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Abstract 

The model simulates the activity of three neural populations using a Lotka–Volterra 
predator–prey system and, based on neuro-anatomical and neuro-physiological recent 
findings, assumes that a functional thalamo-cortical gate should be crossed by 'queuing' 
thalamic signals and that a sleep promoting substance acts as a modulator. The resultant 
activity accounts for the sleep stage transitions. In accordance with sleep cycles timing, the 
model proves to be able to reproduce the clustering and randomness of those peculiar 
transient synchronized EEG patterns (TSEP) described in normal human sleep and 
supposed to be related to the dynamic building up of NREM sleep until its stabilization 
against perturbations. 
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1. Introduction 

Brain activity results from the synchronization and interconnection of a huge number of 
neuronal assemblies. Such a complex interplay can be captured and detected by different 
technological tools, among which the most widely diffused and investigated is 
Electroencephalography (EEG). EEG signals are known to be altered in various neurological 
and psychiatric disorders, such as Alzheimer’s disease, epilepsy and seizures, coma, 
schizophrenia, attention deficit etc., all such anomalies being related to abnormal cortex 
functionality or cortical-subcortical connectivity1–3. 
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Sleep is an active and complex process usually investigated through the analysis of EEG 
signal frequencies (EEG rhythms), detected during polysomnographic recordings. The so-
called macrostructure of physiological sleep (sleep stages), according to Rechtschaffen and 
Kales (RK) criteria4, is characterized by a chain of regular and predictable events (cyclic 
alternation of NREM and REM sleep, 90–120min intervals among REM sleep periods, 
progression from stage 1 and stage 2 NREM sleep towards NREM slow wave sleep (SWS), 
prevalence of REM phases and stage 2 sleep during the second half of normal sleep. 

The process, however, shows an intrinsic variability, since, in addition to circadian and 
homeostatic processes, several factors interfere with sleep induction and maintenance 
(mental state, acute or chronic disease, pain, muscle efforts, drugs, external environment). 
In this perspective sleep may be considered a dynamic process which has to finely modulate 
itself, and therefore the neurophysiological structures involved in this process should not 
exhibit a rigidly predetermined behavior, but rather maintain the maximum adaptability 
although preserving sleep macrostructure. 

Determinants of such ‘macrostructure preservation’ are supposed to be a family of neurons 
distributed in the hypothalamus and brain stem5–7. Starting from the pioneering paper8, 
which is obsolete on the biological ground but had the merit of suggesting a meaningful 
phenomenological mathematical approach, the interplay between such neuronal 
populations can be described by a system of ordinary differential equations in which a 
variable number of actors were competing with each other according to the classical Lotka–
Volterra predator–prey population system. 

Modulation of sleep induction and persistence is performed by the interaction between 
circadian rhythms and homeostatic needs. Sleep homeostasis is thought to be modulated 
by a number of substances including peptides (tumor necrosis factor alpha (TNF-), insulin 
and growth hormone (GH)) and small molecules such as nitric oxide and adenosine. 

The last one is thought to be the most powerful endogenous (and possibly astrocyte-
regulated) sleep promoter9 against which caffeine is known to be effective. 

‘Adaptability’ and ‘stability’ of NREM sleep, on the contrary, is related to the so-called EEG 
sleep microstructure. Among these EEG activities, peculiar transient synchronized EEG 
patterns (TSEP) are supposed to be the expression of EEG synchronizing mechanisms of 
cortical neurons (which has been proved to be achievable in high dimensional chaotic neural 
networks10) that accompany the dynamic building up, organization and stabilization of 
NREM sleep, ensuring flexible adaptation against perturbations. TSEP include: (a) high 
voltage, low frequency components of the Cycling Alternating Pattern (CAP)11–13; (b) high 
voltage, low frequency component of K-complexes; (c) transient delta bursts. The last two 
EEG patterns may be encompassed in CAP sequences. During normal sleep TSEP are 
progressively grouping in recurring clusters, until steady slow wave sleep (SWS), expression 
of maximal EEG synchrony and deep sleep, is reached. 

