
27 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Unravelling the structure and reactivity of supported Ni particles in Ni-CeZrO2 catalysts

Published version:

DOI:10.1016/j.apcatb.2013.02.036

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/132210 since 2016-10-03T12:12:38Z



1 

 

 
 

 

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by 

agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - 

such as editing, corrections, structural formatting, and other quality control mechanisms - may not be 

reflected in this version of the text. The definitive version of the text was subsequently published in  

 

 

Applied Catalysis B Environmental, Vol. 138-139, 4 March 2013, DOI: 

10.1016/j.apcatb.2013.02.036 
 

 

You may download, copy and otherwise use the AAM for non-commercial purposes provided that your 

license is limited by the following restrictions: 

 

(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND 

license.  

(2) The integrity of the work and identification of the author, copyright owner, and publisher must be 

preserved in any copy.  

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en),  

 

http://dx.doi.org/10.1016/j.apcatb.2013.02.036 

 

 

 

 

http://dx.doi.org/10.1016/j.apcatb.2013.02.036


2 

 

Unravelling the structure and reactivity of supported Ni particles in Ni-CeZrO2 

catalysts 

 

S. Gopalakrishnan,
a,b

 M. G. Faga,
b
 I. Miletto,

a
 S. Coluccia,

a,b
 G. Caputo,

c
 S. Sau,

c
 A. Giaconia,

c
  

and G. Berlier
a1

 

 

 

a
 Università di Torino, Dipartimento di Chimica and NIS Centre of Excellence, Via P. Giuria 7, 10125 

Torino, Italy. 

b
 CNR-IMAMOTER, Strada delle Cacce 73, 10135 Torino, Italy. 

c
 ENEA, “Casaccia” Research Center, via Anguillarese, 301, 00060 – Rome, Italy. 

                                                 
1
 Corresponding author; e-mail: gloria.berlier@unito.it; tel.: +39 0116707856; fax.: +39 0116707953 

 

mailto:gloria.berlier@unito.it


3 

 

Abstract 

We report about the synthesis and characterization of two NiCeZrO2 catalysts prepared by one 

pot-co-precipitation method. The two samples are characterized by similar chemical composition (15% 

wt Ni, Ce/Zr = 80/20 atomic ratio) and properties of the CeZrO2 support, which is a cubic phase solid 

solution with nanometer sized (5-6 nm) crystalline hexagonal/roundish particles. The main differences 

between the samples are in the NiO particles dispersion and surface area, which were found to be 

affected by the synthesis pH. Both samples were characterized about their surface properties by 

employing FTIR spectroscopy of adsorbed CO probe, and tested about their activity and stability in 

methane steam reforming (MSR) reaction at relatively low temperature (793 K). The results show a 

good activity in MSR irrespective of the NiO size and morphology, with negligible CO formation, but a 

strong dependence of the catalysts stability upon these parameters. Only the catalyst with smaller (5-10 

nm) NiO particles was found stable for 250 hours in MSR at relatively high steam to carbon ratio (S/C 

= 2). This performance could be related to a positive effect of the CeZrO2 support, allowing fast and 

easy oxygen transfer to and from the NiO/Ni
0
 active phase, most likely thanks to the occurrence of a 

strong metal-support interaction. 

 

 

Keywords: Methane Steam Reforming, CeZrO2, Ni carbonyls, FTIR spectroscopy, solar energy 
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1. Introduction 

 The growing request for the development and diffusion of technologies based on renewable 

energy sources represents an important challenge for researchers working in catalysis. In recent years, 

steam reforming of methane (MSR) has received a wide attention for the production of hydrogen and 

syngas as a major feedstock for fuel cells and Fischer-Tropsch reaction. When the process is coupled to 

water gas shift reaction, hydromethane (a mixture of hydrogen and methane) can be obtained, which, 

after CO2 removal, could be employed to power hybrid automotive systems. If the temperature of the 

process is lowered by employing a proper catalyst, a low green-house impact fuel can be produced in 

solar powered plants, based on molten salt technology [1, 2]. 

Commercial catalysts for the methane steam reforming reaction are based on metal Ni particles 

dispersed on supports such as Al2O3, MgO and MgAl2O4 or their mixture [3]. Selection of support 

material is an important issue, as it has been evidenced that it can seriously influence metal activity and 

stability [3-5]. This effect, mainly based on the support surface properties and metal-support 

interaction, can also result in low temperature activity of the Ni phases [6]. 

The primary difficulty associated with Ni is deactivation due to either coke formation or 

sintering of metallic and support phases at high temperature [7, 8]. Sintering, often caused by the 

severe conditions of the industrial process (high temperature and pressure, necessary to shift the 

thermodynamic equilibrium to the products), results in the formation of large metal particles, with 

consequent loss in surface area ad activity. The second, but not less important cause of deactivation is 

related to the formation of carbon whiskers, which grow on and strongly bind to Ni particles, causing 

their removal from the support or even reactor blockage. This phenomenon could be reduced by 

increasing the steam to carbon ratio (S/C), but this would require major limitations in the process 

parameters and lower energy-efficiency of the plant [3]. Promoters are often employed to avoid the 



5 

 

deactivation issue. These include alkali metal ions, sulphurs, transition metal ions (Ag, Au, Cu, Sn etc) 

or even doping with boron [9-12]. 

