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Despite intensive efforts, development of novel treatments of neuropathic pain has encountered 

mitigated success. While common and incapacitating, neuropathic pain remains poorly treated, with 

few patients experiencing greater than 50% symptom relief (1). As an example, Pregabalin, which 

targets the α2δ subunit of the voltage-dependent calcium channel and which is the current gold standard 

for neuropathic pain, reduces the pain score significantly in only one out of four patients (2). Targeting 

TrpV1 channel, which has attracted considerable resources, has only yielded the weak-selling capsaicin 

patch and has recently been denied indication expansion into HIV-related neuropathic pain by the 

FDA. In addition to weak efficacy issues, most approved treatments cause common and significant 

central side effects such as sedation and dizziness, diminishing the quality of life of affected patients. 

Opiate-based treatments, for example, are plagued with several side effects, beyond sedation, including 

psychomotor issues, abuse liability, tolerance and even paradoxical hyperalgesia (3). Recent promising 

alternatives, such as anti-nerve growth factor (NGF) antibodies have demonstrated very strong 

analgesic efficacy, yet, these strategies were put on hold due to severe side effects; many patients 

developing joint damage (4). 

 

The unmet needs of improved efficacy and better adverse event profile will require a different 

approach. One potential way of treating neuropathic pain is to restore proper inhibitory pathways in the 

central nervous system. Indeed, central disinhibition has long been known to play a major role in the 

pathophysiology of neuropathic pain states (5). After nerve injury, there is a marked decrease in the 

inhibitory efficacy of GABAA and glycine receptor-mediated transmission which results in aberrant 

transmission of sensory and nociceptive information to the brain (6). A first step to develop therapeutics 

that would restore proper inhibition is to understand the underlying mechanism of disinhibition. While 

several causes have been proposed (6), a key mechanism that has emerged involves the disruption of Cl- 

homeostasis resulting from loss of activity of the K+-Cl- co-transporter KCC2, a molecule responsible 

for maintaining efficient Cl- mediated inhibition in central neurons (7). This mechanism appears 

implicated across several pathological pain syndromes with diverse aetiologies, including spinal cord 



injury (8), inflammation (9), painful diabetic neuropathy (10), trigeminal pain (11) and more recently even 

morphine-induced paradoxical hyperalgesia (3). 

 

Several components of the cellular signalling cascade underlying impaired Cl- homeostasis in spinal 

nociceptive pathways in pathological conditions have been identified, uncovering several potential 

therapeutic targets (12,3). Enhanced BDNF release either from microglia (12,3,13) or from sensory nerves 
(14), acting on TrkB receptors to cause downregulation of KCC2, appears as a common culprit in several 

conditions. In processes involving microglia, a key event is the de novo expression of the purinergic 

P2X4 receptors (P2X4R) in these cells at the spinal level (15,12,3,13). Each step of the P2X4R-BDNF-

TrkB-KCC2 pathway thus emerges as a potential druggable target for combating pathological pain 

symptoms. Indeed, the ablation of P2X4R prevents the development of neuropathic pain (13). 

Importantly, ablating microglia, chelating BDNF or blocking P2X4R or TrkB receptors reverses 

established pain hypersensitivity, indicating that the identified pathway plays an active role in 

maintaining pathological pain (12,3). Targeting signalling events upstream of KCC2 may thus serve to 

reverse the pathology, not only prevent its development. Yet, altering microglial function may be 

detrimental as they are involved in essential support and immune activities. Similarly, interfering with 

BDNF-TrkB signalling is likely to impact on a multitude of trophic and survival mechanisms in 

neurons. An obvious alternative approach to counter disinhibition is to increase GABAA receptor-

mediated function. However, a fundamental limitation of drugs acting on GABAA receptors such as 

benzodiazepines or barbiturates may be found in the ionic mechanisms underlying their action. 

