From Context to Distance: Learning Dissimilarity for Categorical Data Clustering

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/131713 since 2016-06-28T15:29:59Z

Published version:
DOI:10.1145/2133360.2133361

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:

D. Ienco, R.G. Pensa, R. Meo
From Context to Distance: Learning Dissimilarity for Categorical Data Clustering
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA
(2012) 6
DOI: 10.1145/2133360.2133361

The definitive version is available at:
http://dl.acm.org/citation.cfm?doid=2133360.2133361
From Context to Distance: Learning Dissimilarity for Categorical Data Clustering

DINO IENCO, RUGGERO G. PENSA and ROSA MEO, University of Torino, Italy

Clustering data described by categorical attributes is a challenging task in data mining applications. Unlike numerical attributes, it is difficult to define a distance between pairs of values of a categorical attribute, since the values are not ordered. In this paper, we propose a framework to learn a context-based distance for categorical attributes. The key intuition of this work is that the distance between two values of a categorical attribute A_i can be determined by the way in which the values of the other attributes A_j are distributed in the dataset objects: if they are similarly distributed in the groups of objects in correspondence of the distinct values of A_i, a low value of distance is obtained. We propose also a solution to the critical point of the choice of the attributes A_j. We validate our approach by embedding our distance learning framework in a hierarchical clustering algorithm. We applied it on various real world and synthetic datasets, both low and high-dimensional. Experimental results show that our method is competitive w.r.t. the state of the art of categorical data clustering approaches. We also show that our approach is scalable and has a low impact on the overall computational time of a clustering task.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—data mining; I.5.1 [Pattern Recognition]: Clustering—similarity measures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: categorical data, clustering, distance learning

ACM Reference Format:
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Clustering is a popular data mining technique that partitions data into groups or clusters in such a way that objects inside a group are similar, and objects belonging to different groups are dissimilar [Han and Kamber 2000]. Clearly, the notion of similarity is central in such a process. When objects are described by numerical (real, integer) features, there is a wide range of possible choices. Among them, probably the most popular metric is Euclidean distance (or 2-norm distance), which is a special case of Minkowski distance (also called p-norm distance). Commonly, objects can be considered as vectors in a n-dimensional space, where n is the number of features. Given two objects, the distance measure between them only depends on the difference between the values of the feature vectors.

In data mining applications, however, data are often described by categorical attributes that take values in a (usually) finite set of unordered nominal values. This makes it impossible even to rank or compute differences between two values of the feature vectors. For categorical data the simplest comparison measure is overlap [Kasif et al. 1998]. The proximity between two multivariate categorical entities is proportional to the number of attributes in which they match. Other metrics, such
as the Jaccard coefficient, are derived from overlap and have been adopted in several (partitional and hierarchical) clustering algorithms [Huang 1998; Guha et al. 1999; Andritsos et al. 2004].

Clearly, these distance metrics do not distinguish between the different values taken by the attribute, since they only measure the equality between pair of values. This is a strong limitation for a clustering algorithm, since it prevents to capture similarities that are clearly identified by human experts. For instance, given an attribute like City, which takes values in the set \{Paris, Rome, Florence\} it is obvious that Florence is more similar to Rome than to Paris, from a geographic point of view. However, in some other contexts, Paris might be more similar to Rome, since both of them are capitals, and they may share similar features.

In the literature some measures that take into consideration the context of the features, have also been employed but refer to continuous data, e.g., Mahalanobis distance [Mahalanobis 1936]. In this paper we present a new methodology to compute a context-based distance between values of a categorical variable and apply this technique to hierarchical clustering of categorical data. The ultimate resolution is to consider also categorical variables for the determination of the similarities of entities described by these variables. The ultimate analysis and application of a hierarchical clustering based on these similarity measures is to build an ontology on the basis of a taxonomy of entities. For the introduction of our technique, consider the dataset described in figure 1(a), representing the set Person. It has two categorical attributes: City\{Milan, Turin, Florence\} and Sex\{Male, Female\}. The contingency table in Figure 1(b) shows how these values are distributed in the persons of the dataset. We observe that City=Florence occurs only with Sex=Female and City=Turin occurs only with Sex=Male. Conversely, City=Milan is satisfied both when Sex=Male and Sex=Female. From this distribution of data, we infer that, in this particular context, Florence is more similar to Milan than to Turin because the probability to observe a person of a given sex is closer.

<table>
<thead>
<tr>
<th>Sex</th>
<th>City</th>
<th>Turin</th>
<th>Milan</th>
<th>Florence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Turin</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td>Milan</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 1. Person: a sample dataset with categorical attributes (a) and its related contingency table (b).

From this example we can deduce that the distribution of the co-occurrence table may help to define a distance between values of a categorical attribute. To this purpose, we propose a two-step method described in the following.

Let us denote by \(F = \{X_1, X_2, \ldots, X_m\} \) the set of \(m \) attributes describing the dataset instances. Let us denote by \(Y \in F \) the target, a categorical attribute on whose domain values we want to learn the distances.

1. For \(Y \), first identify a suitable context constituted by a subset of the attributes in \(F \) composed of \(X_i \neq Y \), such that each attribute \(X_i \) belonging to the context is somehow “correlated” to the attribute \(Y \). This notion, that we will implement by means of the use of mutual information between \(Y \) and the context attributes, helps in deriving a set of target related attributes.

2. In a second time, employing the distribution of the values of \(Y \) and each of the context attributes, we derive the measure of distance between the values of \(Y \). For any pair of values \((y_i, y_j)\) of \(Y \), we measure the distance between the distributions of \(y_i \) and \(y_j \) in objects having the same values for the context attributes.

Concerning the first point, in this paper, we focus on data-driven methods for selecting a good context for a given attribute. However, an analyst could perform this context selection manually, exploiting its knowledge about the domain. In a knowledge-driven approach, for each given attribute,
the analyst could select a subset of attributes of interest, following its knowledge base. We come back to the first example reported beforehand: when we consider the distance between two values of the City attribute, an analyst could decide to compute such a distance using, as context, some income-related features. Another possibility is to compute distances on a context based on health characteristics (if any). These two contexts would probably give rise to two different distance measures for the values of the City attribute. This difference might not be so evident when inferring the context directly from the data. Although these points deserve to be discussed further, in this paper we do not consider a user-driven context selection framework, since its validation would be rather subjective and application-dependent. Instead, here, we focus on a fully unsupervised framework, which, in our opinion, allows to produce fair experimental comparisons with other approaches, without loss of generality.

The key contributions of our work are the following:
— we introduce a new method, called DILCA, to compute the distance between any pair of values of a specific categorical attribute; notice that this distance-learning approach is independent of any subsequent learning on the actual instances (e.g., nearest-neighbors classification or distance-based clustering);
— we provide two methods for the selection of a suitable context: (i) a parametric method, and (ii) a fully automatic one;
— we show the impact of DILCA within an agglomerative hierarchical clustering algorithm and compare it with other three groups of algorithms from the state of the art; we evaluate results by means of three evaluation measures;
— we study the scalability of DILCA with respect to both the number of instances and the number of attributes: we show that DILCA can manage thousands of categorical attributes;
— we provide a study on the computational complexity of our solution;
— we provide an empirical study in which we break down the computational time of a usual clustering algorithm in all the times required by its successive steps. We show that the distance learning time due to DILCA constitutes the lowest fraction on the overall total.

The remainder of this paper is organized as follows: Section 2 briefly explores the state of the art in categorical data clustering. The theoretic fundamental details are presented in Section 3 while the technical issues of our distance learning approach are provided in Section 4. In Section 5 we present the results of a comprehensive set of experiments on low and high-dimensional real-world and synthetic data, as well as a scalability analysis. Finally, Section 6 concludes.