One of the most promising catalysts for low temperature MSR is based on Ni-CeZrO2 mixed 

oxide [13-16]. CeO2 is an active support, widely employed in catalysis thanks to the reported 

enhancement of metal dispersion and strong metal-support interaction (SMSI) [14, 17-20]. Moreover, 

CeO2 has a high “oxygen storage capability” (OSC), related to the presence of oxygen vacancies in 

defective sites that can be quickly formed and destroyed [21-23]. This feature could be useful to avoid 

deactivation as a consequence of coke formation. At high reaction temperature, however CeO2 is 

readily sintered, which results in catalyst deactivation. It has been reported that the addition of ZrO2 

leads to improvement in thermal resistance and OCS of CeO2 [24-28].This was found to be due to the 

partial substitution of Ce
4+

 with Zr
4+

 in the lattice of CeO2, which results in a solid solution formation 

[29-31]. 

In this study, the structural and surface properties of two NiCeZrO2 catalysts, prepared by 

optimization of a co-precipitation method [13], are compared. The two samples are characterized by 

similar chemical composition (15% Ni wt, Ce/Zr = 80/20 atomic ratio), CeZrO2 crystalline structure, 

particle size and morphology. However, pH modification in the synthesis resulted in different specific 

surface area and NiO particle size. This allowed us to compare the two catalysts surface properties and 

reactivity, by employing FTIR spectroscopy of CO probe molecule and by performing catalytic tests in 

low temperature methane steam reforming. The whole set of results suggest an important effect of the 

CeZrO2 support on the redox behaviour of NiO/Ni
0
 particles, suggesting easy oxygen transfer to/from 

the support when in intimate contact with the active phase. 

 

2. Experimental 

2.1 Catalyst preparation 
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Ni-Ce-ZrO2 catalysts were prepared through the optimization of a one step co-

precipitation/digestion method reported in the literature [13]. Ni loading was fixed at 15 wt.%, while 

the support composition was chosen as 80 mol% of CeO2 and 20 mol% of ZrO2. Stoichiometric 

quantities of zirconyl nitrate solution (99.9%, Sigma Aldrich), cerious nitrate (99.9% Aldrich), and 

nickel nitrate (99.99%, Aldrich), were dissolved in distilled water, and the resulting solution was 

transferred to a round-bottomed glass flask. An aqueous 20% KOH (w/w) solution was added drop-

wise at 353 K with constant stirring to attain an alkaline pH, which was maintained during the entire 

course of co-precipitation reaction. Catalyst A was prepared at pH = 10.5, while pH = 9.5 resulted in 

catalyst B. The precipitates were digested at 353 K for 24h. Afterwards, they were thoroughly washed 

with distilled water to remove potassium impurities, dried at ambient conditions for 48 hours and at 

393 K for 6 hours. The dried mass thus obtained was then finely ground to an average particle size of 

less than a micron. This material was calcined at 773 K for 6 h to obtain the final catalysts.  

 

2.2 Characterisation techniques 

Specific Surface Area (SSA) was measured by nitrogen adsorption and desorption cycles at 77 

K using a Micromeritics (ASAP 2020) surface area measurement apparatus, employing the Brunauer 

Emmet Teller model. XRD patterns were recorded using a X
’
Pert PRO MPD from PANalytical 

PW3040/60 diffractometer (Ni filtered Cu-Kα radiation, 40 kV, 35 mA) in the range of 20-80° with an 

angular step of 0.0167°/min at 100 s per step, using 0.3 mm capillaries. The average crystallite size of 

the samples was determined with the Scherrer equation from the line-widths of the XRD peaks at ca. 

2θ = 29°, corresponding to (111) plane of cubic CeZrO2, and at ca 43°, corresponding to the (220) 

plane of cubic NiO. 

The chemical composition of the calcined samples was determined by EDX microanalysis 

(Oxford INCA Energy 200, connected to Zeiss EVO50 SEM). HRTEM (High Resolution Transition 
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Electron Microscope) images were registered with a JEOL 3010-UHR with acceleration potential of 

300 kV. For these measurements, samples were dispersed on a copper grid covered with a lacey carbon 

film. The resulting images (Figures 2 and 3) unfortunately suffer from a technical problem, related to 

the detector electronics, resulting in different background darkness in two halves of the images.  

In situ adsorption experiments were carried out with Fourier Transform Infrared spectroscopy 

(FTIR) using carbon monoxide (CO) as probe molecule on a Bruker IFS 88 spectrometer equipped 

with mercury cadmium telluride (MCT) detector (64 accumulated scans, resolution 4 cm
-1

). Samples 

were in form of self supporting pellets (10-12 mg/cm
2
) and were directly treated in a quartz IR cell 

equipped with KBr windows, allowing thermal treatments in vaccum or in controlled atmosphere and 

recording the spectra at room temperature (RT) and liquid nitrogen temperature (estimated temperature 

110 K). Background subtracted reported spectra were obatined by employing the spectrum of the 

catalysts before CO adsorption as reference. 