Although TSEP are detected from the cortex, in addiction to local cortical phenomena14, 
various evidences are accumulating about the existence of a generating thalamo-cortical 
network. The latter has been extensively studied as well15,16. In particular Kim et al.17 studied 
an in vitro preparation of sagittal slices of the ferret dorsal lateral geniculate nucleus and 
showed that spindle waves occurring spontaneously in any part of the preparation were able 
to collide and therefore produce some sort of synchronization and could propagate through 
the thalamus exhibiting a relative refractory period between 7 and 14 s. Starting from these 
results, several other confirmations have been accumulated. According to Astori et al.18 
specific neural populations in the nucleus reticularis thalami act as an oscillatory burst 
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generator or ‘pacemaker’ randomly generating spikes in the low frequency range (4–10Hz) 
by abundantly expressing CaV 3.3 protein. 

Also Crunelli et al.19 showed evidences that the thalamic low-threshold Ca2+ potential 
generates the slow (< 1Hz) sleep oscillation in the thalamo-cortical network. 

A crucial role is then played by the structures which limit, or even disrupt, signal transmission 
from the periphery to the cortex, where TSEP are actually detected. 

The study by Esser et al.20 further investigates such ‘cortical gate’, on the basis of a concept 
previously suggested by other authors15, and produced by the hyperpolarization of thalamo-
cortical neurons which reduce their firing in response to a prethalamic activation, accounting 
for many possible mechanisms. They conclude that neuronal connectivity is progressively 
reduced in Slow Wave Sleep, delaying signal transmission. 

Refractory periods in the cortex, supposed to be determined by the thalamic nuclei, have 
already been shown to play an important role in synchronization21. 

Our study aims at developing a model based on double-layered interacting structures able 
to reproduce the interaction between sleep macro- and microstructures related to sleep 
stage transitions and sleep maintenance. 

Although we know that such an euristic model cannot exhaust the almost infinite modeling 
options, we think it may be useful because easily managed with the Recurrence Plot 
mathematical approach. Further refinements are however required to make it more realistic 
and better resemble the signals recorded by EEG. The wake–sleep cycle and its regulation 
are not included in the present model, which exclusively focuses on the different stages of 
sleep, after sleep onset. 

 

 

2. A Model Based Description of Sleep Macrostructure 

We investigate a system of three ordinary differential equations in which three formal 
neuronal populations are activated and regulated according to the classical Lotka–Volterra 
predator–prey system of population theory. These formal populations represent the 
collective activities of real neuronal populations described in literature6 and were defined: 
‘REM ON’ (corresponding to neuron populations active during REM phases), ‘MnPN’ 
(corresponding to the median preoptic nucleus, which shows activity at the beginning of 
NREM sleep, progressive reduction of activity until the end of NREM sleep, increased 
activity during REMphase concomitantly with REM ON inhibition) and ‘Tal’ (resulting activity 
of thalamic populations projecting to cortex, during sleep). It reads: 

 

 

 

where a, b, c, e, g, s represent biological parameters, suitably chosen so that solutions 
oscillate and provide five peaks of REM sleep during the eight sleeping hours. 

The system stability is given by the eigenvalues of the Jacobian, which reads: 
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at the equilibrium points of (2). The latter are the origin P1 = (0, 0, 0, 0) and the point (0, 
m/c, a/b) which are locally unstable resulting in system oscillation. 

Their values were selected as: 

a = 8*10−4, b = c = 10−3, m = 7*10−4, g = s = 1.2*10−3 and e = 8*10−4. 

Figure 1 shows the oscillatory pattern obtained with the above choice of the parameter 
values. Green lines correspond to NREM periods, black lines correspond to REM phases. 

 

 

 

Fig. 1. (Color online) Plot of the temporal oscillations of the state of activation of the three neuronal populations 
REM ON, MnPN and Tal as solution of Eq. (1). 

 

As it is clearly evidenced, the duration of a single REM period progressively increases 
proceeding from the first to the later sleep cycles (black lines), while the peak activity of 
thalamic population slowly decreases. 

The above features are observed and characterize healthy human sleep, and it is 
noteworthy that both derive from the model without any ‘ad hoc’ assumption or the imposition 
of thresholds or boundaries, except the temporal adaptation of five REM peaks during the 
eight sleeping hours, in order to conform human species. 
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3. A Model-Based Description of Sleep Microstructure 

The microstructure of sleep is related to both the activity of the thalamic pacemaker and the 
signal modulation occurring at the cortical gate, which can be simulated using different 
mathematical approaches relying on the idea of ‘colliding bumps’22 or local architectures23. 

Figure 2 describes the scheme simulated by the present model: 

 

 

 

Fig. 2. Sketch of the model simulation of the cortical gate. 

