaptic interactions between pre- and postsynaptic
specializations.

FIGURE 1 | Postsynaptic scaffolds and adhesion molecules of

GABAergic synapses. The diagram is based on reported molecular
interactions (see text), some of which remain to be confirmed in vivo.
Gephyrin, S-SCAM/MAGI-2, and dystrophin are shown in the same
postsynaptic specialization, although dystrophin is present in only a
subset of GABAergic synapses and the in vivo distribution of S-SCAM/MAGI-2
has not been characterized. Gephyrin trimers are believed to aggregate into a
submembranous lattice that provides stability to postsynaptic GABAARs.
Gephyrin also binds collybistin (CB) and neuroligin 2 (NL2), that has been
proposed to function as a specific activator of collybistin. Cytoskeletal

proteins associated with gephyrin, such as Mena/VASP and microtubules,
are not shown. Neuroligin 2 bridges the synaptic cleft and binds to
neurexins on the presynaptic terminal. Reported interactions between
neurexins and GABAARs are also indicated. Neurexins may also interact with
α-dystroglycan (α-DG), thus establishing a link with the
dystrophin–glycoprotein complex (DGC). One component of the DGC,
syntrophin, has been reported to bind neuroligin 3 and neuroligin 4. Finally,
there is evidence that S-SCAM/MAGI-2 may establish a link between
neuroligin 2 and the DGC by interacting with the intracellular domain of
β-dystroglycan (β-DG).
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Immunohistochemical analyses have shown that the DGC is
present in a subset of GABAergic synapses, specifically in cerebellar
Purkinje cells and in forebrain pyramidal neurons (Knuesel et al.,
1999; Sekiguchi et al., 2009; Briatore et al., 2010). Interestingly,
both in vitro and in vivo analyses have shown that the synaptic
localization of dystrophin and dystroglycan are independent of
GABAARs and gephyrin, suggesting that the DGC has the capacity
to self-assemble at postsynaptic sites (Brünig et al., 2002; Lévi
et al., 2002; Patrizi et al., 2008a). The studies that have investigated
the function of the DGC at GABAergic synapses have generated
partially conflicting results. Deletion of dystroglycan in cultured
hippocampal neurons caused a loss of postsynaptic dystrophin,
but did not affect the localization of gephyrin and GABAARs (Lévi
et al., 2002). In contrast, in vivo analyses of mdx mice, that lack the
full-length version of dystrophin, revealed a selective deficit in the
synaptic clustering of GABAARs, but not gephyrin, in cerebellum,
hippocampus, and amygdala (Knuesel et al., 1999; Sekiguchi et al.,
2009;Vaillend et al., 2010). Similar results have been reported in the
cerebellum of double knockout mice lacking both α and β dystro-
brevins (Grady et al., 2006). The selective loss of GABAAR clusters,
but not gephyrin clusters in mdx mice is surprising, also consider-
ing that deletion of GABAARs from Purkinje cells causes a severe
defect in the clustering of gephyrin (Kralic et al., 2006) without
affecting dystrophin and dystroglycan (Patrizi et al., 2008a). How-
ever, there is extensive electrophysiological evidence indicating
that an intact DGC is required for normal GABAergic inhibition
(Anderson et al., 2003; Kueh et al., 2008; Sekiguchi et al., 2009).
In short, the available data indicate that the DGC is involved in
modulating synaptic function in a subset of GABAergic synapses.
However, the precise organization of the synaptic DGC and the
specific contribution of its molecular constituents require further
investigations.

S-SCAM/MAGI-2
According to a recent study, the synaptic scaffolding molecule
(S-SCAM)/membrane-associated guanylate kinase with inverted
organization (MAGI)-2 localizes at inhibitory synapses in rat
primary hippocampal neurons (Sumita et al., 2007). This is sur-
prising, because S-SCAM/MAGI-2 has a molecular organization
similar to PSD-95, harboring multiple PDZ domains, a guany-
late kinase, and two WW domains. S-SCAM/MAGI-2 is also
present at glutamatergic synapses, where it interacts with NMDA
receptors, neuroligin 1, and β-catenin (Hirao et al., 1998; Iida
et al., 2004). At GABAergic synapses, it has been reported that
S-SCAM/MAGI-2 can interact with β-dystroglycan and neuroli-
gin 2, suggesting that this scaffold molecule may provide a link
between the DGC and the neurexin–neuroligin adhesion system
(Sumita et al., 2007). Thus it appears that S-SCAM/MAGI-2 and
syntrophins may mediate selective interactions between the DGC
and, respectively, neuroligin 2 and neuroligins 3 and 4 (Figure 1).
Research on S-SCAM/MAGI-2 is still at its beginnings, but it may
lead to the discovery of new mechanisms underlying the assem-
bly of the inhibitory PSD. It will be important to characterize
the spatio-temporal profile of S-SCAM/MAGI-2 expression in
relation to the other molecular constituents of GABAergic postsy-
napses. In addition, it will be of primary interest to investigate
the possible redundancy of trans-synaptic signals mediated by
the DGC and the neurexin–neuroligin adhesion system. More in