Prior to FTIR studies the catalysts were outgassed at 823 K and oxidized at the same 

temperature in 60 Torr O2 for 1 hour. The same procedure was carried out for reduction treatments, 

employing 60 Torr of H2 at 823 K. O2 and H2 were outgassed at the treatment temperature before 

cooling  to room temperature (RT) in vacuum. High purity O2, H2 and CO were supplied by 

PRAXAIR, Belgium. Gases were passed through a liquid nitrogen trap before adsorption, and they 

were used without further purification. 

Catalytic tests were carried out in a tubular fixed-bed stainless steel reactor (inner diameter 8 

mm, length 24 cm), with the catalysts sitting on a porous plate. Flow and composition of reactants 

(water and CH4) were monitored with mass flow controllers. Both reactants were pre-heated at 433 – 

473 K before mixture, to avoid water vapour condensation. Reactor was heated with a heating jacket 

(max T = 1073 K) and located in a hot box (max T = 473 K). Reaction products were flowed through a 

gas-liquid separator, to condense unreacted water. The resulting dry products mixture was sent to a 
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silica gel column for further dehydration and analysed online employing Gas Chromatography and an 

Advance Optima analyzer (ABB), allowing thermal conductivity, electrochemical and 

spectrophotometric measurements in parallel. The system is calibrated to measure H2, CO2, CO (ppm), 

CH4 and O2. 

Before the tests the catalysts (200 mg) were pressed into pellets with sizes between 255 and 350 

µm and reduced at 673 K in a nitrogen flow containing 5% H2 for 1 hour. MSR tests were carried out at 

P = 1 atm, T = 793 K and GHSV = 30000 h
-1

, with steam to carbon ratios (S/C) = 2 and 3. Catalysts 

stability was checked by running the reaction for 250 hours. After the tests the catalysts were cooled to 

RT in N2 flow. 

 

3. Results and Discussion 

3.1 General properties 

Table 1 summarizes the main characteristics of the prepared and tested catalysts. Both samples 

show a chemical composition very similar to the theoretical values employed for the synthesis. The 

main differences between catalysts A and B are in the measured SSA and crystallite size estimated 

from XRD (see below). As for textural properties, it is noteworthy that the co-precipitation/digestion 

method allowed to obtain high SSA in both samples, irrespective of pH control. However, the best 

value (134 m
2
/g) was obtained for catalyst A, prepared at pH 10.5. As for the samples porosity, which 

is the result of interparticle voids, it is not particularly affected by the pH control. 

The XRD patterns of catalysts A and B as prepared (calcined), reduced in H2 and after the 

catalytic tests are reported in Fig. 1. Both samples show the characteristic reflections corresponding to 

the cubic (fluorite) structure, labelled in the Figure to the corresponding crystallographic planes 

(JCPDS 34-0394 for cubic CeO2). The cell parameter a0, calculated measuring the position of the (111) 
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peak at around 28.58° is 5.40 Å, which is an intermediate value between that of pure CeO2 and that of a 

cubic Ce0.6Zr0.4O2 phase (JCPDS 38-1439), confirming the formation of a solid solution.  

It is important to notice that, due to the broad character of the XRD peaks, the heterogeneity of 

ceria-zirconia mixed oxides structures cannot be excluded. In fact, different authors have shown how 

cubic and tetragonal phases are not easily distinguished on the basis of XRD, so that Raman 

spectroscopy was employed to this aim through the analysis of skeletal IR vibrations [31]. More 

recently, Montini et al. proposed the employ of Eu
3+

 as a structural probe, to monitor the presence of 

small metastable domains in CeZrO2 samples with nanoscale heterogeneity, which appeared 

homogeneous by conventional XRD [32]. In our case, Raman measurements showed the presence of a 

single peak at 470 cm
-1

, confirming that the main crystal phase is the cubic fluorite-like one (Figure 1 

in SI) [31]. We cannot however exclude a nanoscale heterogeneity, which could have important effects 

on the catalytic properties [32]. 

In addition to the CeZrO2 peaks, in the as prepared samples weak peaks are observed at 37.09°, 

43.22° and 62.75°, which can be related to the (111), (200) and (220) planes of a cubic NiO phase 

(JCPDS 47-1049, labelled with a star in Fig. 1). Noticeably, these peaks are weaker and broader in 

catalyst A, suggesting smaller size and higher dispersion of the NiO phase. Accordingly, the average 

crystallite sizes of both support and active phase were determined with the Scherrer equation from the 

line-widths of the peaks at 2θ = 28.6° and 43.3°, related to the (111) and (200) planes of CeZrO2 and 

NiO phases, respectively. The calculated values (Table 1) clearly show an effect of the synthesis 

conditions on the dispersion of the active phase. While the average crystallite size of the support is 

similar in the two samples (around 6 nm), smaller NiO particles are formed when the synthesis pH is 

raised from 9.5 to 10.5. 