 

The Random Spikes Generator (RSG) activated following the thalamic activation Tal (t) has 
been modeled accounting for N (from 1 to 7) subpopulations generating spikes at different 
frequencies. It is well known that information transfer in biological neurons, i.e. via the 
precise timing of spikes or a sequence of spikes is so efficient that inspired many Artificial 
Neural Networks (SNNs) computational approaches24 and even practical applications such 
as the control of robotic arms25. 

Since in human sleep the clustering capability of TSEP decreases from the first to the last 
NREM sleep period (i.e. time intervals between two successive TSEP become greater and 
TSEP appear more randomly distributed), we assume that the thalamiccortical gate is 
influenced by the progressive inactivation of some sleep-promoting substance (SPS)6,9. 

In particular, our model assumes that SPS concentration exponentially decreases along 
sleep. Accordingly, the number N of randomly oscillating thalamic neuronal subpopulations 
activated at the beginning of each NREM sleep decreases from 7 (1st phase) to 4 (last 
phase). Each spike generated by the RSP crosses the cortical gate, therefore producing a 
cortical TSEP, provided: 

I. its magnitude is larger than a given threshold [= 0.6] 
II. only NREM periods occur  

III. it experiences a delay m Δ being m the number of signals queuing at the cortical gate 
(which depends on the number N of thalamic subpopulations activated at that time) 
and Δ(t) the delay: 

 

                               

Tal (t) being the level of activation of the thalamus (defined by Eq. (1)) and max (Tal (t)) 
being its maximum value in that specific NREM sleep phase). 
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As an example of the final result, Fig. 3(a) shows a simulation reproducing on the horizontal 
axis the time in s and on the vertical axis the intervals of two successive cortical TSEP (blue) 
detected beyond the cortical gate and generated by a number N (N = 5 − 7) of randomly 
oscillating thalamic neuronal subpopulations. 

Figure 3(b) shows the corresponding plot derived from TSEP time series detected in normal 
human sleep. TSEP clustering (evidenced with arrows), in normal sleep may be temporarily 
interrupted by arousals or complete awakenings (evidenced with black asterisk), so that the 
process has to start again. During REMphases (horizontal black lines) sequence of TSEP 
are not present. 

 

 

 

Fig. 3. (Color online) Plot of (a) the prediction of the TSEP detected in the cortex according to Eqs. (1) and (3) 
and (b) data recorded from a healthy young patient. Each point corresponds to the TSEP–TSEP interval of 
two consecutive TSEP, expressed in seconds (y-axis), during sleep time (x-axis). Horizontal black lines 
correspond to REM periods.  
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4. Multiscale Representation of TSEP Time Series and Comparison with Experimental 
Data 

To produce an effective representation of both the sleep macrostructure and sleep 
microstructure as generated by the brainstem-hypothalamic neural populations and 
thalamo-cortical interactions, a ‘multiscale’ approach is needed. Many nonlinear 
approaches, as the so-called higher order spectra (HOS), has been proposed so far26 and 
proved effective in discriminating normal, interictal, and epileptic EEG segments27. 

The above techniques have already been proposed to analyze EEG signals28–32 in both the 
wake and the sleep states, and have been used to evaluate sleep microstructure, i.e. TSEP 
time series33. It also showed useful to effectively classify seizures in epilepsy34. 

Phase-space plots can be produced by reporting the time series given by the successive 
TSEP–TSEP intervals. 

Figure 4a shows the plot obtained by activating the thalamic random spike generator with  
N = 7 different frequencies. 

In order to compare them with their experimental counterparts, in Fig. 4(b) the phase 
portrait of the sleep of a healthy young men is reported35,36: 

 

 

 
(a)                                                                                             (b) 

Fig. 4. Phase space plot of the TSEP–TSEP intervals obtained by (a) model simulation and (b) data recorded 
from a healthy young patient. 

 

 

An “attractor” corresponding to inter-TSEP intervals of about 20–40 s is present in real data 
and is reproduced by our model. 