2. RELATED WORK

Clustering is an important task in data mining, in information retrieval and in a wide range of analytical and scientific applications [Han and Kamber 2000]. The goal of clustering is to find a partition of the instances by optimization of a predefined distance measure or an objective function. The problem is particularly difficult when categorical attributes are involved in the clustering process because a definition of the distance between the values of a categorical attribute is not immediately available. Many approaches to categorical data clustering have been proposed. Most of them try to optimize a global objective function without using any notion of distance between the values of the categorical attribute. Furthermore they suffer in terms of efficiency and time complexity with large data sets.

One of the first works in the field of categorical clustering is K-MODES [Huang 1998]. It extends K-Means algorithm for categorical data. A cluster is represented as a single instance, or data point, in which each attribute assumes the most frequent value in the database. Therefore, in K-MODES the similarity of an unlabeled data point and a cluster representative can be simply computed by the overlap distance [Kasif et al. 1998].

Another approach to categorical clustering is ROCK [Guha et al. 1999]. It employs links between pairs of data points in order to measure their similarity/proximity. An instance belongs to the neighborhood of another instance if the Jaccard similarity between them exceeds a user-defined threshold.
It heuristically optimizes a cluster quality function with respect to the number of links between the cluster members. The basic algorithm is hierarchical and has cubic complexity in the size of the data set, which makes it unsuitable for large datasets.

CACTUS [Ganti et al. 1999] is a combinatorial search-based algorithm employing summary information of the dataset. **CACTUS** first computes the projections of the data points onto the individual attributes. Then the projections are combined to form clusters over multiple attributes which are validated against the original dataset. In the validation phase if the support (cardinality) of some discovered cluster is less than a user-specified threshold, the cluster is removed. This approach optimizes a local function of the partition obtained by the clustering process.

A number of approaches have been proposed based on information theory. **COOLCAT** [Barbara et al. 2002] is based on the idea of entropy reduction within the generated clusters. It tries to optimize a global function based on entropy. It first bootstraps itself using a sample of maximally dissimilar points from the dataset to create initial clusters. The remaining points are then added incrementally. Naturally, this approach is highly dependent on the order of point selection. To mitigate this dependency, the authors propose to remove the "worst fitting" points at defined times during the execution and cluster them again. Li et al. [2004] propose an iterative algorithm to find optimal data partitions that minimize an entropy-based criterion. In this approach the authors employ a Monte Carlo process to randomly swap instances between clusters. Updates are retained when entropy decreases. The algorithm iterates the process until clusters remain unchanged.

LIMBO [Andritsos et al. 2004], is a scalable hierarchical categorical clustering algorithm built on the Information Bottleneck framework. As a hierarchical algorithm, **LIMBO** is not as fast as partitional methods. The algorithm builds Distributional Cluster Features (DCF) trees to summarize the data in \(k \) clusters. Each node in a DCF tree contains statistics on a subset of instances. Starting from DCFs and the number of clusters \(k \), a scan over the whole data set is performed to assign each instance to the cluster with the closest DCF. In the article the authors introduce an approach to define a distance measure for categorical tuples using the IB framework, but they do not experiment their intuition.

CLICKS [Zaki and Peters 2005] is a clustering algorithm based on graph/hyper graph partitioning. In general the cost of clustering with graph structures is acceptable, provided that the underlying data is low dimensional. **CLICKS** finds clusters in categorical datasets based on a search method for \(k \)-partite maximal cliques. The vertexes of the graph represent the value of the different attributes. In the graph there is an edge between two vertexes if the two attribute-values occur in the same instance. All maximal \(k \)-partite cliques in the graph are enumerated and the support of the candidate cliques within the original dataset is verified to form the final clusters. The crucial step of the algorithm is the computation of the strongly connected components, pairs of attribute values whose co-occurrence is above a specified threshold.

[Boriah et al. 2008] present an evaluation of different similarity measures for categorical data. The authors use more then ten measures for categorical data and they experiment their performance using the anomaly detection task. All of these measures use different heuristics to weigh the mismatch of the values of the same attribute. Differently from our approach, all these measures use only the distribution of the single attribute to compute similarity/distance between different values of the same attribute. Our approach, instead, uses the cross-information between attributes to weigh the mismatch. This type of information is extracted using the notion of context that we explain in the following section.

Another notable attempt of computing a distance for categorical attributes is [Ahmad and Dey 2007] who propose a probabilistic framework which considers the distribution of all the attributes in the dataset. To compute the distance between two values \(y_i \) and \(y_j \) of a categorical attribute \(Y \in F \), they propose to partition the set of remaining attributes into two sets \(W \) and \(\bar{W} \) (\(F = W \cup \bar{W} \)) such that \(W \) is related to \(y_i \), and \(\bar{W} \) is related to \(y_j \). The retained partitioning is the one that optimizes \(p(y_i|W) - p(y_j|\bar{W}) \). Then, they consider \(p(y_i|W) - p(y_j|\bar{W}) \) as the distance value between \(y_i \) and \(y_j \). In [Ahmad and Dey 2007], the authors only compare their approach with \(K\text{-MODES} \). Moreover,
since they consider distributions for all attributes, this method is not suitable for noisy and high-dimensional datasets.

Notice that learning distances between categorical attributes in supervised settings is quite an old task in machine learning. For instance, in [Stanfill and Waltz 1986], the authors propose a different approach to compute distances between symbols for a prediction task. In particular, they propose a “value difference metric” that takes into account how two values of an attribute are distributed w.r.t. a goal feature Y in the following way:

$$vdm(x_i, x_j) = \sum_{y_k \in Y} P(y_k|x_i) \sum_{y_k \in Y} |P(y_k|x_i) - P(y_k|x_j)|^2$$

where $P(y_k|x_i)$ is the probability of class y_k given that attribute X has the value x_i. This metric only considers how an attribute is distributed w.r.t. a class variable. Thus, it is only suitable for supervised problems. Moreover, the computed distance is asymmetric, i.e., $vdm(x_i, x_j) \neq vdm(x_j, x_i)$.

3. THE DILCA APPROACH

In this section we present DILCA (Distance Learning for Categorical Attributes) for computing distances between any pair of values of a categorical attribute.

Let us consider the set $F = \{X_1, X_2, \ldots, X_m\}$ of m categorical attributes. Let $D = \{d_1, d_2, \ldots, d_n\}$ be the dataset of instances defined over F.

We denote by a lower case letter $x_j \in X_i$ a specific value of an attribute X_i. We refer to the cardinality of an attribute (also referred to as a feature) X_i as $|X_i|$.

We denote by Y the target attribute, which is a specific attribute in F that constitutes the target of the method, that is, on whose values we need to compute the distances. During the discussion if we need to distinguish an attribute in F from another one in the context we adopt the notation X_i. Otherwise, if we need to refer to a generic context attribute, distinguishing it with respect to the target attribute Y, we use simply X.

From the example in Section 1 it turns out that the distribution of values of an attribute X can be informative about the way in which another attribute Y is distributed in the dataset objects. Thanks to our DILCA framework we can infer a context-based distance between any pair of values (y_i, y_j) of the target attribute Y on the basis of the similarity between the probability distributions of y_i and y_j given the context attributes, called $context(Y) \subseteq F \setminus Y$.

The core part of our approach consists in computing the distance between each pair of values of the target attribute Y. To compute the distance between y_i and y_j where $y_i \in Y$, $y_j \in Y$ we use the following formula:

$$d(y_i, y_j) = \sqrt{\sum_{X \in context(Y)} \sum_{x_k \in X} (P(y_i|x_k) - P(y_j|x_k))^2}$$

(1)

For each context attribute X, we compute the conditional probability for both the values y_i and y_j given the values $x_k \in X$ and then we apply the Euclidean distance. The Euclidean distance is normalized by the total number of considered values. We obtain the total number of values by $\sum_{X \in context(Y)} |X|$.

Our distance measure is an application of the Euclidean distance. As such, our definition of distance is a metric. With our formulation we can see that our distance is bounded between 0 and 1: $0 \leq d(y_i, y_j) \leq 1$.

