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Abstract

The neurotransmitter GABA regulates many aspects of inhibitory synapse development. We tested the hypothesis that
GABAA receptors (GABAARs) work together with the synaptic adhesion molecule neuroligin 2 (NL2) to regulate synapse
formation in different subcellular compartments. We investigated mice (‘‘c2 knockdown mice’’) with an engineered allele of
the GABAAR c2 subunit gene which produced a mosaic expression of synaptic GABAARs in neighboring neurons, causing a
strong imbalance in synaptic inhibition. Deletion of the c2 subunit did not abolish synapse formation or the targeting of
NL2 to distinct types of perisomatic and axo-dendritic contacts. Thus synaptic localization of NL2 does not require synaptic
GABAARs. However, loss of the c2 subunit caused a selective decrease in the number of axo-dendritic synapses on cerebellar
Purkinje cells and cortical pyramidal neurons, whereas perisomatic synapses were not significantly affected. Notably, c2-
positive cells had increased axo-dendritic innervation compared with both c2-negative and wild-type counterparts.
Moreover heterologous synapses on spines, that are found after total deletion of GABAARs from all Purkinje cells, were rare
in cerebella of c2 knockdown mice. These findings reveal a selective role of c2 subunit-containing GABAARs in regulating
synapse development in distinct subcellular compartments, and support the hypothesis that the refinement of axo-
dendritic synapses is regulated by activity-dependent competition between neighboring neurons.
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Introduction

During development neurotransmission regulates synapse for-

mation and guides the selective assembly of circuitry. Activity

mediates competition between converging inputs, through which

more active synapses are stabilized and less active synapses are

eliminated [1–4]. For instance, in the cerebellum, an imbalance in

synaptic activity removes surplus climbing fibers innervating

individual Purkinje cells (PCs) [5–7]. However, central synapses

differ highly in their structural and molecular organization [8],

and it is unknown if synapse competition is a general feature of

CNS development.

In brain circuits, synapse heterogeneity is exemplified by the

numerous types of GABAergic synapses that target distinct

subcellular domains (somatic, dendritic or axonal) of principal

neurons [9–11]. How these selective connections are generated

during brain development and how their number is controlled is

only partially understood [12,13]. GABA signaling itself coordi-

nates inhibitory synapse development and activity-dependent

regulation of synapse density in neuronal compartments [14,15].

In one study, reducing GABA synthesis in neocortical interneurons

resulted in deficits in perisomatic synapse formation around

pyramidal cells [16]. Conversely, loss of GABAA receptors

(GABAARs) from cerebellar PCs in GABAAR a1 knockout mice

affected axo-dendritic synapses made by stellate cells, but not

perisomatic synapses established by basket cells [17]. The

interpretation of this result was complicated, however, because

PCs express transiently a3-GABAARs at a time when perisomatic

synapses form [18]. Nevertheless, these findings imply that

GABAergic activity has a selective effect on inhibitory synapse

formation in separate types of neuron and/or different neuronal

compartments.

To establish the importance of GABAergic signaling for synapse

formation in different neuronal populations, synapse organization

could be examined in genetically modified neurons that have

reduced sensitivity to GABA. Ideally, to study synapse develop-

ment in vivo neurotransmission should be silenced in only a subset

of neurons, in order to directly compare the effects on synapse

formation with neighbouring neurons that show intact GABA

signaling. Moreover, mutations should not compromise animal

survival during the postnatal period of intense synaptogenesis. For
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example, mice with total knockout of the GABAAR c2 subunit

gene die in the first postnatal week [19], making it impossible to

study how GABAARs influence later brain development. Here, we

describe a new mouse line, GABAAR c2 knockdown (c2 KD), that

has a strongly reduced expression of the c2 gene throughout the

brain during development. Despite this, c2 KD mice survive until

their third postnatal week, thus covering postnatal synaptogenesis.

Remarkably, brains of c2 KD mice have a mosaic expression of

the c2 subunit gene, resulting in a strong imbalance of GABAergic

activity in neighbouring neurons. Thus this mouse line allowed us

to study the role of GABA in postnatal brain development and

synaptogenesis.

Materials and Methods

Generation of c2 KD mice
The targeting vector was designed such that, by gene targeting

in embryonic stem cells, the native GABAAR c2 subunit gene

(gabrg2, gene reference number ENSMUSG00000020436; www.

ensembl.org/Mus_musculus/geneview) had an insertion of a

modified c2 cDNA, flanked by loxP sites, in exon1 (Fig. 1A).

The genomic DNA containing the mouse c2 subunit gene was

obtained on a Bacterial Artificial Chromosome (BAC) by

screening a mouse 129 BAC library (BAC Mouse ES release I,

BAC4921, Genome Systems Inc, USA). As the basis for the

targeting vector, an approximately 9 kb SpeI/SalI fragment

containing exon 1 was subcloned into the BamHI site of

pBluescript (Stratagene). Into this 9 Kb fragment, a SalI site was

placed by in vitro mutagenesis into the 59UTR region of exon 1,

177 bp 59 (upstream) of the start-of-translation-ATG codon [20].

Into this SalI site, we placed a cassette containing an HA-epitope

tagged c2 I77 subunit cDNA and SV40 polyadenylation sequence,

followed by an frt-flanked neomycin resistance gene (Fig. 1A) [21].

The entire c2-neomycin cassette was flanked by loxP sites (Fig. 1A).

The targeting vector was linearized with Not I, and electroporated

into mouse R1 embryonic stem cells (strain 129/Sv). About 800

G418-resistant (Geneticin) ES cell colonies were screened for

homologous targeting by Southern blot analysis. Three ES cell

colonies had a homologous targeting event. One clone was

expanded and the frt-flanked neomycin resistance cassette was

removed through transient expression (electroporation) of en-

hanced FLP (eFLP) recombinase. After confirmation of removal of

the neomycin resistance gene (by hybridizing genome DNA of Flp-

transfected colonies with a neomycin probe and looking for

negative lanes), the targeted ES cells were microinjected into

C57BL/6 blastocysts to generate chimeras (by Dr. Frank

Zimmermann, University of Heidelberg, Germany). After gener-

ation of F1 mice, the genotyping was done by PCR across the

59loxP site.

The mice used in the present study were generated from

heterozygous breeding pairs at our respective institutions. The

animals were genotyped by PCR analyses (Fig. 1C) of genomic

DNA tail biopsies using the primer pairs:

Pr1 59-CTG CTT CTC TCA TTT GCC TTC CTG TGT

ACA TCT CTG-39

Pr2 59-GCT GAT GAT TTG ATG CCG GCT CCC CCC

ACC TGC CTC-39

All procedures for generation and maintenance of mouse lines

were done in accordance with the United Kingdom Animals

(Scientific Procedures) Act 1986 (Home Office Licence number

PPL 60/3562), had ethical approval from the Tierschutz

Commission of the Regierungspraesidium Karlsruhe, Germany

(project title ‘‘veraenderte Ionenkanaele im Gehirn’’, granted

30.09.2002), and were approved by the Italian Ministry of Health

and by the Bioethic Committee of Turin University in accordance

with national (Legislative Decree 116/92 and law n. 413/1993)

and international (Directive 86/609/EEC and the recommenda-

tion 2007/526/EC from European community) laws and policies.