Complex phenomena, however, should usually be described using higher-dimensional 
phases by means of the so-called Recurrence Plot (RP). 
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Given the discrete time series ui = u(iΔt), where i = 1, . . .,N and Δt is the sampling rate of 
the measurement, the phase space can be reconstructed using the time delay (or “delayed 
coordinate embedding”) method, 

 

 

 

where m is the embedding dimension, τ is the time delay and ej the space eigenvectors, 

which need to be appropriately chosen. The recurrences of a trajectory �⃗�i ∈ ℝd
 in phase 

space are currently visually inspected using RPs. Provided the distances  

            

are plotted, the global recurrence plot or unthresholded recurrence plot24–32 is obtained. 

As a pictorial and qualitative indication of the presence of recurrences in the dataset, the 
unthresholded RP is plotted, using a representation of colored dots (i; j), where “hot” colors 
(red, orange and yellow) mark recurrence points associated with small distances (i.e. the jth 
point p(j) of the trajectory into the neighborhood of the given ith point p(i)), while “cold” colors 
(blue, violet) are used to show larger distances. Each point is plotted against itself along the 
x = y line, thus the RP is symmetric with respect to this diagonal.With these rules constructed 
RP corresponds to a two-dimensional colored representation of recurrences occurring in the 
original time series of inter-TSEP-intervals, thoughout NREM sleep cycles, regardless any 
a priori knowledge of the underlying dynamics. In some specific applications it is also 
possible to compensate for temporal distortions of repeated measurements in eventrelated 
potential research37. 

Figure 5(a) shows the RP obtained by the same data of Fig. 4(a). The selected embedded 
dimension is m= 40 and the time delay is equal to 30. 

The prevalence of NREM sleep and the thalamocortical activity responsible for the 
progressive clustering of TSEP is well shown by the short-scale structure in ‘hot’ colors, 
which characterizes earlier sleep cycles, while the increase of REM duration and the 
progressive reduction of TSEP capability to cluster, evidenced by the blue and green color, 
is mainly present in later sleep cycles. 

A similar pattern is shown by the RP produced by the time series of TSEP obtained during 
human sleep33,36 (see Fig. 5(b)). In physiological conditions, as explained, TSEP clustering 
corresponds to a rapid and efficient achievement of deep sleep. The presence of 
interruptions of red color pattern during NREM sleep, indicating temporary disruption of 
TSEP clustering, corresponds to movements, arousals or complete awakenings normally 
present in human sleep. 
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(a)               (b) 

Fig. 5. (Color online) Recurrence plot obtained by (a) model simulation, the same time series used for Fig. 
3(a) and (b) data recorded from a healthy young patient, the same time series used for Fig. 3(b). REM phases 
are indicated with ‘R’. Dots color ranges from red for smallest inter-point distances in the phase space (shortest 
TSPE–TSPE intervals), to blue-violet for largest spacing (largest TSEP–TSEP intervals). 

 

 

5. Discussion and Conclusion 

In the present paper we developed a mathematical model based on up-to-date neuro-
physiological knowledge. It describes the activity of neural populations using a simple Lotka–
Volterra predator–prey system accounting for REMON,MnPN (which sends REM OFF 
signals) and Tal (thalamic) neuronal populations. Such a model, although simpler with 
respect to the four-populations model previously proposed6,30 proves to be able to generate 
TSEP clustering and randomness comparable to those evidenced in normal human sleep. 
To our knowledge, this is the first attempt to create a mathematical model of this peculiar 
aspect of sleep microstructure. In fact it can predict: (a) higher ‘strength’ of clustering at the 
beginning of each NREM phase and loss of this capability just before the onset of REM; (b) 
the prevalence of NREM sleep stages during earlier sleep cycles; (c) the increase of REM 
duration concomitantly with progressive reduction of TSEP capability to cluster during later 
cycles, when the need of NREM sleep is almost over. 

To predict the appearance and the formation of TSEP clusters, we assume that a functional 
thalamocortical gate exists and actively modulates cortical activity as documented by EEG 
signals. Such a hypothesis is very well founded on the basis of neuroanatomical and neuro-
physiological recent findings, and is modeled assuming that signals queue to cross the gate 
and the corresponding delays actually build up TSEP clustering throughout overnight NREM 
sleep cycles. 

A more realistic result is obtained by assuming also that the concentration of a sleep-
promoting substance plays a role in modulating the activity of the thalamic neuronal 
subpopulations actually discharging during sleep. 

Effective graphical representation of the different time scales present in the model requires 
the use of phase-space plots and recurrence plots. The latter is particularly suitable to 
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evidence recurrences occurring in the original time series of inter-TSEPintervals, also 
permitting comparison between the model results and the correspondent experimental 
findings in humans. 