This definition of distance strongly depends on the context associated to each attribute. How to choose this context is then a crucial point in our approach, since a wrong selection would lead to weak clustering results. As we anticipated in Section 1, the analyst is free to determine an application-specific context for each attribute, exploiting her/his knowledge on the domain. Nevertheless, in the following, we provide two automatic data-driven methods that, for each given attribute, determine a suitable context.
3.1. Context selection

The selection of a good context is not trivial, particularly when data are high-dimensional. In order to simplify the determination of the context, we investigate the problem of selecting a good (informative) set of features w.r.t. a given one. This is a classic problem in data mining named feature selection. Feature selection is a preprocessing step of data mining. Its goal is to select a subset of relevant and not redundant features and discard all the other ones w.r.t. a given class attribute (supervised feature selection [Guyon and Elisseeff 2003]). In this branch of research many approaches for measuring the correlation/association between two features have been proposed. An interesting metric is the Symmetric Uncertainty, introduced in [Yu and Liu 2003]. This measure is an association-based measure inspired by information theory. Symmetric Uncertainty is derived from entropy: it is a measure of the uncertainty of a random variable. The entropy of a random variable Y is defined as:

$$H(Y) = -\sum_i P(y_i) \log_2(P(y_i))$$

where $P(y_i)$ is the probability of the value y_i of Y. The entropy of Y after having observed the values of another variable X is defined as:

$$H(Y|X) = -\sum_j \sum_i P(x_j) P(y_i|x_i) \log_2(P(y_i|x_i))$$

where $P(y_i|x_i)$ is the probability that $Y = y_i$ after we have observed that $X = x_i$. The information about Y provided by X is given by the Information Gain [Quinlan 1993] which is defined as follows:

$$IG(Y|X) = H(Y) - H(Y|X)$$

When $IG(Y|X_i) > IG(Y|X_j)$ then the feature X_i is more correlated to Y than X_j. Moreover, Information Gain is symmetrical for two random variables X and Y [Yu and Liu 2003]. Symmetrical Uncertainty is then defined as follows:

$$SU(Y, X) = 2 \cdot \frac{IG(Y|X)}{H(Y) + H(X)}$$

It compensates for Information Gain’s bias toward attributes with more values and normalizes its values to the range $[0,1]$ (1 indicates that knowledge of the value of either Y or X completely predicts the value of the other variable; 0 indicates that Y and X are independent).

During the step of context selection, we select a set of context attributes for a given target attribute Y. This context is such that the attributes X_i belonging to this set have a high value of $SU(Y, X_i)$. We denote the Symmetric Uncertainty of X_i for the target Y by $SU_Y(X_i)$. The task of determination of a suitable context is not trivial, because the decision of the adequate number of attributes for context(Y) is not immediate.

So far, we have considered information theory measures for categorical attributes only. However, we can apply these metrics to the case of mixed categorical and continuous attributes using differential entropy [Verdugo and Rathie 1978], which extends the idea of entropy to continuous probability distributions:

$$H(X) = -\int_{\mathcal{X}} f(x) \log f(x) dx$$

where \mathcal{X} is the domain (support) of X and $f(x)$ is the probability density function of X. When f comes from a standard probability distribution (e.g., normal, uniform, exponential) the entropy can be computed directly [Verdugo and Rathie 1978]. Otherwise, it is possible to discretize the continuous attributes and use the metrics described beforehand for the case of categorical attributes.

In this work we propose two alternative ways to adopt the Symmetric Uncertainty for the selection of an adequate context. The first one is parametric and employs a heuristic based on the mean value of SU for a specific target attribute Y. This solution is suitable when a user has enough
information about the distribution of the attribute values inside the dataset. The second one is non-parametric. This solution uses a well-known strategy in the feature selection field. This strategy allows to compute a good context \(context(Y) \) for \(Y \) and eliminates loosely informative attributes (called redundant) inside the specific \(context(Y) \). In detail, the two strategies are performed as follows:

1. The first heuristic is based on the mean value of \(SU \) for a specific target attribute \(Y \). The mean of this quantity is:

\[
mean(SU_Y) = \frac{\sum_{X_i \in F \setminus Y} SU_Y(X_i)}{|F \setminus Y|}
\]

(3)

For the determination of the context of the target attribute \(Y \) we use the attributes that satisfy the following inequality:

\[
context(Y) = \{X_i \in F | X_i \neq Y \land SU_Y(X_i) \geq \sigma \cdot mean(SU_Y)\}
\]

where \(\sigma \in [0, 1] \) is a trade-off parameter that controls the influence of the mean value. In the paper we refer to this approach with \(DILCA_M \).

According to this heuristic, at least one attribute is assigned to \(context(Y) \). This is simple to demonstrate. If \(SU_Y(X_i) \) is the same for all \(X_i \) then \(SU_Y(X_i) = mean(SU_Y) \) for all \(X_i \); in this case all \(X_i \) would be selected in \(context(Y) \). Otherwise, there exists at least one attribute \(X_i \) such that \(SU_Y(X_i) \geq mean(SU_Y) \). Then \(X_i \) would be selected.

2. The second approach is based on the \(FCBF \) algorithm for feature selection proposed in [Yu and Liu 2003]. In this non-parametric approach we consider two issues: the relevance and the redundancy between attributes.

Relevance. For the target attribute \(Y \), we measure the relevance of all the attributes \(X_i \neq Y \) in \(F \). An attribute \(X_1 \) is more relevant than a second attribute \(X_2 \) with respect to the target \(Y \) if \(SU_Y(X_1) \geq SU_Y(X_2) \). We rank this set of attributes according to decreasing values of \(SU_Y(X_i) \). Therefore, the most relevant features are at the top of the ranking.

Redundancy. After the ranking step we remove all those attributes that are redundant. A feature \(X_j \) is redundant with respect to \(X_i \) if \(X_i \) is more relevant with respect to the target than \(X_j \) (according to the definition of relevance). Furthermore, the relevance of \(X_i \) for the determination of \(X_j \) is high (which means that they are correlated) and higher than the relevance of \(X_j \) with the target. In other terms, \(SU_{X_i}(X_j) > SU_Y(X_j) \). As a consequence, \(X_j \) can be removed from the ranked list of attributes.

With these two steps we obtain a \(context(Y) \) that automatically contains relevant and not redundant attributes w.r.t. \(Y \) attribute. In the paper we refer to this approach with the name \(DILCA_{RR} \) (the double ‘R’ stands for relevance and redundancy).

4. **DILCA IMPLEMENTATION**

In this section we introduce the algorithmic details for \(DILCA \). Our approach is based on two steps:

1. **Context selection**: selection of a relevant subset of the whole attributes set \(F \) that we use as the context for the determination of the distances on the values of a given attribute \(Y \);

2. **Distance computation**: computation of the distance measure between pair of values of \(Y \) using the context defined in the previous step.

For the first step, we describe the two solutions given in the previous section, and we discuss the complexity of the two approaches for the problem of learning a good context for a target variable.

In Algorithm 1 we show the adopted procedure for the computation of the correlation matrix between each pair of attributes based on Symmetric Uncertainty. This algorithm takes as parameter the entire data set \(D \). Then, function \(ComputeCO(D, X, Y) \) scans the dataset \(D \) once and for each instance of \(D \) it updates the contingency tables \((CO_{X,Y}) \) of each pair of attributes \((X_i, Y) \), where \(Y \) is any categorical attribute in \(F \), taken as the target, and \(X_i \) any other attribute in \(F \). These tables are used to compute the Symmetric Uncertainty between attributes to be stored in matrix \(SU \).
Each column of matrix SU is a vector that contains the Symmetrical Uncertainty between a certain attribute X_i and all the other ones $X_j \in F$. A particular column of matrix SU regards the symmetrical uncertainty of the target Y. Let us denote the column in matrix SU that regards the Symmetrical Uncertainty of attribute Y as $VectorSU_Y$. (Similarly, for any other attribute $X \in F$, we have $VectorSU_X$). Each attribute $X \in F$ is used as an index of $VectorSU_Y$. We denote it by $VectorSU_Y[X]$.