In Situ Hybridization
In situ hybridization to mouse brain sections with [35S]-labeled

oligonucleotide probes was performed as described [22]. Non-

perfused brains were removed and frozen on dry ice. Sections

(14 mm) were cut on a cryostat, mounted onto poly-L-lysine-coated

slides, and dried at room temperature. Sections were fixed in 4%

formaldehyde, washed in phosphate-buffered saline (PBS), and

dehydrated into 95% ethanol for storage at 4uC. Before

hybridization, sections were removed from ethanol and allowed

to air dry. Probes (0.3 pmol/ml) were 39 end labelled using

terminal deoxynucleotidyl transferase (Roche Diagnostics, Ger-

many) and a 100:3 molar ratio of a35SdATP (250 mCi/ml; Perkin

Elmer, UK) to oligonucleotide. Labelled probe, dissolved in

hybridization buffer, was applied to sections. Hybridization buffer

contained 50% formamide/46 SSC/10% dextran sulphate (16
SSC: 0.15 M NaCl, 0.015 M Na-citrate). Hybridization was at

42uC overnight. Sections were washed with 16 SSC at room

temperature for 5 min, 16SSC at 65uC for 40 min, 0.16SSC for

1 min at room temperature, 70% ethanol for 1 min at room

temperature before 95% ethanol dehydration. Images were

generated from four to six-week exposures to Kodak Biomax

MR X-ray film (Eastman Kodak, Rochester, NY). To assess non-

specific labeling of the sections, each labeled oligonucleotide was

hybridized to brain sections with a 100-fold excess of unlabeled

oligonucleotide. Oligonucleotide sequences were:

GABAA–a1: 59-GAGGGTCCAGGCCCAAAGATAGTCA-

GAGAGAC CCCGACTTTTCTT-39

GABAA–b2: 59-GGGAAATGACCAAATCCCAAAGTAGC

CCCTTTTC CGGACTCTCCA-39

GABAA–c1: 59-ATGCAAGGTTCCGTATTCCATGAGTG

CTGCAAA CACAAAAATGAA-39

GABAA–c2: 59-AGGAGAGTAGACTGAGCTTCCAATG

CTCCATGTA TTTGGCGAACT-39

GABAA–c3: 59-AGAGGGTGCTTGAAGGCTTATTCGAT-

CAGGAA TCCATCTTGTTGA-39

GABAA–d: 59-AGCAGCTGAGAGGGAGAAAAGGACGAT

GGCGTT CCTCACATCCAT-39

Antibody characterization
The primary antibodies used in the present study are listed in

Table 1. Polyclonal antibodies against the a1 and c2 subunits of

GABAARs reveal on Western blots single bands of 50 and 43–

48 kDa. This labelling is abolished by competition with the

respective antigens [23,24]. Labelling specificity has also been

verified in brain sections of knockout mice lacking the corre-

sponding GABAAR subunit [19,25].

The rabbit anti-NL2 antiserum recognizes a single band of

105 kDa in Western blots of rat and mouse brain homogenates

[26]. Immunolabelling is abolished by preabsorption with the

peptide antigen, and no bands are visible in Western blots of NL2

knockout mouse brain homogenates. Moreover, the antiserum

does not cross-react with NL1 or NL3 in transfected cells.

The monoclonal antibody against a-dystroglycan (a-DG; clone

VIA4-1) recognizes a single band of approximately 156 kDa in

Western blots of skeletal muscle lysate [27]. In neurons,

mAbVIA4-1 gives a punctate labelling that colocalizes with

GABAARs at postsynaptic specializations and is abolished by

genetic deletion of dystroglycan (ref. [28] and unpublished

observations).

Synaptogenesis in GABAAR Knockdown Mice
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Antibodies against carbonic anhydrase 8 (Car8), a selective

marker of Purkinje cells, recognize a single band of 35 kDa in

mouse cerebellar homogenates [18]. When applied to immuno-

fluorescence on parasagittal brain sections, the antibodies strongly

label Purkinje cells, and the immunoreactivity is abolished by

preabsorption with the immunogen.

Mouse monoclonal anti-calbindin reacts specifically with

calbindin (28 kDa) in immunoblots of brain homogenates of

different species, and does not cross-react with calretinin or other

known calcium-binding proteins [29]. No labelling is visible in

brain sections obtained from calbindin D-28k knockout mice [30].

The rabbit anti-calretinin antiserum has been previously charac-

terized by Western blotting of sturgeon brain extracts [31], in

which the antiserum recognized a single protein band of the

appropriate molecular weight. Mouse monoclonal anti-parvalbu-

min stains the 45Ca-binding spot of parvalbumin (12 kD and IEF

4.9) in a two-dimensional immunoblot [32]. This antibody has also

been characterized extensively by immunohistochemistry [29,33].

The monoclonal GAD-6 antibody has been characterized via

Western blot of rat brain homogenates and found to recognize

selectively GAD65 but not GAD67 [34]. Epitope deletion studies

have demonstrated that the GAD-6 antibody recognizes an

epitope located between amino acids 475 and 571 of the C-

terminus of GAD65 [35,36].

The polyclonal guinea pig anti-mGluR1a antibody recognizes a

single band of 145 kDa in Western blots of cerebellar homoge-

nates [37]. Specificity of the immunolabeling has also been verified

on samples from mGluR1a null mice [38].

Figure 1. Generation of the c2F77/I77 gene switch mouse version (c2 knockdown mouse). A, Targeting strategy. A full length c2 cDNA
was placed into the 59UTR of exon 1 of the GABAAR c2 subunit gene. The c2 cDNA encodes the I77 version of the c2 subunit. The 59loxP contains a
BglII restriction site. For the initial targeting a frt-flanked neomycin resistance gene (neo) was placed after the c2 cDNA. The neo cassette contains a
second loxP site at the end, the 39loxP site. The 59frt site contains another BglII site. Black bars indicate the positions of Probe A and B. Arrows are PCR
primer positions. Black triangle, loxP sites; black diamonds, frt sites; B, BglII site; S, SalI site; Sp, SpeI site; TGA, STOP codon; UTR, untranslated region;
HA, hemagglutinin epitope; polyA, polyadenylation signal. B, Southern blot analysis of BglII digested tail biopsies hybridized with probe A. Lane 1, 4,
8 and 9 are samples from WT mice. Lane 2, 3 and 5–7 show samples from heterozygous targeted mice. The 5.1 kb band represents the 59 BglII
fragment. C, PCR analysis of mouse tail DNA. Lane 1 shows a WT genotype, lane 2 a heterozygous and lane 3 a homozygous (for the mutation)
genotype. The PCR amplification is across the 59loxP site.
doi:10.1371/journal.pone.0056311.g001
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The mouse monoclonal antibody SMI 311 was kindly provided

by Dr. Rita Garbelli (Besta Neurological Institute, Milan). This

antibody recognizes the 50 and 200 kDa components of non-

phosphorylated neurofilaments [39], and has been previously used

to label cortical neurons and their dendritic profiles [40,41].