The same XRD measurements were carried out on the catalysts previously reduced in H2 and 

recovered after the catalytic tests (curves b and c, respectively). The reductive treatment is in fact 
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necessary to form the Ni
0
 active phase, responsible for the catalytic activity. To perform XRD (and 

HRTEM) experiments, samples were reduced in H2 in cells connected to vacuum lines, and opened to 

atmosphere before the experiments. In sample B (top curve b), this treatment causes the disappearance 

of the peaks due to NiO, with formation of distinct features assigned to the cubic Ni
0
 phase (JCPDS 4-

0850, labelled with a circle in Fig. 1). The line-width of these peaks suggest a slight increase in the Ni
0
 

particle size (10 nm), which are stable in air. 

Noticeably, the redox behaviour of supported Ni particles in sample A is different. When it is 

opened to atmosphere after the reductive treatment, the sample colour rapidly changes from black to 

dark brown, as the result of an exothermic reaction. The resulting XRD pattern is reported in Fig. 1 

(bottom curve b). Notwithstanding their weakness and broadness, peaks related to NiO are still 

observable, suggesting a re-oxidation of Ni
0
 particles upon air exposure. A very weak peak at 2θ= 

44.4° is also present, which could be due to a fraction of Ni
0
 particles stable to atmosphere. This 

phenomenon will be rationalized in the following, when analysing the catalysts surface properties 

(section 3.3). On the basis of XRD data the re-oxidation in air after reduction does not sensibly affect 

NiO particle size with respect to the calcined material. 

As for the catalysts recovered from catalytic tests (curves c in Fig. 1), the results suggest 

negligible changes in the structure and average crystallite dimensions of both support and active phase, 

which is found in the form of NiO, as in the as-prepared materials. This implies an oxidation of the Ni
0
 

metal active phase during the catalytic reaction or the following steps (cooling in nitrogen and removal 

from reactor). 

 

3.2 HRTEM measurements 

HRTEM technique was employed to get additional information on the catalysts particle size and 

morphology. The measurements were carried out on the as-prepared, reduced and recovered catalysts, 
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in analogy with XRD characterization procedures. In this case the reduction treatment was also aimed 

at improving the contrast between the relatively “light” supported nickel phase and the “heavy” support 

[33]. For brevity, only the HRTEM images obtained on the reduced and recovered samples will be 

discussed in detail. 

Fig. 2 reports some representative HRTEM images of sample A measured after reduction (a and 

b) and after the catalytic tests (c and d). The sample is characterized by well defined crystalline CeZrO2 

particles (5-6 nm average size, in very good agreement with XRD estimation), with 

spherical/hexagonal morphology. The shape of the particles indicates a degree of defective termination 

of the crystallites, as revealed by the roundish contours. The typical lattice distances of (111), (200) and 

(220) planes could be measured in most particles, having intermediate values between the references 

CeO2 and Ce0.6Zr0.4O2 phases (JCPDS 34-0394 and 38-1439, respectively). 

Due to the low contrast between Ni and the support atoms, the analysis of Ni
0
/NiO particles size 

and morphology was not straightforward and was carried out mainly by FT analysis, in order to 

highlight regions where characteristic lattice distance or Ni
0
 or NiO crystal phases are dominant. Some 

of the monitored particles are outlined in Figure 2 (dashed ellipsoids and rectangles). In the case of 

reduced catalyst A mainly NiO ellipsoid particles could be observed, with larger size and distinctly 

different morphology (circled region in Fig. 2b, measuring around 10 x 18 nm) with respect to the 

support. No statistical analysis could be performed on these particles, since only few ones could be 

observed, with sizes and shapes similar that reported in Fig. 2b. 

The size and morphology of the CeZrO2 particles are unaffected by the catalytic tests. Small 

changes can be observed for the Ni active phase, still showing the ellipsoid particles (10 x 4 nm in both 

Figs 2 c and d) and larger ones with different elongated rectangular shape. Due to the low contrast 

between active phase and support, we cannot exclude the presence of very small, highly dispersed 

Ni/NiO particles, too small to be detected by HRTEM. 
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Size and morphology of the CeZrO2 support of sample B (Fig. 3a) are similar to A. However, in 

this case larger Ni particles could be observed after reduction, as the one (35 x 22 nm) highlighted in 

Fig. 3b. The measured lattice distance (2.03 Å) suggests that we are observing the cubic Ni
0
 phase, in 

agreement with XRD. As observed in the case of catalyst A, the support morphology is unchanged after 

the catalytic tests, but large NiO aggregates with irregular morphology are formed, as the one shown in 

Fig. 3c (32 x 40 nm). Moreover, large amorphous portions of matter are observed (Fig. 3d, 22 x 50 

nm), embedding the support particles, which are probably due to carbon residues from the methane 

steam reforming process. Interestingly, these carbon deposits do not show any graphene structure or 

filament shape, in contrast to what often observed on Ni-based catalysts [7, 12]. This difference could 

be related to the different conditions employed in the catalytic tests. 

 

3.3 Surface studies 

 The surface properties of the catalysts were investigated by FTIR spectroscopy, particularly 

employing the CO molecular probe. In this work, the attention is focused on the CO stretching region 

(νCO), while the spectra measured in the OH stretching region (νOH) are not reported for sake of 

brevity. We only mention that this region is quite complicated, as often observed in ZrO2 or CeZrO2 

oxides [34-36]. A discussion of these features is outside the scope of this paper, however we have to 

acknowledge the presence of a narrow band at 3740 cm
-1

, which could be ascribed to surface Si-OH 

groups [36], formed as a result of Si contamination from glassware during the high pH synthesis. This 

aspect should be considered when reproducing the synthesis, since it has been shown that Si can 

improve the redox ability of CeZrO2 catalysts [37]. 