general, in vivo analyses are needed to get a clear picture of the
endogenous distributions of these different scaffolding systems
and to help dissecting their specific roles in different populations
of synapses.

VARIABILITY IN THE MECHANISMS THAT REGULATE THE
POSTSYNAPTIC ACCUMULATION OF GEPHYRIN
While gephyrin is expressed almost ubiquitously at inhibitory
synapses, recent studies have evidenced an unexpected variabil-
ity in the mechanisms that control its synaptic localization. For
example, in cerebellar Purkinje cells gephyrin is expressed initially
at all GABAergic synapses, however during postnatal development
gephyrin clusters disappear from perisomatic synapses and remain
exclusively at axodendritic contacts (Viltono et al., 2008). While
the reasons for this differential regulation are unclear, the loss of
gephyrin is mirrored by a structural reorganization of perisomatic
synapses, consisting in a reduction in the size of GABAAR clusters
and in the length of synaptic appositions.

One protein implicated in the recruitment of gephyrin to post-
synaptic specializations is the GEF (guanine nucleotide exchange
factor) collybistin, that was identified as a gephyrin-binding pro-
tein in a two-hybrid screening (Kins et al., 2000). Collybistin, like
other GEFs, is characterized by an N-terminal src homology 3
(SH3) domain, a catalytic tandem Dbl homology (DH) domain
and a PH domain. It is believed that collybistin participates in
the membrane targeting of gephyrin by binding membrane lipids
through its PH domain (Harvey et al., 2004; Reddy-Alla et al.,
2010). Different collybistin isoforms (CB1-3) have been identified,
which are created by alternative splicing of exons encoding the SH3
domain and three alternate C termini (Kins et al., 2000; Harvey
et al., 2004). Interestingly, expression studies have shown that the
SH3 domain negatively regulates collybistin function (Kins et al.,
2000; Harvey et al., 2004). However, most endogenous collybistin
isoforms harbor this region, suggesting that collybistin activity
requires protein–protein interactions at the SH3 domain (Kins
et al., 2000; Harvey et al., 2004). Indeed, recent investigations
have shown that the synaptic adhesion molecules neuroligin 2
and neuroligin 4 can bind to and activate collybistin by reliev-
ing the SH3-mediated inhibition (Poulopoulos et al., 2009; Hoon
et al., 2011). In addition, all neuroligin isoforms have in their
cytoplasmic domain a conserved gephyrin-binding motif that con-
tributes to recruit gephyrin to synapses. It has been proposed that
by interacting with gephyrin and collybistin neuroligin 2 can act
as a nucleation site for the formation of postsynaptic gephyrin
scaffolds that recruit GABAARs at postsynaptic sites (Poulopou-
los et al., 2009). On the other hand, knockout of neuroligin 2
has only a relatively small effect on the clustering of gephyrin
and GABAARs, specifically at perisomatic synapses of hippocam-
pal neurons (Poulopoulos et al., 2009). In contrast, deletion of
collybistin or GABAARs causes an extensive loss of gephyrin clus-
ters (Essrich et al., 1998; Li et al., 2005; Kralic et al., 2006; Studer
et al., 2006; Papadopoulos et al., 2007; Patrizi et al., 2008a). These
observations question the importance of neuroligin 2 as a major
physiological clustering factor for gephyrin and collybistin and
suggest that there could be multiple pathways capable of activating
collybistin with differential cellular and subcellular specificity.