Immunofluorescence
For detection of postsynaptic molecules (NL2, GABAARs, a-

DG), postnatal mice (P7–P20) were anesthetized with i.p.

ketamine-xylazine 1:1 (0.1 ml/kg) and decapitated. The brains

were excised and cut manually in either sagittal (cerebellum) or

coronal (cerebral hemispheres) slabs, that were fixed by immersion

in ice-cold formaldehyde (4% in 0.1 M phosphate buffer, PB,

pH 7.4) for 20–30 min. Alternatively, mice were perfused with 4%

formaldehyde in PB, and their brains were postfixed for 3 hours.

Tissue slabs were cryoprotected in sucrose, sectioned with a

cryostat, and the sections were collected on gelatin-coated slides.

Following a blocking step in normal goat or donkey serum (3% in

PBS with 0.5% Triton X-100), the sections were incubated

overnight with combinations of two or three primary antibodies.

The sections were then washed and incubated with the

appropriate secondary antibodies, raised either in goat or in

donkey, conjugated to one of the following fluorophores: Alexa

488 (Molecular Probes, Eugene, OR), Alexa 568, or the cyanine-

derived Cy3 and Cy5 (Jackson Immunoresearch, West Grove,

PA). The sections were rinsed again and coverslipped with Dako

fluorescence mounting medium (Dako Italia, Italy).

Confocal microscopy and data analysis
The sections were analyzed with a laser scanning confocal

microscope (Zeiss LSM5 Pascal) using the multichannel acquisi-

tion mode to avoid fluorescence crosstalk. Quantitative analyses

were performed on a minimum of three mice per group. Synaptic

structures were analyzed on images acquired with a 6100 oil-

immersion objective (1.4 numerical aperture) at a magnification of

8.161023 mm2/pixel, and the pinhole set at 1 Airy unit. The

images were processed with the image-analysis program Imaris

(release 4.2; Bitplane, Zurich, Switzerland). After segmentation,

synapse density was quantified with NIH Image J software (http://

rsb.info.nih.gov/nih-image) as described in detail previously [42].

The number of perisomatic and axo-dendritic synapses was

determined by counting manually synaptic clusters at the surface

of PCs labeled for carbonic anhydrase 8 (Car8) or pyramidal

neurons labeled with a monoclonal antibody against the pan-

neuronal neurofilament marker SMI 311. Pyramidal neurons were

identified by their typical morphology (triangular shaped cell body,

apical dendrite and multiple basal dendrites). Heterologous

contacts between GABAergic axon terminals and PC dendritic

spines were quantified in confocal images after immunofluores-

cence labeling with selective markers [18]. Data are expressed as

the number of contacts per surface of GABAergic boutons.

Confocal imaging of the cerebellum of GABAAR a1 knockout

mice was performed in sections used for our previous study [18].

Electrophysiology
Cerebellar PCs were recorded in acute cerebellar slices obtained

from postnatal mice (P15–P18) prepared as previously described

[43]. Whole-cell voltage-clamp recordings were performed at

room temperature using the Multiclamp 700B/Digidata1440A

system (Molecular Devices, Sunnyvale CA, USA) at pipette

holding voltage of 270 mV. PCs were visually identified using

an upright Olympus BX51WI microscope (Olympus, Japan)

equipped with Nomarski optics. Patch pipettes, pulled from

borosilicate glass capillaries (Hilgenberg, Malsfeld, Germany),

showed 4 to 5 MV resistance when filled with high-chloride

intracellular recording solution containing (in mM): 126 KCl, 4

NaCl, 1 MgSO4, 0.02 CaCl2, 0.1 BAPTA, 15 Glucose, 5 HEPES,

3 ATP and 0.1 GTP (pH 7.3 with KOH and osmolarity

290 mosmol l21). Slices were continuously perfused with an

extracellular solution containing (in mM): 125 NaCl, 25 NaHCO3,

25 glucose, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2
(pH 7.4 when bubbled with 95% O2-5% CO2). Kynurenic Acid

(1 mM) was added to the extracellular solution to prevent

glutamatergic events. Currents were sampled at 50 kHz, filtered

at 3 kHz and stored in a computer hard drive. GABAergic IPSCs

were analysed using the Clampfit 10.0 detection module

Table 1. Primary Antibodies Used.

Antibody Immunogen Source, ID Number and Species Dilution

GABAARa1 Rat N-terminal peptide, aa. 1–16 H. Mohler and J.-M. Fritschy (University of Zürich, Switzerland).
Rabbit polyclonal

1:5000

GABAARc2 Rat N-terminal peptide, aa. 1–29 H. Mohler and J.-M. Fritschy (University of Zürich, Switzerland).
Guinea pig polyclonal

1:2000

a-Dystroglycan clone VIA4-1 Rabbit skeletal muscle membrane preparation Upstate-Millipore (cat. No. Q14118). Mouse monoclonal 1:100

Neuroligin2 Rat C-terminal peptide, aa. 750–767 F. Varoqueaux (Max Planck Institute of Experimental Medicine,
Göttingen, Germany). Rabbit polyclonal

1:2000

Car8 Mouse peptide, aa. 33–61 M. Watanabe (Hokkaido University, Sapporo, Japan). Guinea pig
polyclonal

1:500

mGluR1a Rat peptide, aa. 945–1127 M. Watanabe (Hokkaido University, Sapporo, Japan). Guinea pig
polyclonal

1:500

GAD-6 Affinity-purified GAD from rat brain Developmental Studies Hybridoma Bank, University of Iowa.
Mouse monoclonal

1:1000

Pan Neurofilament Marker
(SMI 311)

Homogenates of saline-perfused rat
hypothalamus

Covance (cat. No. SMI-311R). Mouse monoclonal 1:1000

Calbindin D28k Purified calbindin D28k from chicken gut Swant (cat. No. 300). Mouse monoclonal 1:10000

Calretinin Recombinant human calretinin Swant (cat. No. 7699/3H). Rabbit polyclonal 1:2000

Parvalbumin Purified parvalbumin from carp muscles Swant (cat. No. 235). Mouse monoclonal 1:10000

doi:10.1371/journal.pone.0056311.t001
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(Molecular Devices, Sunnyvale CA, USA) that exploits a sliding

template-based algorithm. The threshold for detection was set at 5

times the standard deviation of the baseline noise. For each

recording, averaged traces are obtained from at least 50 synaptic

events.

