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Abstract

Group defense is a strategy widely employed by various species. We consider the

effect of grouping on population persistence when animals join together in herds in

order to provide a self-defense from predators. In literature, group defense is usually

addressed in terms of individual behavioral responses. In this paper, we consider

an alternative ‘mean-field’ approach which uses prey and predator densities as the

dynamical variables. The model is essentially a predator-prey system but with an

unconventional parametrization for the predation term. We discuss the outcomes of

the ecosystem dynamics in terms of persistence and prey survival. In the spatially

distributed model some specific spatio-temporal features are discovered.

Keywords: Patterns, predator-prey, group defense

1 Introduction

Social interactions in the animal kingdom have long been a focus of intensive research
(Allee, 1938; Wilson, 1971; Fryxell and Lundberg, 1997). They may affect the community
functioning in different ways, for instance, by creating a social hierarchy (Freeman et al.,
1992; Sapolsky, 2005) or through emerging collective behaviour (Sendova-Franks et al.,
2002), in particular through collective movement (Fernö et al., 1998). Especially the latter
often result in animal grouping (Bode et al., 2011; Bertram, 1978) . However, grouping
or aggregation may also appear for a variety of other reasons, (Grünbaum and Okubo,
1994), such as a more effective use of resources or aiming to provide an effective way to
protect community members from an external threat (Bode et al., 2010), see also chapter
8 of Caro (2005) . In artificial life the problem of forming of flocks has been addressed
mainly through the use of individual based models; for the latter see for instance Axelrod
(1997); Macal and North (2009). In this paper, we consider the case when animals join
together in herds in order to provide a self-defense from predators. In the review of Elgar
(1989) the issue of the relationship between vigilance behavior and group size is addressed
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and criticized. Our main goal is to reveal the combined effect of grouping and diffusing
on the ecosystem’s population dynamics in the spatio-temporal context. Of interest are
issues such as pattern formation, ecosystem persistence and prey survival.

The group defense is usually addressed in terms of individual behavioral responses,
when different members of the group have different and clearly defined tasks, and hence
is thought to be best modeled using an individual-based modeling approach (Wood and
Ackland, 2007; Bode et al., 2011). Other types of modeling, however, can be used which
are closely related to individual based modeling, like statistical physics, cellular automata
and stochastic processes, in which generic rules for the system dynamics can be explicitly
stated (Malchow et al., 2008). An individual based approach is simulation-based, and
therefore it often requires a lot of computational effort. Generic dependencies of the
system’s properties on parameter values are revealed only by extensive simulations, from
which some generality of the results should be inferred.

In this paper, we consider an alternative approach when the effects of group defense
on the population survival are considered in terms of a mean-field type model where the
dynamical variables are the prey and predator densities. The model consists of two cou-
pled diffusion-reaction equations where the predation term has an unconventional form.
For the benefit of the reader, we first revisit the properties of the non-spatial system
introduced in Ajraldi and Venturino (2009), Ajraldi et al. (2011). The bifurcation struc-
ture of the system as well as the bifurcation values of the controlling parameter is found
analytically. We then extend the earlier results by revealing a ‘mixed stability’ of the ex-
tinction state. Basing on these results, we show that the system behavior is significantly
different from that of traditional predator-prey models.

We then consider the spatially explicit system. We studied its properties by means
of extensive computer simulations and found a variety of spatiotemporal patterns for
different parameter ranges. We observed that the existence of the group defense may
result in very long-living transients when the population size of the prey may show a
steady growth over a long time before finally collapsing. Rather counter-intuitively, we
also found that the spatial system may exhibit sustained oscillations in a parameter range
where the corresponding nonspatial system goes extinct.

2 Background

2.1 Non-spatial model

Our investigation starts from a model recently proposed in Ajraldi and Venturino (2009)
and analyzed further in Ajraldi et al. (2011) in which the hunting behavior of predators
and the defensive strategy of prey are accounted for in a new way. Namely, it is assumed
that while predators move freely in the environment actively searching for their prey,
the latter instead gather together in herds for defensive purposes. Note that in Fryxell
et al. (2007) a number of functional responses to model the same kind of situation are
proposed: for the predation term they use nonlinearities expressed via rational functions;
for the growth of the prey instead they use a Gompertz-like, or theta-logistic term. In
reference to Ajraldi and Venturino (2009) and Ajraldi et al. (2011), the former choice
represents a completely different approach, while the latter is somewhat related to the
choice of the predation term. In fact, the main idea expounded in these latter works
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is that the interaction between predators and prey affects mainly the prey individuals
occupying the outermost positions in the herd. This assumption is novel and does not
correspond to the usual assumption made in the original Lotka-Volterra model, nor in
all the population models in which interactions are described. Since the prey individuals
staying on the boundary of the herd are in number proportional to the length of the
perimeter of the ground area occupied by the herd, and the perimeter is proportional
to the square root of the area, if G denotes their density, it follows that generally the
prey involved in hunting interactions with the predators are

√
G. In modeling terms, the

consequence of the assumption is that the classical mass action term appearing in the
Lotka-Volterra model is replaced by another unconventional nonlinear term containing
a power law of the prey density. For generality sake, at first we formulate the model
with a generic exponent 1 > α> 0, which we will specialize to the case α = 1