The CO adsorption experiments were carried out in two steps: i) gradual increase of CO 

equilibrium pressure (PCO) at 110 K; ii) increase of temperature from 110 K to RT at PCO = 20 Torr 

[33]. For simplicity, a selection of the more informative experiments is reported and discussed in the 
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following. The spectra are quite complex, and they can be divided into three regions: i) from 2250 to 

2100 cm
-1

, ii) from 2100 to 2000 cm
-1

, iii) 2000-1800 cm
-1

 [33, 38-41]. 

 

3.3.1 Evolution of CO spectra with coverage at 110 K 

First, the Infrared spectra measured at 110 K while increasing PCO on catalyst A previously 

oxidized or reduced (Figs. 4 top and bottom respectively), will be discussed. The results obtained in the 

same conditions on sample B, being similar, are not reported for brevity. The spectra obtained on the 

oxidized sample (Fig. 4, top panel) are mainly found in the 2250 – 2100 cm
-1

 region, even if minor 

features are also present at lower frequency. At intermediate PCO four components at 2177, 2162, 2146 

and 2100 cm
-1

 can be appreciated, while one at 2172 cm
-1

 dominating at low coverage (dashed-dotted 

curve). Their relative intensity and position change with coverage, so that at high PCO (short-dashed 

line) the spectra are dominated by a narrow peak at 2158 cm
-1

, with shoulders at 2172 and 2138 cm
-1

. 

The very weak absorption at 2100 cm
-1

 is only slightly affected by the coverage. When the same 

experiment is performed on the reduced catalyst (bottom panel) changes are observed in the whole 

spectral range. At high frequency, the component at 2172 cm
-1

 has disappeared, the one at 2158 cm
-1

 is 

less intense and shifted to 2162 cm
-1

, while a third component grows at 2151 cm
-1

. New weak bands are 

found at 2096, 2005, 1950 and 1905 cm
-1

, all slightly affected by changes in CO coverage. 

First, the attention will be focused on the high energy bands, which are dominated by the 

contribution of the support surface sites. More in detail, the band at 2158/2162 cm
-1

 can be safely 

assigned to the formation of CO adducts with Ce
4+

 sites on relatively extended surfaces, while the 

component at 2138/2151 cm
-1

, growing after the reduction treatment is compatible with Ce
3+

 sites [39-

42]. The band at 2172 cm
-1

, shifting with coverage on the oxidized sample and disappearing after 

reduction and is more controversial, since bands in similar positions were found for CO adducts on 

defective (coordinatively unsaturated) Ce
4+

 [41, 42], Zr
4+

 [34], or Ni
2+

 ions [43-46]. On the basis of the 
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comparison with CO spectra measured on CeZrO2 support prepared by similar conditions (Figure 2 in 

SI), the most likely interpretation of this band is in terms of Ni
2+

 ions on the surface of the NiO 

particles detected by HRTEM, even if we cannot exclude a minor contribution from Zr
4+

 and 

uncoordinatively unsaturated Ce
4+

. This interpretation is in agreement with the observed shift with 

coverage, which would not be compatible with Ce
4+

 ions present on steps or edges or with isolated Zr
4+

 

ions in a ceria matrix. The presence of Ni
+
 ions, which are expected to form CO adducts between 2145 

and 2100 cm
-1

 is not evident.  

As for the low frequency bands, the one at 2096 cm
-1

 evident on the reduced sample can be 

safely assigned to linear carbonyl formed on the surface of Ni
0
 particles, while the bands between 2000 

and 1800 cm
-1

 (2005, 1950 and 1905 cm
-1

) are typical of Ni
0 

bridged CO complexes [33, 38]. 

 

3.3.2 Evolution of CO spectra from 110 K to RT 

The second part of the CO adsorption experiments is reported for both catalysts, in order to 

highlight their different behaviour. Fig. 5 reports the spectra obtained by increasing temperature from 

110 K to RT at high CO coverage on the reduced catalysts (A and B, top and bottom respectively). For 

both samples the high frequency region (2250 – 2100 cm
-1

) shows the gradual decrease of the bands 

assigned to CO adducts on Ce
4+

 and Ce
3+

 ions, in agreement with the weak character of the related CO 

adducts, and with what observed on bare CeZrO2 support upon  outgassing adsorbed CO at 110 K 

(Figure 2 in SI). On the contrary the temperature increase causes the gradual growth of broad bands 

between 2100 and 1800 cm
-1

, more intense on catalyst A, and of a component at 2128 cm
-1

.  