The rise time of GABA-elicited currents was estimated as the

time needed for a 10 to 90% increase of the peak current response.

The decaying phase of currents was fitted with exponential

function in the form:

y(t)~
Xn

i~1

Ai exp({t=ti)

where Ai are the fractions of the respective components.

In the case of analysis of normalized currents, SAi = 1.

Deactivation time course was fitted with a sum of two exponentials

(n = 2) for wild-type (WT) and WT-like cells, and with a

monoexponential function (n = 1) for KD cells. Data are expressed

as mean 6 SEM, and unpaired Student’s t-test was used for data

comparison.

Results

Manipulation of the gabrg2 gene produces a strong
knockdown of its expression

The c2 KD mouse line arose accidently. We had intended to

generate a mouse line with a conditional gabrg2 allele, provisionally

termed ‘‘c2 switch’’, that would serve as an elaboration of our

method of making subsets of neurons selectively sensitive to

zolpidem [44]. By homologous recombination in mouse embry-

onic stem cells, a c2 cDNA encoding the zolpidem-insensitive

c2I77 version was placed into the 59UTR of the native c2F77 gene

followed by a polyadenylation signal (Fig. 1A). In the resulting

mice, the endogenous c2 promoter and regulatory regions were

expected to drive the expression of the inserted c2I77 reading

frame in the pattern of the native gene, causing all neurons to be

insensitive to zolpidem and b-carbolines [21,44]. The c2I77

cDNA was also flanked with loxP sites to allow its removal by Cre

recombinase in selected neuronal types, so restoring expression of

the original c2 gene encoding zolpidem-sensitivity. A problem

became apparent, however, when we produced homozygous mice

for the modified c2 allele. Mice homozygous for the c2 subunit

switch allele (c2 KD mice) were normal at birth, but soon

developed several abnormalities, including reduced growth

(Fig. 2A,B), hunched posture, hyperactivity, impaired grasping

and righting reflex, and died around P20. Mutant mice were not

obtained at the expected Mendelian frequency, and the breeding

of c2 KD mice was extremely time consuming due to drastically

reduced reproduction rates.

We evaluated the expression of the c2 subunit using in situ

hybridization on brain sections obtained from postnatal c2 KD

mice, heterozygous and WT littermates. Normally, the c2 subunit

gene is transcribed from before embryonic stage 14, and has a

sustained strong expression throughout embryonic and postnatal

development in most regions of the CNS [45]. c2 KD mice had a

dramatically reduced level of c2 transcripts during brain

development (Fig. 2C). However, there were no changes in the

expression of the c1 and c3 subunit genes, suggesting that the c2

KD phenotype is not compensated by increased expression of

either the GABAAR c1 or GABAAR c3 subunits (Fig. 2D).

Similarly, there were no changes in mRNA hybridization signals

for other major GABAAR subunits, such as a1, b2 and d (Fig. 2E).

As the c2 subunit is required for the postsynaptic accumulation of

GABAARs [46–50], the severe phenotype and reduced life span of

c2 KD mice are likely due to a strong decrease of synaptic

GABAergic transmission (see below). We did not examine why the

cDNA insertion disrupted c2 gene expression; other than the

original report mapping the c2 gene’s transcriptional start sites

and proximal promoter [20], nothing more has become known

about how this gene is regulated. Nevertheless, although we could

not use the mice for their intended purpose of allowing Cre-

inducible zolpidem sensitivity in particular brain regions [44], the

line did offer an excellent opportunity to study the role of GABA

in postnatal brain development and synaptogenesis.

Normal brain assembly in c2 KD mice
The brains of c2 KD mice seemed correctly assembled. Nissl

staining revealed that the brains of mutant and control littermates

were morphologically similar, although c2 KD brains were slightly

smaller, consistent with the reduced size of mutant mice (Fig. 3A).

In particular, cortical layering appeared normal in c2 KD mice, as

also supported by normal expression of neocortical lamination

markers seen by in situ hybridization (not shown). In addition, no

sign of heterotopia or neuronal cysts were visible in the cerebral

and cerebellar cortices. Using antibodies against nonoverlapping

subtypes of GABAergic interneurons, we found a general trend

towards increased densities of interneurons in the hippocampus

and sensorimotor cortex of c2 KD mice, which however reached

significance only for the subgroup of parvalbumin-positive neurons

(Fig. 3B). In the cerebellar cortex, double labeling for parvalbumin

and calbindin revealed a normal density of PCs and molecular

layer interneurons (Fig. 3B). These data indicate that reduced

signaling through c2-containing GABAARs has no major effects

on neuronal differentiation and interneuron survival. The

increased density of parvalbumin-positive interneurons in cortical

areas may be a compensatory mechanism to counteract the strong

decrease of GABAergic inhibition.

Mosaic expression of the c2 subunit in neurons of c2 KD
mice

We used immunofluorescence to investigate the distribution of

the c2 subunit in brains of c2 KD mice. Labeling for the c2

subunit was punctate, suggesting synaptic localization (Fig. 4A–F).

However, in all regions analyzed there was a noticeable reduction

in the density of c2-positive puncta as compared with the WT

situation (Fig. 4G). Remarkably, the c2 subunit appeared to have a

mosaic expression, resulting in the presence of c2-positive and c2-

negative neurons co-existing in the same areas. This was

particularly evident in the cerebellar cortex, where more than

60% of PCs were c2-negative, as determined by the absence of

immunolabeled puncta outlining the cell body (Fig. 4F). Notably,

the percentage of c2-negative PCs was constant from P7 (64%,

n = 67 cells), when perisomatic synapses are initially assembled, to

P20 (63%, n = 127 cells), suggesting that the majority of PCs do not

express the c2 subunit during the entire period of postnatal

development. Moreover, the reduced expression of the c2 subunit

was paralleled by a similar decrease of puncta immunolabeled for

the a1 subunit (Fig. 5C), indicating that loss of the c2 subunit

caused a disruption of postsynaptic GABAARs.

Patch-clamp recordings were performed on PCs to ascertain

how downregulation of the c2 subunit affects GABAergic synaptic

transmission. We recorded spontaneous inhibitory postsynaptic

currents (sIPSCs) from cerebellar acute slices of c2 KD and WT

mice aged P15–P18. The majority of PCs exhibited a markedly

reduced synaptic activity as compared with WT cells (Fig. 4H).