At this stage of development our model only refers to event recurrences, regardless of signal 
morphology. Nevertheless, to our knowledge, this is the first attempt in literature to 
reproduce the dynamics of real TSEP occurrences, included in a sleep model. In other words 
the model reproduces the “behavior” of TSEP in the building-up of NREM sleep, not their 
exact onsets which always differ from one sleep to another, as expected by a typical dynamic 
process. Further integrations will be directed towards the quantitative analysis, the inclusion 
of wake and wake-cycle regulation into the model, and the definition of amplitude and 
duration parameters, in order to characterize signal morphology. 

  



11 
 

References 

 

1. M. Ahmadlou and H. Adeli, Functional community of brain. A new approach for EEG-based 
investigation of the brain pathology, Neuroimage 58 (2) (2011) 401–408. 

2. H. Adeli and S. Ghosh-Dastidar, (in collaboration with N. Dadmehr), Automated EEG-based 
Diagnosis of Neurological Disorders — Inventing the Future of Neurology (CRC Press, Taylor & 
Francis, Boca Raton, Florida, 2010). 

3. H. Adeli, Z. Zhou and N. Dadmehr, Analysis of EEG records in an epileptic patient using wavelet 
transform, J. Neurosci. Meth. 123 (1) (2003) 69–87. 

4. A. Rechtschaffen and A. Kales (eds.), A Manual of Standardized Terminology, Techniques, and 
Scoring System for Sleep Stages of Human Subjects (Public Health Service, US Government, 
Washington, USA, 1968). 

5. R. McCarley, Neurobiology of REM and NREM sleep, Sleep Med. 8 (4) (2007) 302–330. 

6. Y. Tamakawa, A. Karashima, Y. Koyama, N. Katayama and M. Nakao, A quartet neural system 
model orchestrating sleep and wakefulness mechanisms, J. Neurophys. 95 (2005) 2055–2069. 

7. F. Ferrillo, S. Donadio, F. De Carli, S. Garbarino and L. Nobili, A model based approach to 
homeostatic and ultradian aspects of nocturnal sleep structure in narcolepsy, Sleep 30 (2007) 
157–165. 

8. J. A. Hobson, R. W. McCarley and P. W. Wyzinsky, Sleep cycle oscillation: Reciprocal discharge 
by two brainstem neurons, Science 189 (1975) 55–58. 

9. M. M. Halassa, C. Florian, T. Fellin, J. R. Munoz, S. Y. Lee, T. Abel et al., Astrocytic modulation 
of sleep homeostasis and cognitive consequences of sleep loss, Neuron 61 (2009) 213–219. 

10. V. S. Chakravarthy, N. Gupte, S. Yogesh and A. Salhotra, Chaotic synchronization using a 
network of neural oscillators, Int. J. Neural Syst. 18 (2) (2008) 157–164. 

11. American Sleep Disorders Association (ASDA), EEG arousals: Scoring rules and examples. A 
preliminary report from the Sleep Disorders Atlas task Force of the American Sleep Disorders 
Association, Sleep 15 (1992) 174–184 

12. P. Halasz, K-complex, a reactive EEG graphoelement of NREM sleep: An old chap in a new 
garment, Sleep Med. Rev. 9 (2005) 391–412. 

13. M. G. Terzano and L. Parrino, Origin and significance of the cyclic alternating pattern (CAP), 
Sleep Med. Rev. 4 (2000) 101–123. 

14. R. Ferri, O. Bruni, S. Miano and M. G. Terzano, Topographic mapping of the spectral 
components of the cyclic alternating pattern (CAP), Sleep med. 6 (1) (2005) 29–36. 

15. M. Steriade, Grouping of brain rhythms in corticothalamic systems, Neuroscience 137 (4) 
(2006) 1087–1106. 

16. S. Hill and G. Tononi, Modeling, sleep and wakefulness in the thalamocortical system, J. 
Neurophys. 93 (3) (2005) 1671–1698. 

17. U. Kim, T. Bal and D. A. McCormick, Spindle waves are propagating synchronized oscillations 
in the ferret lgnd in-vitro, J. Neurophysiol. 74 (3) (1995) 1301–1323. 