 

Indeed, since KCC2 is responsible for Cl- extrusion, disruption of its function causes a collapse of the 

transmembrane Cl- gradient and a depolarizing shift in GABAA reversal potential (EGABA). This in turn 

leads to a decrease in inhibitory efficacy (16). The strategy of compensating the decrease in Cl- driving 

force by an increase in Cl- conductance to restore inhibitory current may be at first met by success. Yet, 

it inherently has its limitations because it may exacerbate the collapse of the Cl- gradient. This appears 

to be the case whereby low dosage of midazolam is effectively anti-hyperalgesic in neuropathic pain 

models, while the efficiency of the drug is reduced at high doses (17). The mechanistic explanation for 

this paradoxical effect may have an ionic basis. For hyperpolarization to result from Cl- currents, it is 

mandatory that the Cl- reversal potential (ECl) be more hyperpolarized than the membrane potential 

which is only possible at low intracellular Cl- concentration ([Cl-]i). The value of [Cl-]i results from a 

dynamical equilibrium between Cl- influx through channels and its efflux through KCC2. It follows 



that KCC2 hypofunction does not only lead to depolarization of the GABAA reversal potential (EGABA), 

it also renders EGABA more labile (18). For example, large Cl- loads exacerbate EGABA depolarization (19) 

and repeated or sustained activity can cause dynamic collapse of inhibition, especially in dendrites 
(20,18). Thus, increased GABAA receptor-mediated activity will have two opposing effects in cells with 

depleted KCC2 activity: first, an increase in Cl- mediated inhibition, followed by an activity dependant 

collapse of Cl- transmembrane gradient. This negative feedback implies that increasing GABAA activity 

will rapidly reach a limit. 

 

This phenomenon in itself is not sufficient however to explain the decrease in drug efficacy occurring 

at high dose. The latter paradoxical effect can be explained by the depolarizing flow of HCO3
- to which 

GABAA and glycine channels are also permeable (21). In contrast to ECl, EHCO3 is maintained relatively 

stable by pH buffering mechanisms and rapid diffusion of CO2 across the membrane allowing efficient 

[HCO3
-]i replenishment by conversion of H2O and CO2 via a carbonic anhydrase (CA) mediated 

reaction (21). Accordingly, upon collapse of Cl- currents due to a drug-induced heightened GABAA 

function, the opposing HCO3
- current becomes dominant, effectively counteracting the pro-inhibitory 

action of the drug. 

 

One strategy to mitigate the negative effects of HCO3
- currents through GABAA channels is to block 

the CA activity, for example using acetazolamide, enabling activity-dependant depletion of [HCO3
-]i. 

The decrease in HCO3
- current will parallel the collapse of the Cl- current (3) extending the efficacy of 

pro-GABAA drugs (17). However, this strategy also has its limits because it does not prevent the 

dynamic collapse in Cl- gradient, meaning that a certain amount of hyperexcitability will remain 

uncompensatable. Furthermore, impaired Cl- extrusion can cause a positive feedback loop between 

excitation and Cl- accumulation in which case sustained inputs can lead to catastrophic failure of 

inhibition (18). In addition, potential problems associated with impaired intracellular pH regulation in 

absence of normal CA activity may limit the usefulness of targeting HCO3
- currents. 

 

For the reasons exposed above, a promising analgesic strategy is to enhance KCC2 activity not only to 

restore EGABA to its normal value, but also to prevent activity dependant Cl- accumulation and its 

associated side effects. Furthermore, since KCC2 already operates near its equilibrium point (22), 

potential excess activity caused by treatment aiming to restore its normal function is unlikely to have 

adverse effects on neuron dynamics (18). How can KCC2 function be restored? The most 



straightforward strategy is to directly target KCC2 function, expression and/or turnover. Thus, 

enhancing KCC2 function can be achieved by promoting its synthesis and/or reducing its degradation, 

but also potentially by modulating transporter function. For example, it has been suggested that the 

quaternary structure of KCC2 is an important determinant of its function. Indeed, KCC2 

oligomerization has been suggested as a rapid mechanism by which KCC2 activity is modulated during 

development (23), the oligomeric form being the active one. Consistent with these findings, BDNF-

dependent pain hypersensitivity appears to be associated with an increase in the monomer/oligomer 

ratio (3). Compounds stabilizing the oligomeric state may thus be effective KCC2 enhancers. Proof of 

principle that positive modulation of KCC2 function can have therapeutic benefits has recently been 

provided for analgesia (24) and treatment of motor spasticity (25). 

 

Because KCC2 expression is restricted to central neurons (26), targeting this transporter may reduce the 

risk of unwanted effects in peripheral nervous system or in other tissues. And because disrupted KCC2 

activity appears to be involved in several neurological and psychiatric disorders including epilepsy, 

motor spasticity, stress and schizophrenia (27,28,20,29,30), KCC2 enhancing drugs may have broad 

therapeutic potential. 
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