Indeed, we observed a strong reduction in sIPSC amplitude from

136.3630.3 pA (n = 11) in WT mice to 10.961.2 pA (n = 17) in

Synaptogenesis in GABAAR Knockdown Mice
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KD cells (Fig. 4I). Similarly, a strong reduction in the frequency of

sIPSCs was observed in KD neurons (WT: 5.2561.00 Hz; KD:

0.1560.04 Hz; Fig. 4J). An additional analysis aimed at studying

the kinetic properties of synaptic currents upon knock down of the

c2 subunit revealed that sIPSCs recorded from KD cells exhibited

slower deactivation and onset (Fig. 4K). The tmean of current

deactivation increased from 8.260.9 ms in WT cells to

17.861.0 ms in KD cells (Fig. 4L) and, similarly, the 10–90%

sIPSC rise time increased from 0.7360.06 ms in WT to

3.3060.41 ms in KD cells (Fig. 4M). Notably, two PCs recorded

from c2 KD slices had sIPSC properties (amplitude:

56.5613.4 pA; frequency: 3.160.17 Hz; tmean: 8.90260.41 ms)

that approached those of WT, suggesting that they contained c2-

positive clusters (Fig. 4N). Therefore, loss of the c2 subunit causes

a dramatic decrease of inhibitory postsynaptic currents in PCs,

and the few remaining currents have considerably slower kinetics

compared with the WT situation.

Synaptic competition determines axo-dendritic
innervation patterns in cerebellar PCs

The data so far indicate that mosaic expression of the c2 subunit

causes a strong imbalance in GABAergic activity in neighboring

neurons. This situation is ideal for studying the importance of

GABAergic signaling for synapse development. We have shown

previously that deletion of the GABAAR a1 subunit does not affect

the postsynaptic localization of NL2 and a-DG in PCs [18].

Similarly, we found that NL2 and a-DG clustered at postsynaptic

sites facing GAD65-positive boutons in PCs lacking the c2 subunit

(Fig. 5A–C). We estimated the density of NL2 and GAD65-

positive structures in the molecular layer of c2 KD mice.

Compared to WT, NL2 puncta and GAD65 terminals were

decreased respectively by 34% (mean 6 SEM puncta/1000 mm2:

79.962.9 in WT; 52.764 in KD; p = 0.0012; unpaired t-test; n = 3

mice per group) and 36% (mean 6 SEM puncta/1000 mm2:

68.561.6 in WT; 4461.4 in KD; p = 0.0001; unpaired t-test; n = 3

mice per group), indicating that knockdown of the c2 subunit

results in a similar decrease of the density of pre- and postsynaptic

structures. We then used antibodies against NL2 and/or a-DG to

compare synapse organization in neighboring PCs that were either

c2-positive or c2-negative. The results were compared with the

situation in WT littermates. The density of perisomatic synapses

was similar in c2-positive, c2-negative and WT PCs (Fig. 5D),

substantiating the idea that the development of perisomatic

synapses in PCs does not depend on GABAergic activity levels

[17]. We then analyzed axo-dendritic synapses, using antibodies

against Car8 to label selectively PC dendrites (Fig. 5C). Given that

the development of axo-dendritic synapses is influenced by

GABAergic signaling [17,18], our prediction was that the strong

imbalance in the expression of the c2 subunit would cause a

reduction of GABAergic innervation in c2-negative PCs, as well as

Figure 2. Phenotype of c2 KD mice and reduced expression of the c2 subunit gene. A, Reduced growth of a P18 c2 KD mouse (left)
compared to a WT littermate. Note also the atypical posture of the mutant mouse. B, Bodyweight table of WT, heterozygous (HZ) and homozygous
(KD) c2 KD mice (***, p,0.0001; *, p = 0.0198; unpaired t-test; n = 3 mice per group). C–E, In situ hybridization on horizontal brain sections from WT
and c2 KD mice. Note the very low expression levels of the c2 subunit in developing brains homozygous for the c2 I77 cDNA insertion into the
gabrag2 gene (C), whereas no obvious change is visible in the expression of the other c isoforms (D) and of other GABAAR subunits (E). The sections
in D,E are from P15 mice. Scale bar: 2 mm.
doi:10.1371/journal.pone.0056311.g002
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increased connectivity in c2-positive PCs. Indeed, the density of

DG-positive synapses was markedly reduced in c2-negative

dendrites. Conversely, synapse density was significantly higher in

c2-positive dendrites compared with both c2-negative and WT

PCs (Fig. 5E). These data suggest that the number of axo-dendritic

synapses that are established during development is strongly

influenced by the level of GABAergic activity in the postsynaptic

neurons.

Mosaic expression of the c2 subunit prevents the
formation of heterologous synapses in c2 KD cerebella

Mouse models that lack GABAergic transmission in all PCs

(global a1 knockout mice [17,18]; PC-Da1 mice [51]; PC-Dc2

mice [49]) are characterized by reduced axo-dendritic innervation

and the presence of heterologous synapses in which several PC

spines are contacted by an unusually large GABAergic terminal.

To see if in c2 KD mice GABAergic axons are similarly attracted

by improper postsynaptic targets, we performed double labeling

for GAD65 to identify GABAergic terminals and mGluR1a to

label PC spines (Fig. 6A; see also ref. [18]), and made a direct

comparison with global a1 knockouts. In c2 KD mice GABAergic

boutons were significantly smaller than in global a1 knockouts,

being close in size to those of WT animals (Fig. 6B). Moreover, in

both c2 KD and WT littermates GABAergic terminals were rarely

found in close apposition with spines, whereas in a1 knockouts the

number of heterologous contacts was significantly higher (Fig. 6C).

These data suggest that heterologous synapses are an aberrant

phenotype that occurs in situations in which all PCs are rendered

silent to GABAergic transmission.

Target zone-specific differences in GABAergic synapse
development are not restricted to the cerebellar cortex

The results obtained in PCs indicate that competition mediated

by synaptic GABAARs sculpts the development of axo-dendritic,

but not perisomatic inhibitory synapses. To understand whether

this is a general principle in GABAergic synapse development, we

extended our analysis to other neuronal circuits. We initially asked

whether the absence of the c2 subunit affects postsynaptic

clustering of NL2 in different types of neuron and different types

of GABAergic synapse. We frequently observed NL2-positive, c2-

negative clusters in the hippocampus and neocortex (Fig. 7A), as

well as in several other brain regions (not shown). These punctate

structures were present in the neuropil and also around cell bodies.

Triple labeling for the c2 subunit, NL2 and GAD65 revealed that

NL2 clustered at presumed GABAergic synapses lacking postsyn-

aptic GABAARs (Fig. 8A). These data extend our previous

observations in PCs [18] and indicate that GABAARs are not

required for postsynaptic accumulation of NL2 at perisomatic and

axo-dendritic GABAergic synapses. Interestingly, c2 KD mice had

a lower density of NL2-positive clusters in synaptic layers in both

CA1 (stratum radiatum) and sensorimotor cortex (layer V; Fig. 7B).

This is reminiscent of the situation in the cerebellum (see above),

and suggests that silencing of synaptic GABAergic transmission

decreases the number of GABAergic synapses in dendritic

domains (see below).