Bands in the 2100-1800 cm
-1

 region have been often observed while sending CO on supported 

Ni
0
 particles, and their nature, evolution upon pressure, temperature and evacuation were deeply 

investigated in many papers [33, 38]. In this work, their discussion will be based on the recent 

conclusions drawn by Morandi et al. [33], where interested readers can find more details. Shortly, 
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bands similar to those observed at 2064, 2032 and 1990 cm
-1

 on catalyst A (2073, 2026 and 1980 cm
-1

 

on catalyst B) were assigned to volatile mono-nuclear Ni(CO)y (y  4), formed by reaction between CO 

and high energy Ni
0
 surface sites, and then adsorbed on the support. Less clear is the assignment of the 

components at 1915 and 1902 cm
-1

, that could be related to polynuclear Nix(CO)y formed by similar 

mechanism [33]. More in detail, on the basis of their evolution upon evacuation and subsequent CO 

dosage, Morandi et al. assigned components at 2010, 1930 and 1875 cm
-1

 to polynuclear Nix(CO)y 

species formed upon agglomeration of mononuclear ones during the outgassing at RT, while bands at 

2020, 1973 and 1915 cm
-1

 were related to Nix(CO)y species with higher CO/Ni ratio [33]. Without 

entering in the details of this complex reactivity, which has been deeply studied in the literature, the 

presence of these bands is a clear signal of the fact that reactive Ni
0
 atoms are present on the surface of 

small particles. 

In agreement with previous reports [33, 38], these experiments confirm the high reactivity of surface 

Ni
0
 atoms, which are easily extracted by interaction with CO to form volatile complexes. This could be 

explained either with the presence of highly dispersed Ni particles, too small to be detected by 

HRTEM, or by defective high index surfaces [7, 33]. Noticeably, this reactivity is higher on catalyst A, 

showing the more intense Ni(CO)y and Nix(CO)y bands. 

As for the band at 2128 cm
-1

, its position resemble that of the forbidden 
2
F5/2  

2
F7/2 electronic 

transition of Ce
3+

 ions [39], but the narrow character and the observed evolution with CO reactivity do 

not favor this assignment. We thus assign it to Ni
+
(CO) adducts, formed on partially reduced sites. 

When the same experiments are carried out on the oxidized samples, the spectra reported in Fig. 

6 are observed. Similarly to what described above, temperature increase causes the gradual depletion of 

the high energy bands, related to weak CO adducts on Ce
4+

 and Ni
2+

 ions. Interestingly, on catalyst A 

this is accompanied by the growth of the broad bands 2062, 2036 and 1976 cm
-1

 and of the component 

at 2128 cm
-1

, similarly to what observed after reduction. This implies that in this sample Ni
0
 particles 
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are formed upon CO adsorption even after an oxidation pre-treatment. Clearly, this can be ascribed to a 

reduction process caused by CO, which is favoured on the catalyst with smaller or more defective NiO 

particles. Notice that the reduction process results also in the formation of Ni
+
 ions, particularly in 

catalyst A, so that we can ascribed this band to Ni
+
 ions on the surface of small, partially reduced NiO 

particles. Next paragraph is devoted to rationalize these phenomenon by drawing simplified surface 

models.  

 

3.4. Rationalization of surface reactivity of catalyst A 

The characterization data described above points to the occurring of two distinct redox 

processes, taking place on the catalyst with smaller and better dispersed Ni particles (sample A). 

Namely, this includes: i) reduction of NiO particles to Ni
0
 upon CO contact (temperature increasing 

from 110 K to RT) and ii) RT oxidation of Ni
0
 to NiO upon air exposure. Both phenomena have been 

rationalized by considering NiO/Ni
0
 particles in intimate contact with CeZrO2 support, where for 

simplicity only surface Ce ions are depicted (Schemes 1 and 2). This choice is related to the fact that 

structural and spectroscopic techniques mainly show features ascribable to CeO2 oxide, likely because 

of the relatively low Zr contents. This does not mean that these ions do not play a role, since it has been 

reported that their inclusion in the ceria lattice, besides improving thermal stability, confer better redox 

and OSC properties [26].  

Scheme 1 describes the effect of CO adsorption on the oxidized catalyst (panel a). This is an 

oversimplified scheme since it does not includes CO adsorption on Ce
4+

/Ce
3+

 ions and NiO/Ni
0
 

particles.  Due to the basicity of the ceria support, CO can react with the surface to form CO2, which in 

turns adsorbs on other basic surface oxygen atoms to form stable carbonates (Schemes 1b and 1c). This 

process is well known and results in the formation of complex carbonates bands in between 1700 and 

1000 cm
-1

 [42, 47] (Figure 3 in SI). This process results in the formation of oxygen vacancies on ceria 
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surface, which can be re-established by oxygen removal from supported NiO (Schemes 1c-1d). The 

resulting stoichiometric reactions are the following: 

 

2 Ce
4+

 + O
2-

 + CO  2 Ce
3+

 + CO2    (eq. 1) 

2 Ce
3+

 + Ni
2+

   2 Ce
4+

 + Ni
0
     (eq. 2) 

 

In this context, we recall the fact the a different reactivity path was proposed for CO oxidation 

on NiO particles supported on ZrO2 at 773 K, without requesting the involvement of the support  [48]. 