Mouse genetic studies have revealed that in vivo collybistin is
required for the initial localization and maintenance of gephyrin
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and GABAAR clusters in a subset of inhibitory synapses in selected
brain regions, particularly in the hippocampus and basolateral
amygdala (Papadopoulos et al., 2007, 2008). Surprisingly, dele-
tion of collybistin did not affect the organization of GABAergic
synapses in other regions, nor that of glycinergic synapses. These
findings indicate that the mechanisms that control the assembly of
the inhibitory PSD are region and synapse-specific. This selectivity
may be explained by the fact that the expression of collybistin at
inhibitory synapses is highly heterogeneous. In the retina, colly-
bistin is preferentially colocalized with α2-GABAARs, and shows
limited localization at synapses containing other GABAAR sub-
types or GlyRs (Saiepour et al., 2010). Similarly, in brain circuits
collybistin has been found in only a subset of gephyrin-positive
synapse, although no specific association with particular GABAAR
subtypes was found (unpublished observations). These observa-
tions suggest that other GEFs or unknown clustering factors may
also contribute to cluster gephyrin at postsynaptic sites. Interest-
ingly, a recent study has revealed that SynArfGEF (also known as
BRAG3 or IQSEC3),a member of the A-resistant Arf-GEF/IQSEC3
family, localizes at postsynaptic specializations of GABAergic and
glycinergic synapses and can interact with dystrophin and S-
SCAM/Magi-2 (Fukaya et al., 2011). Thus, SynArfGEF is another
GEF expressed at inhibitory synapses, although its precise func-
tion remains to be determined. It will be important to understand
whether SynArfGEF, like collybistin, is associated with selected
subtypes of inhibitory synapses, and whether these two GEFs have
differential or partially overlapping distributions.

SYNAPTIC SPECIFICITY DEPENDS ON MULTIPLE
MECHANISMS
A crucial and still open question in developmental neurobiol-
ogy is to decipher the mechanisms that ensure the formation
of functional connections between appropriate synaptic partners
characterized by distinct molecular signatures. A large number
of studies in both vertebrate and invertebrate nervous systems
have shown that the specificity of synapses depends on multiple
mechanisms, including homophilic and heterophilic interactions
between adhesion molecules, secreted synaptic organizers, anti-
synaptogenic molecules, interactions with guidepost and/or glial
cells, temporally restricted expression of transcription factors, and
defined patterns of neuronal activity (for a recent review see Mar-
geta and Shen, 2010). To illustrate the remarkable variety of the
mechanisms that give rise to connectional specificity, we refer to
recent work on cerebellar Purkinje cells. These neurons receive
GABAergic inhibition mainly from basket cells, that target the cell
body and the axon initial segment (AIS), and from stellate cells,
that innervate exclusively the dendritic shafts (Palay and Chan-
Palay, 1974). Both types of synapse express the same GABAAR
subtype containing the α1 subunit (Fritschy et al., 2006). Studies
in transgenic mouse models have shown that stellate and basket
cells use different molecular cues to innervate distinct subcellular
domains of Purkinje cells. The targeting of basket axons to the
AIS depends on a subcellular gradient of neurofascin 186, a cell
adhesion molecule of the L1 immunoglobulin family (Ango et al.,
2004). This gradient requires ankyrinG, a membrane adaptor
protein that is restricted to the AIS and recruits neurofascin.
In ankyrinG-deficient Purkinje cells, the neurofascin gradient is

abolished, and basket axons lose their directional growth along
Purkinje cells, resulting in impaired synapse formation. On the
other hand, the formation of stellate cell synapses depends on
close homolog of L1 (CHL1), another member of the same fam-
ily of adhesion molecules, localized along Bergmann glia fibers
(Ango et al., 2008). Thus, different members of the L1 family of
cell adhesion molecules contribute to axon patterning and sub-
cellular synapse organization in different types of interneurons,
although it seems that these molecules are more directly involved
in axon guidance rather than in mediating synapse formation.

There is also evidence that GABAARs play a remarkably selec-
tive role in the refinement of perisomatic and axodendritic
synapses in Purkinje cells. Deletion of GABAARs from Purkinje
cells causes a selective decrease in the density of axodendritic
synapses without altering the number of perisomatic synapses
(Fritschy et al., 2006; Patrizi et al., 2008a). Notably, the reduced
axodendritic innervation is accompanied by the appearance of
numerous heterologous contacts between GABAergic axon termi-
nals and Purkinje cell spines, which retain an asymmetric PSD
typical of glutamatergic synapses (Fritschy et al., 2006).