We then analyzed the organization of perisomatic and axo-

dendritic synapses in pyramidal neurons of sensorimotor cortex

layer V. This region was selected because c2-positive and c2-

negative pyramidal cells were clearly discernible using antibodies

against the c2 subunit and NL2 (Fig. 8A). We found no significant

differences in the density of NL2 clusters outlining the profile of

c2-positive, c2-negative and WT pyramidal cells, suggesting that

perisomatic innervation of cortical neurons is not regulated by

synaptic GABAARs (Fig. 8B). We then quantified synapse density

along the dendrites of pyramidal neurons labeled with an antibody

against SMI 311 (Fig. 8C). In c2-negative dendrites there was a

significant decrease in the density of NL2-positive clusters

compared with both c2-positive and WT dendrites (Fig. 8D).

Dendrites that were positive for the c2 subunit had a slightly

elevated density of GABAergic contacts compared with the WT

situation, however this difference was not significant (Fig. 8D). It

should be noted, however, that labeling for SMI 311 did not fill the

Figure 3. Normal brain architecture in c2 KD mice. A, Nissl
staining reveals a similar morphology in the brain of a c2 KD mouse and
a WT littermate. B, Quantitative analysis based on immunofluorescence
labeling using antibodies against calcium binding proteins. The density
of parvalbumin (PV)-positive cells in the hippocampal CA1 and
sensorimotor cortex of c2 KD mice was significantly increased with
respect to WT (***, p,0.0001; *, p = 0.0352; unpaired t-test; n = 4 mice
per group). The density of MLIs and PCs in the cerebellum was
unaltered (MLIs, p = 0.6653; PCs, p = 0.3224; unpaired t-test; n = 5 mice
per group). CB, calbindin; CR, calretinin.
doi:10.1371/journal.pone.0056311.g003
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entire dendritic arborization of pyramidal neurons, therefore our

analysis was restricted to the more proximal dendritic domains,

where synapse number appears to be less influenced by activity

levels [18]. These data indicate that in neocortical neurons, like in

PCs, perisomatic and axo-dendritic synapses have different

dependencies on GABAergic transmission.

Discussion

To investigate the importance of GABAergic signaling in

synapse development, we have taken advantage of an engineered

gabrg2 mouse allele that strongly reduced the expression of synaptic

GABAARs. The c2 subunit is essential for postsynaptic aggrega-

tion of GABAARs [46], and its deletion dramatically affects

inhibitory postsynaptic currents (refs. [44,47–49] and Fig. 4H–J).

Global ablation of the c2 subunit in mice causes perinatal lethality

[19,46], thus preventing in vivo analyses of synapse differentiation.

In contrast, the c2 KD mice reported here survive until their third

postnatal week, when synaptogenesis has reached an advanced

stage in most brain regions, making these mice useful to study

Figure 4. Mosaic expression of the c2 subunit in the brain of c2 KD mice. A–F, Representative images of sensorimotor cortex, hippocampal
CA1 and cerebellum showing immunofluorescence labeling for the c2 subunit. Note the reduced punctate labeling in c2 KD brains as compared with
WT. In c2 KD cerebellum the co-existence of c2-positive and c2-negative PCs (asterisks) results in an uneven distribution of synaptic clusters in the
molecular layer (ML). G, Quantification of c2-positive puncta in brain regions of c2 KD mice and WT littermates (***, p,0.001; unpaired t-test; n = 3
mice per group). OB, olfactory bulb (external plexiform layer); CX, sensorimotor cortex (layer V); CA1, CA1 (stratum radiatum); CB, cerebellum
(molecular layer). H, Example traces of sIPSCs recorded from PCs in WT and c2 KD mice. I, Quantitative analysis showing dramatically reduced
amplitude of sIPSCs recorded from c2 KD PCs (n = 17 cells) compared with WT (n = 11 cells; **, p = 0.0066; unpaired t-test). J, Reduced frequency of
sIPSCs recorded from c2 KD PCs (n = 17 cells) compared with WT (n = 11 cells; ***, p,0.0001; unpaired t-test) K, Normalized and superimposed
representative traces of sIPSCs recorded from WT (gray) and KD cells (black). L, Quantification of current deactivation (tmean) in WT (n = 11) and KD
cells (n = 17). M, Current onset kinetics (10–90% rise time) of sIPSCs from WT and c2 KD neurons. N, Distributions of deactivation (tmean) and
amplitude of sIPSCs recorded from PCs in WT and c2 KD slices. Each data point represents the tmean and amplitude values of individual recordings.
Arrows indicate the values of two PCs recorded from c2 KD slices showing WT-like current properties. Data represent mean 6 SEM (***, p,0.001;
unpaired t-test). Scale bar: 25 mm.
doi:10.1371/journal.pone.0056311.g004

Synaptogenesis in GABAAR Knockdown Mice

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e56311



GABA’s developmental role during the peak period of synapto-

genesis.

Knockdown of the c2 subunit strongly downregulates
GABAergic synaptic currents

The strongly reduced GABAergic synaptic activity observed in

c2 KD mice is consistent with previous studies in which the c2

subunit was deleted in neurons by Cre-mediated recombination

[44,48,49]. In both cases, the residual sIPSCs had small peak

amplitudes and slow decay time constants. This effect is most likely

due to spillover of synaptically released GABA onto low-

conductance a/b GABAARs [52]. Given the key role of the c2

subunit for the synaptic localization of GABAARs [46,53], it can

be speculated that in c2 KD cells the activation of a/b-containing

receptors dispersed in the perisynaptic and extrasynaptic mem-

brane would be delayed by the time needed for GABA to diffuse

outside the synaptic cleft. As a consequence, the macroscopic

sIPSC onset and decay kinetics would be delayed. It cannot be

excluded that loss of the c2 subunit also affects the gating

properties of GABAARs [54], with a direct impact on synaptic

current kinetics.

A few PCs in c2 KD slices had synaptic currents similar to those

of WT, as predicted by the co-existence of c2-positive and c2-

negative cells revealed by immunofluorescence (Fig. 4N). These

cells had somewhat lower amplitudes and frequencies compared to

the average WT values, suggesting that even c2-positive PCs may

Figure 5. Postsynaptic GABAARs determine axo-dendritic but
not perisomatic innervations patterns in cerebellar PCs. A,
Perisomatic synapses in PCs of a c2 KD mouse. a-DG (green) co-localizes
precisely with the c2 subunit (red) in a c2-positive PC (c2+) and also
outlines the profile of a c2-negative PC (c22). B, Upper panel: NL2 (red)
co-localizes precisely with the c2 subunit (blue) in a c2-positive PC (c2+)
and also outlines the profile of two c2-negative PCs (c22). Lower panel:
triple labeling shows that NL2 clusters opposite GAD65-positive
boutons (green) in both c2-positive and c2-negative PCs (arrows). C,
Confocal images of PC dendritic profiles after triple labeling for GABAAR
a1 (blue), a-DG (green) and Car8 (red). DG co-localizes with GABAAR
clusters in PCs of WT mice as well as in c2-positive PCs of c2 KD mice
(the superposition of the three fluorescent channels results in white
clusters). The lower panel shows a c2-negative dendritic profile, where
a-DG clusters are not associated with GABAARs (triangles). D, The
density of perisomatic synapses is similar in c2-positive, c2-negative
and WT PCs (c2+ vs c22, p = 0.6920; c2+ vs WT, p = 0.7312; c22 vs WT,
p = 0.9230; unpaired t-test; n = 5 mice per group). E, The density of a-
DG clusters is lower in c2-negative dendrites and higher in c2-positive
dendrites compared with the WT situation (**, p = 0.0064, ***,
p = 0.0003; unpaired t-test; n = 5 mice per group). Scale bars:
A,B = 10 mm. C = 5 mm.
doi:10.1371/journal.pone.0056311.g005