Even if the mechanism proposed in Ref. [48] is reasonable, in our case CO oxidation is observed at low 

temperature, and this can be easily explained by considering the important oxygen storage capability 

(OSC) of the ceria-based support. In the reported scheme the role of surface Zr ions has not been 

considered as playing an active role, mainly because of the relatively low concentration. However, 

previous reports have clearly shown that the insertion of Zr ions into the ceria lattice has a positive 

effect on its OSC, improving redox properties and lowering the reduction temperature [26]. Finally, we 

have to acknoledge the possible contamination of the oxide surface with traces of Si, which has also 

been reported to improve CeZrO2 redox properties [37] . 

The surface model employed to explain the reduction of NiO to Ni
0
 by RT CO interaction can 

be also employed to rationalize the opposite redox behavior, that is the re-oxidation of Ni
0
 upon air 

exposure (see above, section 3.1). This was carried out by drawing Scheme 2, showing as a starting 

point a reduced catalyst surface, characterized by Ni
0
 particles in contact with a partially reduced ceria 

surface (panel a), showing Ce
3+

 ions and oxygen vacancies. When contacted with molecular oxygen, 

reduced ceria surface quickly reacts, dissociating the O2 molecule to fill one vacancy (Scheme 2b). It 

could be thus proposed that this process generates highly reactive oxygen species that could be easily 

transferred to Ni
0
 particle in close contact with the support to form NiO (Scheme 2c). At this stage it is 
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not possible to draw a more detailed mechanism for O2 dissociation with respect to what depicted in 

panel 2b. However, we cannot exclude the formation of intermediate oxygen species (superoxides etc). 

The resulting stoichiometric reactions are the following: 

2 Ce
3+

 + ½ O2 → 2 Ce
4+

 + O
2-

  (eq.3) 

Ni
0
 + ½ O2 → NiO   (eq. 4) 

 

3.5 Catalytic tests 

 Methane steam reforming reaction was performed on the two catalysts to evaluate their activity 

at a relatively low temperature (793 K) and to test their stability in the reaction conditions. S/C ratio 

was varied from 2 to 3 by keeping constant temperature and spatial velocity. For brevity only the 

results obtained at S/C = 2 are reported in Figure 7, showing the dry gas composition as a function of 

time on stream. The values measured at both S/C ratios after 24 and 250 hours reaction are summarized 

in Table 2 for both catalysts. 

 When the steam to carbon ratio is 3, catalyst A show a hydrogen production close to the 

thermodynamic value in the same temperature and pressure conditions, with only a slight conversion 

decrease with time on stream (Table 2). This decrease could be related to small temperature variations 

along the reaction: since the flow is very low, methane conversion is affected by even tiny temperature 

oscillations. The CO production is almost negligible. This implies that water gas shift reaction (WGS), 

the exothermic reaction involving CO molecules produced from methane reforming, takes place 

together with MSR. This is in agreement with literature, since it has been reported that the acid/base 

properties of the CeZrO2 support have a positive effect on WGS [49]. 

When the reaction is carried out at S/C = 2, hydrogen conversion is lower, but its value remains 

practically constant during the whole 250 hours reaction (Figure 7, top panel). Also in this case CO 

production is negligible, indicating that WGS reaction is efficient even at low water content. Notice 
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that these conditions are favorable from an energetic point of view, since less energy is required to 

vaporize water in the reactants feed, but are particularly harsh for catalysts stability, due to the high 

carbon content in the feed. 

The catalytic activity of catalyst B is similar during the first hours of reaction at both S/C ratios 

(Table 2). However, in this case deactivation with time on stream is evident after 150 hours, 

particularly at S/C = 2 (Fig. 7 bottom panel and Table 2). This is not surprising since one of the main 

reasons for deactivation is related to the deposition of carbon on the catalyst surface, phenomenon that 

is favored at low S/C ratios. Noticeably, large amorphous particles were indeed observed by HRTEM 

on recovered catalyst B (see above).  

On the whole, these results show only a minor effect of Ni dispersion on the catalytic activity in 

low temperature MSR, since the initial conversion values of the two catalysts are similar. However, 

catalyst deactivation is observed on the sample with bigger Ni particles, as a consequence of carbon 

deposition, particularly at low S/C ratios. On the contrary, the good stability of catalysts A can be 

related to the high dispersion of Ni particles on the CeZrO2 support, allowing oxygen availability which 

is unfavorable to carbon deposition. 

 

4. Conclusions 

Two different NiCeZrO2 catalysts, with similar chemical composition were synthesized by one 

pot co-precipitation, and fully characterized. XRD and HRTEM analysis showed similar size and 

morphology of the CeZrO2 support, being characterized by small (5-6 nm) roundish particles. On the 

contrary, the particle size of supported NiO/Ni
0
 particles was strongly affected by the synthesis 

conditions, particularly pH. Moreover, catalyst A, the sample with smaller NiO particles, showed a 

peculiar surface reactivity, testified by the fast oxidation of previously reduced Ni
0
 particles when 

exposed to air. 
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FTIR spectroscopy was employed to monitor the catalysts surface properties, by employing CO 

adsorption experiments as a function of pressure or measurement temperature. These results showed 

the formation of volatile mono and poly-nuclear carbonyls on both reduced catalysts, indicating the 

presence of highly reactive Ni
0
 ions, in very small particles (below the detection limit of HRTEM) or 

on defective surfaces of large ones. Moreover, similar carbonyls were formed on the catalyst with the 

highest Ni dispersion even without a reducing pretreatment. These evidences allowed us to propose 

surface reaction mechanisms, involving NiO/Ni
0
 particles in intimate contact with the CeZrO2 surface, 

allowing easy oxygen transfer. On the basis of the reported results it is not possible to infer if these 

effects take place between the support and the Ni particles (5-10 nm) observed by HRTEM, or if they 

are related to smaller particles, below the detection limits of HRTEM, as recently proposed for a series 

of Au/CeZrO2 catalysts [49]. 