4.1. DILCA_M
In Algorithm 2 we propose the parametric approach in which $context(Y)$ is built. At first, it computes the mean of the vector $VectorSU_Y$ which constitutes a column of matrix SU. Then, at lines 4 and 5, it selects the attributes that will be included in the context of Y. When the features are chosen, $DistanceComputation$ function (see successive Algorithm 4) computes the distance matrix between each pair of values of the attribute Y by application of equation (1).

4.2. DILCA_RR
In Algorithm 3 we extend to an unsupervised setting the FCBF approach proposed in [Yu and Liu 2003]. FCBF selects a relevant and non redundant set of attributes for a given attribute Y. In the supervised approach the target Y is the class attribute. FCBF uses some heuristic about attributes. It assumes that if two attributes X_i and X_j are relevant and one of them is found to be redundant then it is removed.

For the context selection step of DILCA_RR (see Algorithm 3) we implement the idea just explained as follows. Given that both X_i and X_j are relevant to the target, one of them is considered redundant if the Symmetrical Uncertainty that links them is higher than the Symmetrical Uncertainty that links each of them to the target. In other terms, if both the following conditions are satisfied:

1. $SU_{X_j}(X_i) > SU_Y(X_i)$
2. $SU_{X_j}(X_i) > SU_Y(X_j)$

In particular, X_j is removed if X_i is more relevant to the target Y. In terms of SU it is: $SU_Y(X_j) < SU_Y(X_i)$.

Then, after the context of Y is formed, we compute the distance matrix on the values of Y similarly to DILCA_M, by $DistanceComputation$ function.

ALGORITHM 1: computeCorrelationMatrix(D)

forall the $X, Y \in F \mid X \neq Y$ do

$CO_{XY} = ComputeCO(D, X, Y)$;

$matrixSU[X][Y] = SU(CO_{XY})$;

end

return $matrixSU$;

4.3. Complexity
Before computing the distance matrix on the target values, we must store the co-occurrence of the values of any pair of attributes (X,Y). This needs the computation of l matrices $CO_{X,Y}$, with $l = m \times (m - 1)/2$ the number of all the pairs of attributes in F and m the total number of attributes in F. In order to build these matrices we need to perform a complete scan of the entire data set (which has a complexity of n). Later, we will use the co-occurrence matrices $CO_{X,Y}$ also to compute $matrixSU$. $matrixSU$ is $m \times m$. Follows the complexity of the construction of the distance matrix in the two approaches DILCA_M and DILCA_RR:
ALGORITHM 2: DILCA_M(VectorSU_Y, Y, σ)

mean = computeMean(VectorSU_Y);
context(Y) = ∅;
forall the X ∈ F do
 if VectorSU_Y[X] ≥ σ · mean then
 insert(X, context(Y));
 end
end
DistMatrix_Y = DistanceComputation(Y, context(Y));
return DistMatrix_Y;

ALGORITHM 3: DILCA_RR(matrixSU, Y)

VectorSU_Y = MatrixSU[Y];
context(Y) = {X ∈ F|X ≠ Y}; /* relevance step */
sort VectorSU_Y in descending order;
forall the VectorSU_Y[X] starting from the top position and s.t. X ≠ Y do
 VectorSU_X = MatrixSU[X];
 if (VectorSU_X[K] ≥ VectorSU_Y[K]) then
 erase attribute K from context(Y);
 erase VectorSU_Y[K];
 end
end
DistMatrix_Y = DistanceComputation(Y, context(Y));
return DistMatrix_Y;

ALGORITHM 4: DistanceComputation(Y, context(Y))

forall the y_i, y_j ∈ Y|y_i ≠ y_j do
 DistanceMatrix[y_i][y_j] = \sqrt{\sum_{X∈context(Y)} \sum_{x∈X} (P(y_i|x) - P(y_j|x))^2 / \sum_{X∈context(Y)} |X|};
end
return DistanceMatrix_Y;

— DILCA_M: from matrixSU we compute mean(SU_Y) and then select the right context making use of σ. For the computation of the distance matrix on the values of each target attribute we can use the co-occurrence matrices CO_X,Y without the necessity of further scans of the dataset. From this, we derive that our algorithm only needs to scan the dataset once. In conclusion, DILCA_M has complexity O(nm^2), with n the number of instances and m the number of attributes.

— DILCA_RR: Using matrixSU, for each attribute we select the context with the algorithm 3. From the study in [Yu and Liu 2003] the authors show that the complexity of this approach is O(m log m). In our case we perform this analysis for each attribute and we see that the complexity becomes O(m^2 log m). Again, to compute the distance matrix for each attribute we can use the co-occurrence matrices CO_X,Y without the necessity of further scans of the dataset. From this analysis we can infer that the complexity of DILCA_RR is O(nm^2 log m).
5. EXPERIMENTS AND RESULTS

In this section we present a comprehensive evaluation of our approach. We coupled DILCA with a standard hierarchical clustering method. We used Ward’s hierarchical clustering algorithm. It uses as input a matrix with the distances between each pair of objects in the dataset. In order to compute this matrix we must define the distance between two objects. In the definition of the distance between two objects, we can combine the distances between the pairs of values of any attribute in the two objects. To obtain the distance between each pair of values of the categorical attributes we apply DILCA_M or DILCA_RR. From a procedural point of view, each categorical attribute is taken as the target attribute and each of the remaining attributes forms a candidate for the target context.

At this point we obtain a set of attribute distance matrices that we denote by \(\text{distMatrix}_X \) as returned by procedures DILCA_M and DILCA_RR, described by Algorithms 2 and 3. Since our method provides the distance between pairs of values of categorical attributes, this distance can be integrated in the standard distance measures (like the euclidean one) in an \(m \)-dimensional space as follows:

\[
\text{distObj}(o_k, o_j) = \sqrt{\sum_{X_i \in F} \text{distMatrix}_{X_i}[o_k, X_i][o_j, X_i]^2}
\]

where \(\text{distObj}(o_k, o_j) \) is the distance between the two objects \(o_k \) and \(o_j \); \(o_k, X_i \) and \(o_j, X_i \) are the values of the attribute \(X_i \) in objects \(o_k \) and \(o_j \) respectively; \(\text{distMatrix}_{X_i}[o_k, X_i][o_j, X_i] \) is the distance which could be obtained using DILCA_M or DILCA_RR between the two values \(o_k, X_i \) and \(o_j, X_i \).

5.1. Competitors

We compare our approaches with three different groups of competitors and we evaluate the obtained results using three objective evaluation measures described in the Section 5.2.

5.1.1. Comparison using Base-Line methods. We perform a first set of experiments comparing our approaches with two base-line methods.

The first base-line is a distance based on the Jaccard similarity. It is a normalized version of the overlap [Kasif et al. 1998]. Given two instances, we compute the Jaccard distance as:

\[
\text{dist}_{\text{Jaccard}}(o_k, o_j) = 1 - \frac{\sum_{X_i \in F} 1(o_k, X_i = o_j, X_i)}{2 \cdot |F| - \sum_{X_i \in F} 1(o_k, X_i = o_j, X_i)}
\]

where \(1(\cdots) \) is the indicator function.