Figure 6. Absence of heterologous synapses in the cerebellum
of c2 KD mice. A, Representative confocal images after double
labeling for mGluR1a (a marker of PC spines) and GAD65. In global a1
knockout mice (upper panel), large GABAergic axon terminals make
multiple contacts with PC spines (arrows). In c2 KD (middle panel) and
WT mice (lower panel), GAD65-positive terminals have a smaller size
and are less frequently found in close apposition with spines. B,
Distribution of GAD65-positive boutons in the molecular layer of total
a1 knockouts, c2 KD and WT mice based on size. The average area (6
SEM) is indicated. In total a1 knockout mice, GABAergic axon terminals
are significantly larger than in the other groups (a1 KO vs WT,
p = 0.0016; a1 KO vs c2 KD, p = 0.0008; c2 KD vs WT, p = 0.9348;
unpaired t-test; n = 4 mice per group). C, The density of heterologous
contacts between GAD65-positive terminals and PC spines is signifi-
cantly higher in global a1 knockout mice compared with both c2 KD
and WT mice (a1 KO vs WT, p = 0.03; a1 KO vs c2 KD, p = 0.03; c2 KD vs
WT, p = 0.8836; unpaired t-test; n = 3 mice per group). Scale bar: 2 mm.
doi:10.1371/journal.pone.0056311.g006
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express lower-than-normal levels of the c2 subunit. Verification of

this assumption would require data from a larger population of

PCs, which has been hampered so far due to the limited

availability of mutant mice. However, our data clearly demon-

strate that expression of the c2 subunit was sufficient to rescue the

deficit in the formation of axo-dendritic synapses in c2-positive

PCs (see below).

Knockdown of the c2 subunit has no major effects on
brain development

Surprisingly, impaired GABA signaling in c2 KD mice did not

interfere with normal brain assembly and cortical lamination. This

might appear in contrast with many studies indicating that GABA

is an important regulator of cell proliferation, neuroblast migration

and neuronal differentiation [55–62]. However, the residual

expression of a/b GABAARs in neurons lacking the c2 subunit

(see above) leaves open the possibility that GABA might exert

nonsynaptic effects. On the other hand, the absence of major

neurodevelopmental defects in c2 KD mice is consistent with

other investigations that have revealed a largely normal brain

architecture in mice with null mutations in key genes of the GABA

pathway [63–66]. It remains possible that c2 KD brains present

subtle defects. For example, the increase in the population of

parvalbumin-positive interneurons that we observed in the

Figure 7. NL2 clusters at synapses lacking c2-GABAARs in
cortical and hippocampal circuits. A, Confocal images of
sensorimotor cortex (layer V) and hippocampal CA1 (stratum radiatum)
after double labeling for NL2 (red) and GABAAR c2 (green). Note that in
WT NL2 puncta co-localize extensively with c2-positive structures
(arrows). In contrast, in c2 KD mice many puncta are labeled for NL2 but
not for the c2 subunit (triangles). B, Reduced density of NL2-positive
clusters in cortical and hippocampal neuropil of c2 KD mice as
compared with WT (***, p,0.0001,** p = 0.0031; unpaired t-test; n = 3
mice per group). Scale bar: 3 mm.
doi:10.1371/journal.pone.0056311.g007

Figure 8. Perisomatic and axo-dendritic synapses of pyramidal
cortical neurons have different dependencies on synaptic
GABAARs. A, NL2 (red) co-localizes precisely with the c2 subunit
(blue) in a c2-positive pyramidal neuron (c2+) and also outlines the
profile of two c2-negative cells (c22) in layer V of sensorimotor cortex
of a c2 KD mouse (upper panel). Lower panel: triple labeling shows that
NL2 clusters opposite GAD65-positive boutons (green) in both c2-
positive and c2-negative pyramidal cells (arrows). B, The density of
perisomatic synapses is similar in c2-positive, c2-negative and WT
pyramidal neurons (c22 vs WT, p = 0.0748; c2+ vs WT, p = 0.8187; c2+ vs
c22, p = 0.0602 unpaired t-test; n = 3 mice per group). C, Confocal
images of dendritic profiles after triple labeling for GABAAR c2 (green),
NL2 (red) and SMI 311 (blue). NL2 co-localizes with GABAAR clusters in
pyramidal neurons of WT mice as well as in c2-positive pyramidal
neurons of c2 KD mice. The lower panel shows a c2-negative dendritic
profile, where NL2 clusters are not associated with GABAARs (triangles).
D, The density of NL2 clusters is significantly lower in c2-negative
dendrites compared with the other two groups, whereas no difference
was found between c2-positive and WT dendrites (c22 vs WT,
p = 0.0008; c22 vs c2+, p = 0.04; c2+ vs WT, p = 0.83; unpaired t-test;
n = 3 mice per group). Scale bars: A = 10 mm. C = 3 mm.
doi:10.1371/journal.pone.0056311.g008
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hippocampal CA1 and sensorimotor cortex (Fig. 3B) may

influence the function and plasticity of cortical circuits [67–70].

c2-GABAARs are not essential for postsynaptic clustering
of NL2

An important goal of our study was to determine how c2-

GABAARs regulate the developmental assembly of GABAergic

synapses. Ideally, to visualize synapses by immunohistochemistry,

one should co-stain sections with antibodies directed against both

pre- and postsynaptic markers (Fig. 5B, 8A). To distinguish

between c2-positive and c2-negative neurons, however, we were

forced to use a brief-fixation protocol that has been optimized for

the detection of postsynaptic molecules [18,42]. Therefore,

quantification of GABAergic synapses was mainly based on

labeling for NL2 and/or a-DG as markers of the postsynaptic

specialization.