These examples highlight two important aspects of synaptic
specificity. First, the selectivity of connections does not depend
on a hard-wired process based on exclusive cellular interactions,
but rather results from a mechanism of selection among potential
synaptic partners. In Purkinje cells, the silencing of GABAergic
transmission is sufficient to boost ectopic synapses on spines, sug-
gesting that in this specific case activity-dependent competition
is a major determinant of synaptic specificity. Second, different
synapses are subject to different regulation, implying that muta-
tions that perturb synapse development in some populations of
synapses may leave other synapses unaffected. This heterogeneity
must be understood before common principles of synaptogenesis
can be defined.

COMPLEX ORGANIZATION OF ADHESION MOLECULES AT
INHIBITORY SYNAPSES
Once a synaptic adhesion has been established, it is essential that
synaptic specializations recruit the correct complement of pre-
and postsynaptic molecules, including the correct types of neuro-
transmitter receptors and their anchoring proteins. In the case of
GABAergic synapses, it is still unknown how postsynaptic neurons
cluster distinct types of GABAARs at synapses that can be located
only a few micrometers apart. Selective interactions between pre-
and postsynaptic adhesion molecules have been invoked to explain
the selectivity in the segregation of different GABAARs (Thomson
and Jovanovic, 2010). Indeed, there seems to be enough vari-
ability in the different families of synaptic adhesion molecules
to support this function (Scheiffele, 2003; Yamagata et al., 2003;
Washbourne et al., 2004; Craig et al., 2006; Piechotta et al., 2006;
Dalva et al., 2007; Arikkath and Reichardt, 2008; Biederer and Stagi,
2008; Brose, 2009; Siddiqui and Craig, 2010; Tallafuss et al., 2010),
although none of the known adhesion proteins appears to have a
selective localization that would be compatible with a role in seg-
regating distinct GABAARs to different synapses. Here we discuss
the possibility that synapse diversity may result from the differ-
ential co-expression of multiple adhesion molecules with partially
overlapping distributions.
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Neuroligin 2 is arguably the best characterized adhesion mol-
ecule of GABAergic synapses. This molecule belongs to a family
of four (in rodents) isoforms, which appear to segregate into dis-
tinct types of excitatory and inhibitory synapses (Song et al., 1999;
Craig and Kang, 2007). Neuroligin 2 is localized at postsynap-
tic sites of inhibitory synapses throughout the brain (Varoqueaux
et al., 2004; Patrizi et al., 2008a), and promotes GABAergic synap-
togenesis in vitro (Graf et al., 2004; Chih et al., 2006; Chubykin
et al., 2007). Moreover, neuroligin 2 knockout mice exhibit selec-
tive deficits in GABAergic neurotransmission, indicating that this
adhesion molecule is required for normal synapse development
(Chubykin et al., 2007; Hoon et al., 2009; Jedlicka et al., 2011).

Recent studies have evidenced a complex organization of neu-
roligins at inhibitory synapses. While NL2 is present in practi-
cally all inhibitory synapses throughout the brain, other neuroli-
gin isoforms have a more restricted distribution. Thus, NL4 is
mainly associated with glycinergic synapses (Hoon et al., 2011),
whereas NL3 is coexpressed with NL2 in subsets of GABAer-
gic synapses (Budreck and Scheiffele, 2007; Patrizi et al., 2008b).
These observations indicate that differential expression of neu-
roligins may confer specific functional properties to individual
synapses, although the contribution of each individual neuroligin
isoform remains unclear. Interestingly, recent research has indi-
cated that NL2 has quite selective functions at GABAergic synapses,
despite its broad distribution. In hippocampal pyramidal neu-
rons, deletion of NL2 decreases the amplitude of IPSCs evoked
from PV-positive interneurons, but has no effect on IPSCs evoked
from somatostatin-positive cells (Gibson et al., 2009). A similar
level of selectivity has been reported also for other cell adhesion
molecules. For example, perturbation of the neural cell adhe-
sion molecule (NCAM) produces selective effects on GABAergic
synapses in frontal and cingulate cortex and in the amygdala, but
not in hippocampus (Pillai-Nair et al., 2005). Together, these data
reveal an unexpected variability in the synaptic properties con-
ferred by individual cell adhesion molecules and provide support
to the idea that synaptic specificity may be encoded by multi-
ple interactions between selective combinations of synaptogenic
proteins.