The second base-line that we employ is the Pearson distance. This measure is derived from the Pearson’s coefficient [Han and Kamber 2000]. Given two variables, the Pearson’s correlation coefficient is defined as the covariance of the two variables divided by the product of their standard deviations. The Pearson’s correlation coefficient ranges between -1 and 1. It also uses negative values to indicate that the two variables are anti-correlated. Given two vectors \(a, b \in \mathbb{R}^n \), the Person’s coefficient is given by:

\[
\rho = \frac{\sum_{i=1}^{n} (a_i - \bar{a})(b_i - \bar{b})}{\sqrt{\sum_{i=1}^{n} (a_i - \bar{a})^2} \sqrt{\sum_{i=1}^{n} (b_i - \bar{b})^2}}
\]

where \(\bar{a} \) and \(\bar{b} \) are the vector means. We define the Pearson distance as \(1 - \rho \). Since the Pearson distance is designed for numerical vectors, we adapt this metric to categorical attributes. Given a target attribute \(Y \), for each value \(y_i \in Y \) we build a vector whose components are the co-occurrences of \(y_i \) with each of the values of the attributes in \(\{ F \setminus Y \} \). Using this representation we compute the Pearson distance between each pair of values of the attribute \(Y \). We repeat this process for each attribute \(Y \). At the end we obtain a set of distance matrices and we employ Equation 4 to compute the distance between two objects. We coupled both base-line approaches with Ward’s clustering and refer to the first base-line method as JACCARD and to the second base-line method as PEARSON.
5.1.2. Comparison using Categorical Clustering. In this second bunch of experiments we want to compare the performance of our approaches w.r.t. state-of-the-art methods for clustering categorical data. To do this we compare DILCA and DILCARR with ROCK [Guha et al. 1999] and LIMBO [Andritsos et al. 2004]. We also implemented the distance learning method described in [Ahmad and Dey 2007] within Ward’s clustering algorithm: we refer to this solution as DELTA. Also for the DELTA approach we use Equation 4 to compute the distance between two objects.

5.1.3. Comparison using Similarity measures for categorical data. For the last set of experiments, we implemented three similarity measures proposed in [Boriah et al. 2008] (please, refer to this paper for further details). In particular we use the LIN, OF (Occurrence Frequency) and Goodall3 measures that are shown to outperform the other discussed similarity/distance measures. The LIN measure is derived from Information Theory, and it is related to compression. The OF measure assigns high similarity when the mismatch involves two frequent values (and low similarity for values that are less frequent). The Goodall3 measure assigns high similarities if the matching values are infrequent regardless of the frequencies of the other values. Hence, to transform them in distance we follow the suggestion given in [Boriah et al. 2008]. Given a similarity measure \(\text{sim} \) we obtain the distance transformation using the following strategy:

\[
dist = \frac{1}{1 + \text{sim}}
\]

We can adapt each of these measures to produce a set of matrices (like DILCA\textsubscript{M} and DILCA\textsubscript{RR}). As for the previous groups of competitors, we compute the distance between two objects using Equation 4 and we couple them with Ward’s clustering algorithm. In the experiments, we refer to these three methods as LIN, OF and GOODALL3.

5.2. Clustering Evaluation Metrics

The definition of the clustering quality is often a hard and subjective task. Therefore, we use three objective criteria to evaluate the results: Purity, Normalized Mutual Information and Adjusted Rand Index. These methods make use of the correspondence between the original class information of each object and the cluster to which the same objects have been assigned.

We denote by \(C = \{C_1 \ldots C_J\} \) the partition built by the clustering algorithm on objects, and by \(P = \{P_1 \ldots P_I\} \) the partition inferred by the original classification. \(J \) and \(I \) are respectively the number of clusters \(|C| \) and the number of classes \(|P| \). We denote by \(n \) the total number of objects.

The first measure of the quality of a clustering solution is purity in terms of the class which the cluster objects belong to. In order to compute purity each cluster is assigned to the majority class of the objects in the cluster. Then, the accuracy of this assignment is measured by counting the number of correctly assigned objects divided by the total number of objects \(n \):

\[
Purity(C, P) = \frac{1}{n} \sum_j \max_i |C_j \cap P_i|
\]

(5)

Notice that Purity is sensible to the presence of imbalanced classes.

The second metric provides an information that is independent from the number of clusters [Strehl et al. 2002]. This measure takes its maximum value when the clustering partition matches completely the original partition. We can consider NMI as an indicator of the purity of the clustering result. NMI is computed as the average mutual information between any pair of clusters and classes:

\[
NMI = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} \log \frac{n_{ij}}{n_i n_j}}{\sqrt{\sum_{i=1}^{I} n_i \log n_i \sum_{j=1}^{J} n_j \log n_j}}
\]

(6)

where \(n_{ij} \) is the cardinality of the set of objects that occur both in cluster \(i \) and in class \(j \); \(n_i \) is the number of objects in cluster \(i \); \(n_j \) is the number of objects in class \(j \); \(n \) is the total number of objects. \(I \) and \(J \) are respectively the number of clusters and the number of classes.
The third metric is the adjusted Rand index [Hubert and Arabie 1985]. Let \(a \) be the number of object pairs belonging to the same cluster in \(C \) and to the same class in \(P \). This metric captures the deviation of \(a \) from its expected value corresponding to the hypothetical value of \(a \) obtained when \(C \) and \(P \) are two random, independent partitions. The expected value of \(a \) denoted by \(E[a] \) is computed as follows:

\[
E[a] = \frac{\pi(C) \cdot \pi(P)}{n(n-1)/2}
\]

where \(\pi(C) \) and \(\pi(P) \) denote respectively the number of object pairs from the same clusters in \(C \) and from the same class in \(P \). The maximum value for \(a \) is defined as:

\[
max(a) = \frac{1}{2} (\pi(C) + \pi(P))
\]

The agreement between \(C \) and \(P \) can be estimated by the adjusted rand index as follows:

\[
ARI(C, P) = \frac{a - E[a]}{max(a) - E[a]}
\]

(7)

Notice that this index can take negative values, and when \(ARI(C, P) = 1 \), we have identical partitions.

5.3. Datasets for Categorical Clustering Evaluation

For the evaluation of our distance learning approach on categorical data, we used two collections of datasets.

The first collection consists in real world data sets downloaded from the UCI Machine Learning Repository [Blake and Merz 1998].

The second collection contains synthetic datasets produced by a data generator [Melli 2008], which employs a Gaussian distribution to generate the data.

The main characteristics of the datasets are summarized in Figure 2. Notice that some datasets contains numerical variables. In order to perform experiments on it and compare DILCA with some of the competitors that are able to treat only categorical attributes, we had to discretize the continuous attributes using the supervised method proposed in [Fayyad and Irani 1993].
5.4. Experimental Settings

In this section, we report on the performance results of our proposal, that consists in DILCA\textsubscript{M} and DILCA\textsubscript{RR} coupled with Ward’s hierarchical clustering.

We run the experiments on a PC with a 2.66GHz Intel Core 2 Duo processor, 1024MB of RAM running Linux.

The experiments were conducted as follows: since the hierarchical algorithm returns a dendrogram which, at each level, contains a different number of clusters, we consider the level corresponding to the number of clusters equal to the number of classes. This is done for each of the methods that employ the hierarchical Ward’s clustering. Moreover, for DILCA\textsubscript{M}, we varied parameter σ between 0 to 1 with steps of 0.1, and we selected the value of σ which gave the best results. For ROCK, we set the threshold parameter between 0.2 to 1 with steps of 0.05. Also for this algorithm we retained the best obtained result. For LIMBO, we set ϕ parameter between 0 to 1 with steps of 0.25 and we report the best result obtained. This parameter influences the information loss during the merging phase.