The c2 subunit is a crucial organizer of GABAergic synapses

and may stabilize postsynaptic receptor aggregates by directly

interacting with other transmembrane proteins [50,53,71]. One

hypothesis is that the developmental assembly of GABAergic

synapses depends on an activity-dependent link between GA-

BAARs and NL2, although it is unclear whether these proteins

interact directly [15,72]. Previous studies have indicated that NL2

clusters at postsynaptic sites lacking GABAARs in PCs of mutant

mice [18,51]. Similarly, we found here that NL2 clusters faced

GAD65-labeled boutons in neurons lacking c2-containing GA-

BAARs (Fig. 5B, 8A and data not shown), indicating that

GABAARs are not essential for recruiting NL2 to the postsynaptic

specialization. A recent study, however, found that clustering of

NL2 at axo-axonic synapses of CA1 hippocampal neurons largely

depends on a2-containing GABAARs [73], suggesting that NL2-

GABAAR interactions may be synapse-specific. On the other

hand, studies in NL2 knockout mice have indicated that NL2

contributes to stabilize postsynaptic GABAARs, at least in specific

types of inhibitory synapses, and is required for normal

GABAergic transmission [72,74–77]. Collectively, the data indi-

cate that neither NL2 nor GABAARs are essential for the

formation of morphologically-recognizable inhibitory synapses;

however, NL2 and GABAARs interact in a synapse-specific

manner to organize postsynaptic specializations and determine

synaptic properties [50,78]. One mechanism by which NL2 seems

to regulate the maturation of GABAergic synapses is a direct

interaction with gephyrin and collybistin, which promotes the

formation of a postsynaptic scaffold onto which GABAARs are

tethered [76].

Different regulation of perisomatic and axo-dendritic
synapses

In all regions of the c2 KD brain analyzed, there was a decrease

in the density of NL2-positive puncta in synaptic layers (Fig. 7),

suggesting that silencing of GABAergic transmission perturbs axo-

dendritic synapse development. This was confirmed by high-

resolution analyses on the dendrites of cerebellar PCs (Fig. 5C,E)

and cortical pyramidal neurons (Fig. 8C,D), that revealed a

decreased density of GABAergic postsynaptic structures in

neurons lacking the c2 subunit. These data are consistent with

previous studies on cultured neurons that demonstrated that c2-

subunit containing GABAARs are essential for normal GABAergic

innervation [79,80]. However, we found that the number of

perisomatic postsynapses was not affected by loss of synaptic

GABAARs, providing strong support to the idea that perisomatic

and axo-dendritic synapses have different dependencies on

GABAergic activity levels. Li et al. (ref. [79]) reported a modest

reduction of perisomatic innervation (24–29% compared with a

53% reduction of GABAAR cluster density) of cortical neurons

after in utero electroporation of c2 shRNAs. The slight

discrepancy between our results (no significant effect on periso-

matic synapses) and those of Li et al. (modest reduction of

perisomatic innervation) could be possibly explained by differences

in the sensitivity of the immunolabeling procedure, or by

differences in the quantification method, that was based on

immunolabeling for the presynaptic vesicular GABA transporter

(VGAT) in Li et al. [79] and on labeling for NL2 in the present

investigation. In support of our observations, a recent study [73]

has also shown that deletion of a2-GABAARs does not affect

perisomatic innervation in CA1 pyramidal neurons, although

compensation by the a1 subunit has to be taken into account in

this case.

In contrast with the fixed situation of perisomatic synapses, the

development of axo-dendritic synapses was sensitive to differences

of GABAergic activity among neighboring cells. Our data clearly

demonstrate that PCs lacking the c2 subunit are disadvantaged for

axo-dendritic synapse formation or stabilization, whereas their

neighbors expressing the c2 subunit increased the number of

inhibitory postsynaptic sites compared with WT PCs. A similar

situation has been reported in cultured neurons, where knockdown

of the c2 subunit [79] or the palmitoyltransferase GODZ [80]

caused a disruption of GABAAR clusters and selectively impaired

GABAergic innervation.

Most likely, a similar activity-dependent process was responsible

for the absence of heterologous synapses on spines in c2 KD mice.

Heterologous synapses are abundant in situations in which there is

a uniform suppression of GABAergic transmission in all PCs

[17,18,51]. However, there is probably no advantage in

maintaining heterologous synapses in the competitive environment

of the c2 KD cerebellum. In other words, expression of the c2

subunit in at least some PCs resulted in increased axo-dendritic

connectivity and was sufficient to avoid the formation and/or

maintenance of heterologous synapses. These observations also

indicate that axo-dendritic innervation does not depend on a hard-

wired process based on exclusive molecular interactions, but

results from a mechanism of selection among potential synaptic

partners. In normal conditions, GABA signaling serves to

determine the density of synapses within the dendritic arborization

of individual PCs. When the preferred connections are silenced,

however, synapses can form with alternative partners, including

dendritic spines.

The differences between perisomatic and axo-dendritic synapses

could be related to their different roles in neuronal networks.

Perisomatic synapses are known to control neuronal output very

efficiently and are involved in neuronal synchronization [69,81–

83]. This requires that their number is strictly determined during

development, and scarcely influenced by activity levels. Converse-

ly, synapses on dendrites regulate glutamatergic inputs and

calcium signals and exhibit a higher degree of activity-dependent

plasticity [84–86]. Under this assumption, the level of plasticity at

maturity is the main determinant of the relative importance of

activity versus molecular cues in the assembly of inhibitory

synapses during development.

The downstream pathways linking postsynaptic GABAARs to

synapse maturation are presently unclear. Obviously, loss of

GABAARs not only affects inhibitory neurotransmission, but also

impairs molecular interactions within synaptic complexes. How-

ever another study has demonstrated that knockdown of GABA

synthesis in cortical interneurons inhibits the ability of GABAergic

axons to establish synapses with the appropriate targets, support-

ing the idea that GABAergic synapses are stabilized by an activity-
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dependent mechanism [16]. During cerebellar development,

GABAergic synapses made by molecular layer interneurons are

characterized by presynaptic miniature currents (preminis) that

depend on the activation of presynaptic GABAARs and enhance

neurotransmitter release [87]. The authors have proposed that

depolarization due to preminis and autoreceptor activation

produces a feedback loop that maintains a high release probability

at recently formed synapses. Combined with our present findings,

this suggests that axodendritic synapses could be stabilized by a

mechanism involving the combined activation of GABAARs

located at both pre- and postsynaptic sites. This hypothesis could

be tested by analyzing how a selective ablation of GABAARs from

molecular layer interneurons affects synapse development.

In conclusion, our findings reveal a remarkable selectivity in the

way that synaptic activity determines the stoichiometry of synaptic

connections in distinct subcellular compartments. Interestingly, the

resilience of perisomatic synapses observed during development

matches the situation in the aging brain, when synapses located on

dendritic domains are significantly reduced while those located on

the cell body are relatively unaffected [88]. Similarly, perisomatic

synapses are spared, if not potentiated, in some forms of

intractable epilepsies, and may contribute to the generation of

pathological network activity [89,90]. Thus, understanding the

different dependency of perisomatic and dendritic synapses on

activity levels may be relevant for deciphering brain disorders that

arise from altered GABAergic activity or changes in the

excitatory/inhibitory balance.
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