Both catalysts show a good activity in MSR reaction at 793 K. At S/C =3 H2 production is in 

fact close to the thermodynamic upper limit. The negligible formation of CO indicates that WGS 

reaction is taking place together with MSR, and this reactivity can be ascribed to the acid/base 

properties of the CeZrO2 support, activating adsorbed water molecules. Noticeably, the different 

morphological and surface properties of the two catalysts, as evidenced by characterization, justify a 

different stability with time on stream: while catalysts A is stable at both S/C ratios, catalyst B 

deactivates at harsher conditions (S/C = 2), with formation of carbon patches, as testified by HRTEM. 

This indicates an important effect of the CeZrO2 support on Ni catalytic activity, which could be 

explained with an enhanced oxygen transport from ceria to Ni particles in intimate contact with its 

surface. Even if the models employed to explain the surface reactivity are based on a simplified ceria 

surface, the observed low temperature activity towards CO or air can be ascribed to the positive effect 

of Zr ions insertion into the ceria lattice, which has been shown to increase OSC an redox properties 

[26]. 
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Figure captions 

 

Figure 1. XRD patterns of the Ni-CeZrO2 catalysts, bottom (A) and top (B). The curves refer to 

catalysts: a) as prepared, b) reduced in H2 at 673 K and c) after catalytic tests. Indexed peaks refer to 

the cubic CeZrO2 phase, while peaks labeled with * and ° correspond to cubic NiO and Ni phases, 

respectively. 

 

Figure 2. HRTEM images of catalyst A. Sectors a and b: after reduction (magnification 600Kx and 

400Kx respectively). Sectors c and d: after catalytic tests (magnification 400Kx). For the meaning of 

dashed rectangles and ellipses see the text. 

 

Figure 3. HRTEM images of catalyst B. Sectors a and b:  after reduction (magnification 600Kx and 

500Kx respectively). Sectors c and d: after catalytic tests (magnification 500Kx and 400Kx 

respectively). 

 

Figure 4. FTIR spectra of increasing CO coverage from PCO = 0.5 (short dotted) to 20 Torr (dashed) at 

110 K on catalyst A oxidized (top) and reduced (bottom panel). 

 

Figure 5. Evolution of CO FTIR spectra (PCO = 20 Torr) from 110 K (dashed) to RT (dotted) on 

reduced catalysts A and B (top and bottom, respectively). 

 

Figure 6. Evolution of CO spectra (PCO = 20 Torr) from 110 K (dashed) to RT (dotted) on oxidized 

catalysts A and B (top and bottom, respectively). 
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Figure 7. Dry gas composition (red squares = H2; green triangles = CH4; blue diamonds = CO2) as a 

function of time on stream for MSR carried out at 793 K, GHSV = 30000 h
-1

, S/C = 2 and P = 1 atm on 

catalysts A (top) and B (bottom). 
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Table 1. 

Composition, structural parameters and BET surface area of Ni-CeZrO2 catalysts 

 

 

 

 

 

 

 

a
 Calculated from EDS microanalysis. 

b
 Calculated with BET equation. 

c 
Calculated from XRD data 

with Scherrer equation. 

 

 

Table 2 

Dry mixture composition (vol %) of syngas obtained on Ni-CeZrO2 catalysts at 793 K, GHSV = 30000 

h
-1

 and P = 1 atm. 

 

 Time on stream  CH4 H2 CO2 

 (hours) vol % 

A 
    

S/C = 3 24 25.7 66.8 10.4 

 250 26.6 64.1 10.3 

S/C = 2 24 38.1 52.9 8.5 

 250 37.2 54.5 8.7 

B 
    

S/C = 3 24 29.5 61.2 8.7 

 250 34.6 57.2 7.6 

S/C = 2 24 39.6 52.4 8.4 

 250 61.7 30.2 4.4 

 

 

Sample 

 

Chemical  

composition 
a
 

SSA 
b
 

 

m
2
/g 

Crystallite size 
c
 

nm 

NiO CeZrO2 

A Ni(14.60)-Ce0.88Zr0.15O2 134 5.0 6.4 

B Ni(14.81)-Ce0.90Zr0.12O2 97 9.9 7.7 
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Scheme 1 

 

Simplified representation of room temperature Ni-CeZrO2 surface reduction upon CO interaction,  

forming adsorbed carbonates species and Ni
0
 particles. 
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Scheme 2 

 

Simplified representation of room temperature oxidation of a previously reduced Ni-CeZrO2 surface as 

a result of contact with atmosphere. 
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