5.5. Results

In the tables of Figures 3, 4 and 5 we report the results of the comparative evaluation against ROCK, LIMBO and DELTA. When looking at the purity values, it may seem that ROCK achieves significantly better results than all other approaches for the following datasets: Post-operative, Titanic.
Fig. 5. Adjusted Rand Index results w.r.t. state-of-the-art categorical algorithms

<table>
<thead>
<tr>
<th>Dataset</th>
<th>DILCA_M</th>
<th>DILCA_RR</th>
<th>DELTA</th>
<th>ROCK</th>
<th>LIMBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiology</td>
<td>0.2103</td>
<td>0.2280</td>
<td>0.2104</td>
<td>0.0807</td>
<td>0.2836</td>
</tr>
<tr>
<td>Vote</td>
<td>0.7031</td>
<td>0.6207</td>
<td>0.6200</td>
<td>0.4563</td>
<td>0.5496</td>
</tr>
<tr>
<td>Mushroom</td>
<td>0.6090</td>
<td>0.6090</td>
<td>0.6090</td>
<td>-0.0011</td>
<td>0.6070</td>
</tr>
<tr>
<td>Soybean</td>
<td>0.5094</td>
<td>0.5109</td>
<td>0.5635</td>
<td>0.1734</td>
<td>0.4442</td>
</tr>
<tr>
<td>Dermatology</td>
<td>0.9158</td>
<td>0.9542</td>
<td>0.7234</td>
<td>0.4420</td>
<td>0.7179</td>
</tr>
<tr>
<td>Car</td>
<td>0.0129</td>
<td>0.0043</td>
<td>0.0043</td>
<td>0.0043</td>
<td>0.0367</td>
</tr>
<tr>
<td>Adult</td>
<td>0.1364</td>
<td>0.1696</td>
<td>0.0849</td>
<td>0.0453</td>
<td>0.1319</td>
</tr>
<tr>
<td>Post-operative</td>
<td>0.0616</td>
<td>-0.0128</td>
<td>-0.0128</td>
<td>0.0403</td>
<td>-0.0130</td>
</tr>
<tr>
<td>Titanic</td>
<td>0.2744</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0186</td>
<td>0.0002</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>0.3903</td>
<td>0.1459</td>
<td>0.1459</td>
<td>0.0362</td>
<td>0.4337</td>
</tr>
<tr>
<td>Breast-Cancer</td>
<td>0.159</td>
<td>0.159</td>
<td>0.1533</td>
<td>0.0775</td>
<td>0.1504</td>
</tr>
<tr>
<td>Balloons</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3262</td>
<td>0.1215</td>
<td>1.00</td>
</tr>
<tr>
<td>SynA</td>
<td>0.9803</td>
<td>0.9803</td>
<td>0.4554</td>
<td>1.0</td>
<td>0.7350</td>
</tr>
<tr>
<td>SynB</td>
<td>0.8457</td>
<td>0.8437</td>
<td>0.3563</td>
<td>0.2518</td>
<td>0.4016</td>
</tr>
<tr>
<td>SynC</td>
<td>0.6498</td>
<td>0.6302</td>
<td>0.0127</td>
<td>0.4631</td>
<td>0.0359</td>
</tr>
<tr>
<td>SynD</td>
<td>0.8717</td>
<td>0.8247</td>
<td>0.3589</td>
<td>0.0004</td>
<td>0.1825</td>
</tr>
</tbody>
</table>

Fig. 6. Purity results w.r.t. advanced measures

<table>
<thead>
<tr>
<th>Dataset</th>
<th>DILCA_M</th>
<th>DILCA_RR</th>
<th>LIN</th>
<th>OF</th>
<th>GOODALL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiology</td>
<td>38.05%</td>
<td>39.82%</td>
<td>42.48%</td>
<td>34.07%</td>
<td>34.14%</td>
</tr>
<tr>
<td>Vote</td>
<td>91.95%</td>
<td>89.43%</td>
<td>89.65%</td>
<td>86.90%</td>
<td>81.84%</td>
</tr>
<tr>
<td>Mushroom</td>
<td>89.02%</td>
<td>89.02%</td>
<td>89.02%</td>
<td>89.02%</td>
<td>89.02%</td>
</tr>
<tr>
<td>Soybean</td>
<td>68.08%</td>
<td>71.74%</td>
<td>72.18%</td>
<td>75.70%</td>
<td>70.13%</td>
</tr>
<tr>
<td>Dermatology</td>
<td>94.54%</td>
<td>97.27%</td>
<td>97.27%</td>
<td>84.42%</td>
<td>87.70%</td>
</tr>
<tr>
<td>Car</td>
<td>70.08%</td>
<td>70.08%</td>
<td>70.08%</td>
<td>41.67%</td>
<td>32.41%</td>
</tr>
<tr>
<td>Adult</td>
<td>68.59%</td>
<td>76.16%</td>
<td>62.63%</td>
<td>61.01%</td>
<td>61.01%</td>
</tr>
<tr>
<td>Post-operative</td>
<td>47.78%</td>
<td>35.56%</td>
<td>40%</td>
<td>35.56%</td>
<td>37.78%</td>
</tr>
<tr>
<td>Titanic</td>
<td>77.37%</td>
<td>60.84%</td>
<td>60.84%</td>
<td>59.79%</td>
<td>59.79%</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>83.22%</td>
<td>69.67%</td>
<td>80.64%</td>
<td>69.03%</td>
<td>71.61%</td>
</tr>
<tr>
<td>Breast-Cancer</td>
<td>74.47%</td>
<td>74.47%</td>
<td>68.53%</td>
<td>61.88%</td>
<td>56.64%</td>
</tr>
<tr>
<td>Balloons</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>SynA</td>
<td>99.2%</td>
<td>99.2%</td>
<td>97.3%</td>
<td>86.7%</td>
<td>88.6%</td>
</tr>
<tr>
<td>SynB</td>
<td>93.7%</td>
<td>93.5%</td>
<td>90.2%</td>
<td>79.5%</td>
<td>82.8%</td>
</tr>
<tr>
<td>SynC</td>
<td>84.2%</td>
<td>83.4%</td>
<td>81.79%</td>
<td>52.8%</td>
<td>56.89%</td>
</tr>
<tr>
<td>SynD</td>
<td>94.7%</td>
<td>92.8%</td>
<td>96.3%</td>
<td>83.7%</td>
<td>83.4%</td>
</tr>
</tbody>
</table>

Fig. 7. NMI results w.r.t. advanced measures

Hepatitis and *Breast-cancer*. However, when we inspected the partitions returned by *ROCK*, we discovered that for these datasets, this algorithm generates some very small and pure clusters (containing few instances of the same class) and some huge clusters containing instances from different
Dataset Performance

<table>
<thead>
<tr>
<th>Dataset</th>
<th>DILCA$_M$</th>
<th>DILCA$_RR$</th>
<th>JACCARD</th>
<th>PEARSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiology</td>
<td>0.2103</td>
<td>0.2280</td>
<td>0.1480</td>
<td>0.1025</td>
</tr>
<tr>
<td>Vote</td>
<td>0.7031</td>
<td>0.6207</td>
<td>0.5419</td>
<td>0.4040</td>
</tr>
<tr>
<td>Mushroom</td>
<td>0.6090</td>
<td>0.6090</td>
<td>0.6090</td>
<td>0.6090</td>
</tr>
<tr>
<td>Soybean</td>
<td>0.5094</td>
<td>0.5109</td>
<td>0.5577</td>
<td>0.5408</td>
</tr>
<tr>
<td>Dermatology</td>
<td>0.9158</td>
<td>0.9542</td>
<td>0.9507</td>
<td>0.6754</td>
</tr>
<tr>
<td>Car</td>
<td>0.0129</td>
<td>0.0128</td>
<td>0.0128</td>
<td>0.0156</td>
</tr>
<tr>
<td>Adult</td>
<td>0.1364</td>
<td>0.1696</td>
<td>0.0555</td>
<td>0.0398</td>
</tr>
<tr>
<td>Titanic</td>
<td>0.2744</td>
<td>0.0002</td>
<td>0.0002</td>
<td>-0.0009</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>0.3903</td>
<td>0.1459</td>
<td>0.3488</td>
<td>0.1735</td>
</tr>
<tr>
<td>Breast-Cancer</td>
<td>0.159</td>
<td>0.159</td>
<td>0.12</td>
<td>0.0139</td>
</tr>
<tr>
<td>Balloons</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3262</td>
<td>0.3262</td>
</tr>
<tr>
<td>SynA</td>
<td>0.9803</td>
<td>0.9803</td>
<td>0.9339</td>
<td>0.6937</td>
</tr>
<tr>
<td>SynB</td>
<td>0.8457</td>
<td>0.8437</td>
<td>0.7798</td>
<td>0.5786</td>
</tr>
<tr>
<td>SynC</td>
<td>0.6498</td>
<td>0.6302</td>
<td>0.5986</td>
<td>0.1798</td>
</tr>
<tr>
<td>SynD</td>
<td>0.8717</td>
<td>0.8247</td>
<td>0.9092</td>
<td>0.6301</td>
</tr>
</tbody>
</table>