18. S. Astori, R. D. Wimmer, H. M. Prosser, C. Corti, M. Corsi, N. Liaudet, A. Volterra, P. Franken, 
J. P. Adelman and A. Luthi, The CaV3.3 calcium channel is the major sleep spindle pacemaker 
in thalamus, Phil. Trans. R. Soc. A 369 (2011) 3820–3839. 

19. V. Crunelli, A. C. Errington, S. W. Hughes and T. I. Toth, The thalamic low-threshold Ca2+ 
potential: A key determinant of the local and global dynamics of the slow (< 1Hz) sleep 
oscillation in thalamocortical networks, Sem. Cell Dev. Biol. 22 (2011) 245–251. 

20. S. K. Esser, S. Hill and G. Tononi, Breakdown of effective connectivity during slow wave sleep: 
Investigating the mechanism underlying a cortical gate using large-scale modeling, J. 
Neurophysiol. 102 (2009) 2096–2111. 

21. A. Montina, C. Mendoza and F. T. Arecchi, Role of refractory period in homoclinic models of 
neural synchronization, Int. J. Neural Syst. 17 (2) (2007) 79–86. 



12 
 

22. Y. Lu, Y. Sato and S. Amari, Traveling bumps and their collisions in a two-dimensional neural 
field, Neural Comput. 23 (2011) 1248–1260. 

23. D. M. Rector, J. L. Schei, H. P. Van Dongen, G. Belenky and J. M. Krueger, Physiological 
markers of local sleep, Eur. J. Neurosci. 29 (2009) 1771–1778. 

24. S. Ghost-Dastidar and H. Adeli, Spiking neural networks, Int. J. Neural Syst. 19 (4) (2009) 295–
308. 

25. N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu and E. Ros, Adaptive cerebral spiking model 
embedded in the control loop: Context switching and robustness against noise, Int. J. Neural 
Syst. 21 (5) (2011) 385–401. 

26. R. Acharya, E. C. P. Chua, K. C. Chua, L. C. Min and T. Tamura, Analysis and automatic 
identification of sleep stages using higher order spectra, Int. J. Neural Syst. 20 (6) (2010) 509–
521. 

27. R. Acharya, S. Vinitha Sree and J. S. Suri, Automatic detection of epileptic EEG signals using 
higher order cumulant features, Int. J. Neural Syst. 21 (5) (2011) 403–414. 

28. U. Acharya, O. Faustand, N. Kannathal, T. L. Chua and S. Laxminarayan, Non-linear analysis 
of EEG signals at various sleep stages, Comput. Meth., Prog. Biomed. 80 (2005) 37–45. 

29. I. H. Song, D. S. Lee and S. I. Kim, Recurrence quantification analysis of sleep 
electroencephalogram in sleep apnea syndrome in humans, Neurosci. Lett. 386 (2004) 148–
153. 

30. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, 
Cambridge, 1997). 

31. J. P. Zbilut and C. L. Webber Jr., Embeddings and delays as derived from quantification of 
recurrence plots, Phys. Lett. A 171 (1992) 199–203. 

32. J. S. Iwanski and E. Bradley, Recurrence plots of experimental data: To embed or not to 
embed? Chaos 8 (1998) 861–871. 

33. L. Priano, F. Saccomandi, A. Mauro and C. Guiot, Non-linear recurrence analysis of NREM 
human sleep microstructure discloses deterministic oscillation patterns related to sleep stage 
transitions and sleep maintenance, Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1 (2010), pp. 
4934–4937. 

34. R. Acharya, S. Vinitha Sree, S. Chattopadhyay, W. Yu and A. P. C. Alvin, Application of 
recurrence quantification analysis for the automated identification of epileptic EEG signals, Int. 
J. Neural Syst. 21 (3) (2010) 199–211. 

35. F. Saccomandi, L. Priano, A. Mauro, R. Nerino and C. Guiot, Automatic detection of transient 
EEG events during sleep can be improved using a multichannel based approach, Clin. 
Neurophysiol. 119 (4) (2008) 959–967. 

36. I. Stura, C. Guiot, L. Priano and E. Venturino, First attempts at modelling sleep, in Proc. Int. 
Conf. CMMSE, Ed. J. Vigo-Aguiar, Vol. 3, 1077–1088. 

37. M. Ihrke, H. Schrobsdorff and J. M. Herrmann, Recurrence-based estimation of time-distortion 
functions for ERP waveform reconstruction, Int. J. Neural Syst. 21 (1) (2011) 65–78. 