It is generally assumed that neuroligins promote synapse mat-
uration by interacting with presynaptic neurexins (Ushkaryov
et al., 1992; Graf et al., 2004; Chih et al., 2005; Kang et al.,
2008). Neurexins occur in six different isoforms (three longer
α-neurexins and three shorter β-neurexins), that are further sub-
ject to alternative splicing, giving rise to several distinct variants
that can bind with different affinities to multiple types of post-
synaptic partners, including neuroligins, LRRTMs (leucine-rich
repeat transmembrane neuronal proteins), neurexophilins, and
the Cbln1–GluD2 (cerebellin 1-glutamate receptor δ2) complex
(Ullrich et al., 1995; Missler and Südhof, 1998; Koehnke et al.,
2010; Siddiqui and Craig, 2010; Uemura et al., 2010; Wright and
Washbourne, 2011). In particular, the presence or the absence of
an insert at splice site 4 (S4) appears to be an important determi-
nant of binding partner selectivity (for review, see Craig and Kang,
2007; Siddiqui and Craig, 2010). Co-culture studies support a pref-
erential role of α-neurexins(+S4) in mediating GABAergic synap-
togenesis (Boucard et al., 2005; Chih et al., 2006; Kang et al., 2008).
Likewise, knockout of all α-neurexins decreases considerably the

density of GABAergic synapses in cortex (Missler et al., 2003).
Interestingly, α neurexins can also interact with α-dystroglycan
(Sugita et al., 2001), which is present in a subset of GABAergic
synapses as discussed above. Neurexins have also been reported
to interact directly with GABAARs, although the importance of
these interactions for synapse development is still unclear (Zhang
et al., 2010). In summary, although there is clear evidence that both
neuroligin 2 and α-neurexins(+S4) promote GABAergic synapto-
genesis in vitro, the extensive alternative splicing and numerous
binding partners of neurexins suggest that these molecules may
regulate synapse development by multiple, and not necessarily
shared, mechanisms. As novel studies evidence that neuroligins
can regulate glutamatergic synaptogenesis by neurexin indepen-
dent mechanisms (Ko et al., 2009) and, vice versa, that neurexins
induce the formation of glutamatergic synapses by interacting with
postsynaptic molecules other than neuroligins (Uemura et al.,
2010; Matsuda and Yuzaki, 2011), it appears reasonable to re-
evaluate the relevance of neurexin–neuroligin interactions in the
context of inhibitory synapse development. It will also be of pri-
mary interest to understand what is the expression profile of the
different neurexin isoforms in distinct types of excitatory and
inhibitory synapses.

SYNAPTIC CLEFT PROTEINS PROVIDE A FURTHER LEVEL OF
COMPLEXITY
An emerging concept is that proteins localized in the synaptic
cleft may act bi-directionally to coordinate selective interactions
between the pre- and postsynaptic compartments. By itself, this
is not a new idea, as it is well established that at the neuromus-
cular junction secreted proteins, such as agrin and laminin, serve
as synaptic organizers (Kummer et al., 2006; Witzemann, 2006;
Rushton et al., 2009). Recently, a novel class of secreted molecules
that link pre- and postsynaptic specializations has been character-
ized in the cerebellar cortex. Specifically, it has been shown that
Cbln1 acts as a crucial synaptic organizer that is required for the
formation and maintenance of glutamatergic synapses made by
parallel fibers with Purkinje cell spines (Yuzaki, 2010). Cbln1 is
a glycoprotein of the C1q family that is secreted from cerebellar
granule cells. Mice lacking Cbln1 are ataxic and show a surpris-
ing similarity to mice lacking the δ2 glutamate receptor (GluD2),
which is expressed selectively in Purkinje cells. Both these mutants
have a remarkable (∼50%) reduction in the number of parallel
fiber-Purkinje cell synapses, with the remaining synapses showing
a mismatch between PSDs and presynaptic active zones, as well
as impaired LTD (Kashiwabuchi et al., 1995, Kurihara et al., 1997,
Hirai et al., 2005). The similarities in the structural and functional
abnormalities observed in Cbln1-null and GluD2-null mice have
suggested that these two molecules are engaged in a common sig-
naling pathway. Indeed it has been demonstrated that Cbln1 binds
to the N-terminal domain of GluD2 (Matsuda et al., 2010), and
that the Cbln1–GluD2 complex mediates synapse formation by
interacting selectively with neurexins(+S4) (Uemura et al., 2010;
Figure 2).