Purity Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>DILCA$_M$</th>
<th>DILCA$_RR$</th>
<th>JACCARD</th>
<th>PEARSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiology</td>
<td>0.6006</td>
<td>0.6040</td>
<td>0.6014</td>
<td>0.476</td>
</tr>
<tr>
<td>Vote</td>
<td>0.6099</td>
<td>0.5278</td>
<td>0.4039</td>
<td>0.4363</td>
</tr>
<tr>
<td>Mushroom</td>
<td>0.5938</td>
<td>0.5938</td>
<td>0.5938</td>
<td>0.5938</td>
</tr>
<tr>
<td>Soybean</td>
<td>0.7902</td>
<td>0.7813</td>
<td>0.7881</td>
<td>0.7731</td>
</tr>
<tr>
<td>Dermatology</td>
<td>0.9120</td>
<td>0.9519</td>
<td>0.8997</td>
<td>0.8089</td>
</tr>
<tr>
<td>Car</td>
<td>0.0359</td>
<td>0.0359</td>
<td>0.0621</td>
<td>0.0358</td>
</tr>
<tr>
<td>Adult</td>
<td>0.1272</td>
<td>0.0680</td>
<td>0.0811</td>
<td>0.1293</td>
</tr>
<tr>
<td>Titanic</td>
<td>0.0674</td>
<td>0.0289</td>
<td>0.0211</td>
<td>0.055</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>0.1673</td>
<td>0.0235</td>
<td>0.0234</td>
<td>0.1673</td>
</tr>
<tr>
<td>Breast-Cancer</td>
<td>0.0741</td>
<td>0.0741</td>
<td>0.0188</td>
<td>0.0741</td>
</tr>
<tr>
<td>Balloons</td>
<td>1.0</td>
<td>1.0</td>
<td>0.4325</td>
<td>1.0</td>
</tr>
<tr>
<td>SynA</td>
<td>0.9790</td>
<td>0.9790</td>
<td>0.8079</td>
<td>1.0</td>
</tr>
<tr>
<td>SynB</td>
<td>0.8548</td>
<td>0.8345</td>
<td>0.7126</td>
<td>0.7757</td>
</tr>
<tr>
<td>SynC</td>
<td>0.643</td>
<td>0.6269</td>
<td>0.3971</td>
<td>0.4286</td>
</tr>
<tr>
<td>SynD</td>
<td>0.8705</td>
<td>0.818</td>
<td>0.7587</td>
<td>0.7772</td>
</tr>
</tbody>
</table>
Fig. 11. Adjusted Rand Index results w.r.t. base-line measures

datasets), but, even when they fail in achieving the best results, at least one of the performance parameters is close to the winning approach. On the other hand, the performance indexes achieved by DILCA are sensibly better than those obtained by the other approaches in many datasets (Vote, Dermatology, Titanic, SynB, SynC and SynD). Notice that the last three datasets are high-dimensional and significantly sparse (20 and 50 values per variable). This means that DILCA provides accurate results also in these hard contexts. Moreover, we observed that ROCK is very sensitive to the parameter value. In these experiments we noticed that DILCA M obtains the best results when we set the \(\sigma \) parameter to values higher than 0.5. Indeed, during the distance learning phase on the categorical values, the algorithms consider as a context only small portions of the whole attribute set.

In the tables of Figures 6, 7 and 8, instead, we report the results of the comparison of our approaches with LIN, OF and GOODALL3. Also in this case, when some of the other approaches outperform DILCA, the performance indexes are in general close (except for Car). However, in many cases, when DILCA outperforms all other approaches, its performance parameters are much higher (e.g., in Vote, Titanic, Ballons, SynA, SynC and SynD). We omit here the discussion on Purity, since its values are less significant than NMI and ARI, as shown beforehand. However, for completeness, we report them in the table of Fig. 6.

Finally, we consider the last group of competitors, which employs two well known similarity coefficients (see tables of Figures 9, 10 and 11). As expected, results for the standard Jaccard metrics are poor in general. The Pearson’s coefficient, instead, in some cases achieves comparable results w.r.t. DILCA. In many cases, however, the NMI and ARI performance indexes are far from being comparable with those obtained by DILCA. This is the case of Audiology, Vote, Dermatology, SynB, SynC and SynD (when considering NMI), and Vote, Dermatology, Car, Adult, SynB and SynC (when considering ARI).

In general our approach outperforms the other studied approaches for at least one performance index. However, since our distance is learnt from the distribution of the attribute values within the data, when the size of the dataset is small w.r.t. the number of attributes/values, it is somehow expected that the results are biased by the weak representativeness of the samples. Nevertheless, the context selection phase sometimes puts a remedy to this effect: attributes that introduce noise are ignored in the value distance computation step. In some cases, the performances are low for any clustering algorithm: this fact means that the partitions determined by the class labels are not supported by the data. For instance, it is well known that Car dataset has relatively low attribute prediction accuracies [Zhu et al. 2004]. This explains why our approach never wins against the other competitors in this particular case.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>DILCA M</th>
<th>DILCA RR</th>
<th>JACCARD</th>
<th>PEARSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiology</td>
<td>0.2103</td>
<td>0.2200</td>
<td>0.2668</td>
<td>0.1952</td>
</tr>
<tr>
<td>Vote</td>
<td>0.7031</td>
<td>0.6207</td>
<td>0.5218</td>
<td>0.4969</td>
</tr>
<tr>
<td>Mushroom</td>
<td>0.6090</td>
<td>0.6090</td>
<td>0.6090</td>
<td>0.6090</td>
</tr>
<tr>
<td>Soybean</td>
<td>0.5094</td>
<td>0.5109</td>
<td>0.4966</td>
<td>0.4539</td>
</tr>
<tr>
<td>Dermatology</td>
<td>0.9158</td>
<td>0.9542</td>
<td>0.9086</td>
<td>0.684</td>
</tr>
<tr>
<td>Car</td>
<td>0.0129</td>
<td>0.0043</td>
<td>0.0129</td>
<td>0.0042</td>
</tr>
<tr>
<td>Adult</td>
<td>0.1364</td>
<td>0.1096</td>
<td>0.0257</td>
<td>-0.0028</td>
</tr>
<tr>
<td>Post-operative</td>
<td>0.0616</td>
<td>-0.0128</td>
<td>-0.0218</td>
<td>0.0269</td>
</tr>
<tr>
<td>Titanic</td>
<td>0.2744</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.2744</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>0.3903</td>
<td>0.1459</td>
<td>0.2285</td>
<td>0.3801</td>
</tr>
<tr>
<td>Breast-Cancer</td>
<td>0.159</td>
<td>0.159</td>
<td>-0.0998</td>
<td>0.159</td>
</tr>
<tr>
<td>Ballons</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3262</td>
<td>1.0</td>
</tr>
<tr>
<td>SynA</td>
<td>0.9803</td>
<td>0.9803</td>
<td>0.8372</td>
<td>1.0</td>
</tr>
<tr>
<td>SynB</td>
<td>0.8457</td>
<td>0.8437</td>
<td>0.7134</td>
<td>0.7862</td>
</tr>
<tr>
<td>SynC</td>
<td>0.6498</td>
<td>0.6302</td>
<td>0.3267</td>
<td>0.4079</td>
</tr>
<tr>
<td>SynD</td>
<td>0.8717</td>
<td>0.8247</td>
<td>0.7978</td>
<td>0.8112</td>
</tr>
</tbody>
</table>
5.5.1. Impact of σ on $DILCA_M$. We plot the behavior of $DILCA_M$ to check how the σ parameter influences the algorithm.