These new exciting findings show that secreted proteins can
act as divalent ligands linking pre- and postsynaptic transmem-
brane components. Accordingly, the synaptic cleft can be regarded
as the site in which secreted factors and cell adhesion molecules
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mediate trans-synaptic interactions that may contribute to encode
synaptic specificity. For example, the ternary interaction between
neurexin(+S4), Cbln1 and GluD2 may represent a “protein code”
specific for parallel fiber-Purkinje cell synapses (Uemura et al.,
2010). Notably, there is evidence that Cbln1 and the closely related
Cbln2 can interact with neurexins and mediate synapse formation
not only in cerebellum but also in forebrain regions (Matsuda and
Yuzaki, 2011). Co-culture analyses have shown that Cbln1 and
Cbln2 induce preferentially inhibitory presynaptic differentiation
by interacting with neurexin variants containing S4, although the
postsynaptic partners remain unknown (Joo et al., 2011). It is
therefore reasonable to assume that differential interactions of
neurexin variants with neuroligins, Cbln and LRRTMs may be
involved in specifying distinct types of excitatory and inhibitory
synapses. By analogy, we suggest that trans-synaptic interactions
mediated by α-dystroglycan may constitute a molecular code for
a specific subset of GABAergic synapses (Figure 2).

In short, cross-interactions between synaptic cleft proteins and
cell adhesion molecules provide an additional level of complexity

that could be exploited by neurons to functionally specify synapses.
It is now a key task to increase our understanding of the synaptic
extracellular matrix or synaptomatrix (Vautrin, 2010). Ultrastruc-
tural analyses have shown that this material is particularly dense,
even denser than the neuronal cytosol, and is characterized by peri-
odically organized complexes, suggesting a regular arrangement of
cleft proteins (Zuber et al., 2005). Resolving the molecular interac-
tions that occur in the synaptomatrix is likely to provide important
insights into the mechanisms that underlie the formation and
specificity of synapses.

A MOLECULAR CATALOG OF INHIBITORY SYNAPSES
The studies revised above have revealed an unexpected complexity
in the molecules and mechanisms that control the assembly and
specificity of inhibitory synapses during the formation of neural
circuits. An important insight that has emerged from these inves-
tigations is that not all synaptic proteins are expressed equally
at all inhibitory synapses, suggesting that synapse diversity is
produced by unique combinations of synaptic molecules with

FIGURE 2 | Proposed trans-synaptic interactions mediated by

synaptic cleft glycoproteins. At parallel fiber-Purkinje cell synapses
(left), Cbln1 forms a ternary complex with neurexin variants containing
the S4 insert and postsynaptic GluRδ2 receptors (modified from Uemura
et al., 2010). At some GABAergic synapses (right), α-dystroglycan (α-DG)

may establish a link between α-neurexins and the postsynaptic
dystrophin–glycoprotein complex through the transmembrane
β-dystroglycan isoform (β-DG). Glycan side chains of Cbln1 and α-DG
may also mediate multiple interactions with extracellular matrix
molecules.

Frontiers in Cellular Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 4 | 7

www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Sassoè-Pognetto et al. Molecular heterogeneity of GABAergic synapses

partially overlapping localizations and functions. The combina-
torial expression of distinct sets of synaptic molecules may be
regarded as a signature that identifies individual synapses and
could be used to generate a molecular-based system of synapse
categorization (Grant, 2007). A molecular catalog could be used to
identify distinct types of synapses based on the differential expres-
sion of groups of interacting proteins, each contributing to specific
aspects of synapse organization and physiology.

While the tremendous complexity of glutamatergic synapses
poses a formidable challenge toward the accomplishment of a
synapse catalog (Grant, 2007), a molecular characterization of
inhibitory synapses appears to be within reach. A main obsta-
cle is that our current list of synaptic proteins is not yet complete.
Therefore a crucial step will be the identification of all proteins,
including their splice variants and post-translational modifica-
tions. Expression screenings in co-culture systems represent a
useful method for the identification of novel families of synap-
togenic molecules (Paradis et al., 2007; Linhoff et al., 2009). On a
larger scale, existing proteomic methods, such as mass spectrome-
try and protein array tools, can be applied to reveal protein–protein
interactions (Husi et al., 2000; Schweitzer et al., 2003; Yuk et al.,
2004; Collins and Choudhary, 2008). Bioinformatics tools could
also be employed to generate hypothesis of interactions that could
be verified experimentally and to construct interaction maps and
models that could be used to predict the effects of mutations of
single proteins (Armstrong et al., 2006).