We let vary the parameter σ from 0 to 1 with steps of 0.1. When the parameter is equal to 0 all the features are included in the context. We observed that the influence of different settings of σ on performance indexes is minimum on UCI datasets (see Figure 12(a) and 12(b)). In most datasets, the variation in Purity and NMI is very low (the only exception is Vote). In Figure 12 we report only the sensitivity plot for those datasets in which the variation between the maximum value and the minimum one is greater than or equal to 0.05. We use the same policy for both Purity and NMI. For the purity this means that the variation is greater than or equal to 5%.

On synthetic data, performance indexes grow with increasing values of σ (See Fig.13). Also in this figures, we report only those curves that show a significant variations.

Although there is no general law about how to choose this parameter, we estimate that, in general, its impact is less important than standard clustering parameters (such as, the number of clusters, or other algorithm-specific parameters).

5.5.2. Scalability of $DILCA_{RR}$ and $DILCA_M$. We introduce now a study on the scalability of our distance learning approach, coupled with hierarchical clustering algorithms. We evaluate the scalability varying the two dimensions of the dataset that may have an impact on time performances. The datasets are generated with [Melli 2008]. For $DILCA_M$, LIMBO and ROCK we set the parameters to zero. Using this setting we analyze the worst case for each of the methods. $DILCA_{RR}$ and $DELTA$ do not need any parameter setting.

The first dimension under study is the number of instances. For this purpose, we generated 10,000 synthetic instances described by 50 attributes, then we built 10 datasets containing from 1000 to 10,000 instances. Results are shown in Figure 14(a). The picture shows that $DILCA$ is faster than the other methods. ROCK was instead unable to process more than 8,000 instances within reasonable time.

The second dimension under study is the number of features. We also performed an analysis on the scalability of the methods w.r.t. the number of features. We used another synthetic dataset consisting of 1,000 instances and 1,000 attributes, from which we built 10 datasets containing from 100 to 1,000 features. Each attribute ranges over ten nominal values. We compared the two versions of $DILCA$ with LIMBO and $DELTA$. Unfortunately, it did not make much sense to analyze the scalability w.r.t. the number of features for ROCK, since it does not take into consideration a feature selection phase. Rather, the implementation provided by the authors takes as input already a point-to-point distance matrix, pre-computed on the complete feature set.

We report the results in Figure14(b). The picture shows again that $DILCA$ is faster than the other methods. Let us now analyze the performance of $DILCA_M$ and $DILCA_{RR}$ in depth. Apparently they do not reflect the complexity analysis given in Section 4.3. However, as we anticipated, the complexity analysis supposes the worst case. This means that the time spent to rank all attributes is compensated by the second step of the algorithm. When the feature space grows, it is more probable that non-relevant and redundant features are present in the dataset. Indeed, during the second step, the algorithm only needs to compute distances over a small portion of the attribute set. To give an idea of the impact of the feature selection step, we report in Figure 15 the average number of retained features for the datasets described in Section 5.3.

Finally, we also investigated on the time spent by $DILCA_M$, $DILCA_{RR}$ and $DELTA$ to perform clustering. In Figure 16 we report the time spent by the three parts of the hierarchical clustering algorithms: (i) computation of the distances between the values of the categorical attributes; (ii) computation of the point-to-point distance matrix; (iii) generation of the dendrogram.

Since $DELTA$ is coupled with the same hierarchical clustering algorithm employed for $DILCA$, the second and third phases are the same for the three methods. Thus, we obtain a total of five curves that represent respectively the time spent by $DILCA_M$, $DILCA_{RR}$ and $DELTA$ to compute distances between categorical values, the time spent to compute the instance-to-instance distance matrix given...
as input to the hierarchical algorithm, and the effective time spent by Ward algorithm to build the dendrogram.

As a result, we can notice that the most consistent portion of the overall computational time is employed to calculate the dendrogram and the instance-to-instance distance matrix. Notice also that DELTA performs much slower than both DILCA_M and DILCA_RR.

6. CONCLUSION

We introduced a scalable approach to learn a context-based distance between the values of categorical attributes. We showed the effective impact of this approach on two distance-based clustering approaches. We believe that the proposed framework is general enough and it can be applied to any data mining task that involves categorical data and requires distance computations. As a future
work we will investigate the application of our distance learning approach to different distance-based tasks. Although $DILCA_M$ seems preferable from the point of view of the computational complexity we must acknowledge that the computational complexity is given by the worst case. In practice, on average, experiments on real computational time showed that $DILCA_{RR}$ is preferable. In fact, the preliminary phase of context selection speeds up the distance computation phase. From the point of view of the quality of the obtained clusters whether $DILCA_M$ or $DILCA_{RR}$ is preferable is not easy to predict. It is a matter of future work to learn which of them would be better as a prediction task according to the typology of the data.

A first possible application of $DILCA$ is within a nearest neighbors classifier (kNN [Bishop 2006]) to estimate a good distance measure between two instances that contain categorical attributes.
Moreover, any other distance-based classification algorithm is a good candidate for DILCA, e.g., SVM [Bishop 2006].

Boolean variables are a special case of categorical attributes. DILCA can be used with any task that employs boolean features and the necessity of computing distance between instances, e.g., within a transactional clustering [Yang et al. 2002] algorithm. In transactional clustering we can represent a transaction as a boolean vector that indicates if a specific object is contained in the transaction. Another field of application is anomaly/outlier detection [Tan et al. 2005].

An issue we could investigate in the future is whether, given a representative set of data instances, it could be possible to populate an ontology system automatically using our distance learning approach.

Fig. 14. Time performance w.r.t. the number of instances (a) and attributes (b).
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Orig. # of attr.</th>
<th>Avg. # of attr. in context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiology</td>
<td>59</td>
<td>5.55 ± 5.25</td>
</tr>
<tr>
<td>Vote</td>
<td>16</td>
<td>2.94 ± 1.34</td>
</tr>
<tr>
<td>Mushroom</td>
<td>22</td>
<td>4.36 ± 1.97</td>
</tr>
<tr>
<td>Dermatology</td>
<td>34</td>
<td>4.24 ± 1.78</td>
</tr>
<tr>
<td>Soybean</td>
<td>35</td>
<td>4.71 ± 1.68</td>
</tr>
<tr>
<td>Car</td>
<td>6</td>
<td>3.0 ± 0.0</td>
</tr>
<tr>
<td>Adult</td>
<td>14</td>
<td>2.93 ± 1.10</td>
</tr>
<tr>
<td>Post-operative</td>
<td>8</td>
<td>2.25 ± 0.97</td>
</tr>
<tr>
<td>Titanic</td>
<td>3</td>
<td>1.33 ± 0.47</td>
</tr>
<tr>
<td>Breast-Cancer</td>
<td>9</td>
<td>2.33 ± 0.94</td>
</tr>
<tr>
<td>Ballons</td>
<td>4</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>SynA</td>
<td>50</td>
<td>6.92 ± 2.58</td>
</tr>
<tr>
<td>SynB</td>
<td>50</td>
<td>6.86 ± 2.20</td>
</tr>
<tr>
<td>SynC</td>
<td>100</td>
<td>10.54 ± 2.75</td>
</tr>
<tr>
<td>SynD</td>
<td>100</td>
<td>10.13 ± 3.18</td>
</tr>
</tbody>
</table>

Fig. 15. Mean number of attributes in the context for DILCA_{RR}

Fig. 16. Computational time for each hierarchical clustering phase.

Finally, using this distance it will be possible to compute distances between objects described by both numerical and categorical attributes.

ACKNOWLEDGMENTS
The authors wish to thank Dr. Eui-Hong Han who provided the source code of ROCK, and Dr. Periklis Andritsos who provided the implementation of LIMBO. We also thank Elena Roglia, Daniele Radicioni and Alessandro Mazzei for stimulating discussions. We want to thank Regione Piemonte which co-funds Ruggero G. Pensa.

REFERENCES

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 2011.

Received February 2007; revised March 2009; accepted June 2009