Ideally, a categorization of synapses based on molecular mark-
ers should be combined with detailed knowledge of synaptic con-
nectivity in situ, the ultimate goal being a convergence of synaptic
proteomics with connectomics (Lichtman and Sanes, 2008). Con-
sidering the diversity and specificity of synapses, a full appreciation
of their molecular complexity can be achieved only by microscopic
analyses aimed at individual synapses. In this context, immunoflu-
orescence methods are of particular interest because they combine
high sensitivity with adequate resolution, and because they are
suitable for large-scale analyses of protein distribution (Schnei-
der Gasser et al., 2006; Sassoè-Pognetto, 2011). Moreover, labeling
with multiple antibodies allows to determine whether two or more
synaptic proteins colocalize at specific synapses. Recent develop-
ments, such as the advent of super-resolution light microscopy
(Gustafsson, 2005; Hell, 2007; Nägerl et al., 2008), have con-
siderably expanded the analytical power of immunofluorescence
microscopy. In particular, array tomography is a new proteomic
imaging method that exploits a combination of light and elec-
tron microscopic approaches (Micheva and Smith, 2007). This
method consists in immunolabeling and imaging ordered arrays
of ultrathin (50–200 nm), resin-embedded serial sections on glass
microscopic slides, resulting in the acquisition of very large volume
images at high resolution. Moreover, antibodies can be eluted and
the sections restained a number of times thus allowing the detec-
tion of a large number of antigens in the same sample. Because
of its proteomic capabilities and high resolution, array tomog-
raphy represents a useful method for large-scale exploration of
synaptic diversity. This method has been recently used to deter-
mine the composition of glutamatergic and GABAergic synapses
in somatosensory cortex of Line-H-YFP Thy-1 transgenic mice
(Micheva et al., 2010).

The potential of array tomography and other immunohisto-
chemical methods is limited by the availability of antibodies that
can be used to stain brain sections. In many cases the extensive
sequence homology between related protein isoforms precludes
the generation of specific antibodies. These technical difficulties
may be overcome by labeling proteins directly by recombinant
fusion protein technologies. For example, in a recent study pH-
sensitive pHluorin tagging was used to distinguish the membrane
vs. intracellular pools of engineered neurexin 1α and neurexin
1β in cortical organotypic cultures (Fu and Huang, 2010). In this
study, the pHluorin-tagged neurexin isoforms were expressed in
PV-positive interneurons, allowing the visualization of their sub-
axonal localization and dynamics in a specific subset of GABAer-
gic synapses. In another study, PSD-95–GFP was transfected by
in utero electroporation in a specific population of cortical pyra-
midal neurons to monitor in vivo the dynamics of PSD-95 clus-
ters using two-photon microscopy (Gray et al., 2006). While the
expression of a tagged protein in isolated neurons may facilitate
the visualization of its subcellular localization, the molecular cat-
aloguing of synapses would require that the tagged proteins are
expressed in vivo and replicate precisely the distribution patterns
and expression levels of the endogenous proteins. Although the
technology to perform this is potentially available, there have been
no systematic analyses of synaptic protein distribution using this
approach.

A full appreciation of the molecular diversity of synapses may
help to uncover relationships between molecular composition and
functional properties. In this context, the analysis of molecular
organization should be complemented by gain or loss-of-function
studies aimed at individual synaptic proteins in genetic model
organisms. Likewise, a detailed knowledge of synaptic molecu-
lar composition may provide an interpretation key for the results
obtained in knockout mutants, where the effects of the mutation
are often confounded by the co-existence of multiple redundant
molecular pathways (Piechotta et al., 2006). A synapse catalog
could also be used to predict the consequences of mutations in
the context of brain pathology and to identify populations of
synapses that are likely to be affected in a particular disease (Grant,
2007). Finally, it will be of prime interest to consider how synapses
vary over time, in particular by comparing synapse organization
during the period of development and in mature circuits. As the
last two decades have witnessed an impressive advancement in
the identification of the molecular constituents of synapses (Süd-
hof and Malenka, 2008), a big challenge ahead is to define the
spatio-temporal expression profile of the endogenous synaptic
proteins, to understand how this large array of molecules assemble
into functional units, and to link the molecular data sets with a
characterization of the anatomical and physiological diversity of
synapses.
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