2
in the

later numerical simulations. This allows to establish the sensitivity of a fundamental
parameter to be defined later on with respect to the exponent of G. We obtain therefore
the system

d

dτ
G(τ) = r

(

1 − G(τ)

K

)

G(τ) − aG(τ)αF (τ) , (1)

d

dτ
F (τ) = −mF (τ) + aeG(τ)αF (τ) . (2)

The first equation describes the population dynamics of the prey; the first term on the
right hand side expresses logistic growth with r being the per capita net reproduction
rate and K the carrying capacity of the environment; the second term models the hunt-
ing process they are subject to by predators. The same term, scaled by the conversion
coefficient e, appears also in the second equation, in which predators (described by their
population density F ) die out with mortality rate m in absence of their only food sources,
namely the prey G. The exponent α thus represents a kind of aggregation efficiency.

The system (1–2) was considered in Ajraldi and Venturino (2009) and Ajraldi et al.
(2011) for the special case α = 1

2
. We summarize here the most important facts about

(1–2) that apply to the more general case with an arbitrary α ∈ (0, 1). The equilibria
are the system’s extinction, the prey-only equilibrium and coexistence. The analysis of
the system outcomes to distinguish between the various possible trajectories’ behaviors
can conveniently be done in terms of a certain parameter ρ where

ρ ≡ 1

K

(m

ea

)
1

α

> 0. (3)

For ρ > 1 the coexistence state is not feasible and the only biologically meaningful stable
steady state is the prey-only equilibrium (K, 0). The prey-only state and coexistence
equilibria exhibit a transcritical bifurcation for ρ = 1. The coexistence state is feasible
for 0 < ρ < 1 and it is stable for ρH < ρ < 1 where

ρH =
1 − α

2 − α
. (4)

At ρ = ρH a Hopf bifurcation at the coexistence equilibrium arises, with this equilibrium
becoming unstable and persistent oscillations arising around it when ρ attains smaller
values. The equation (4) also shows the sensitivity of the Hopf bifurcation with respect
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to the parameter α. The curve ρ(α) is in fact a concave branch of a hyperbola, smoothly
dropping from the value 1/2 at α = 0 to zero for α = 1. Therefore taking ρ as bifurcation
parameter, qualitatively, the Hopf bifurcation point ρH on the curve ρ(α) moves toward
the left for decreasing values of α.

It is therefore readily seen that the square root functional response used here has some
resemblance with the saturating-type Holling type II or III responses, although it is not
bounded above. The emergence of limit cycles appears thus to be related to the concavity
of all these functions, rather than to the boundedness of the Holling type responses.

In addition, the stability features showing an exotic ‘mixed stability’ of the steady
state at the origin are addressed by the following novel Theorem 1 and the subsequent
Remarks 1 and 2.

Theorem 1. Consider 0 < α < 1. Let G0 = G(0) and F0 = F (0) be the initial
conditions for the system (1–2) and let S be the part of the system’s phase plane defined
as follows:

S = {(G,F ) | G > 0, F > F̃ (G)} where F̃ (G) =
m + (1 − α)r

a(1 − α)
G1−α . (5)

Then for any (G0, F0) ∈ S the prey goes extinct in finite time, i.e. the system’s trajectory
hits axis F at a certain τ̂ < ∞.

Proof. We first consider Eq. (2) and note that, since G and F are non-negative,

d

dτ
F (τ) = −mF (τ) + aeG(τ)αF (τ) ≥ −mF. (6)

Therefore, by virtue of the comparison principle for ordinary differential equations, e.g. see Halil
(2002), if F̂ is the solution of the equation

d

dτ
F̂ (τ) = −mF̂ (τ),

corresponding to the same initial condition F̂ (0) = F (0) = F0, then

F (τ) ≥ F̂ (τ) = F0e
−mτ (7)

for any τ .
We now consider Eq. (1) and note that

d

dτ
G(τ) = r

(

1 − G(τ)

K

)

G(τ) − aG(τ)αF (τ) ≤ rG − aG(τ)αF (τ)

≤ rG − aG(τ)αF̂ (τ) = rG − G(τ)αaF0e
−mτ . (8)

Therefore, by virtue of the comparison principle (Halil, 2002), if Ĝ is the solution of the
equation

d

dτ
Ĝ(τ) = rĜ − Ĝ(τ)αaF0e

−mτ , (9)

corresponding to the same initial condition Ĝ(0) = G(0) = G0, then

G(τ) ≤ Ĝ(τ) (10)
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for any τ .
In order to solve Eq. (9), we introduce a new variable W (τ) as

Ĝ(τ) = W (τ)erτ . (11)

Note that W (0) = Ĝ(0) = G0.
Having plugged (11) into (9), we obtain the following equation for W :

d

dτ
W (τ) = −W (τ)αaF0e

−βτ , (12)

where β = m + (1 − α)r.
Equation (12) is straightforward to solve resulting in

W (τ)1−α = W (0)1−α − aF0(1 − α)

β

(

1 − e−βτ
)

. (13)

Note that W (0) > 0 and the second term in the right-hand side of (13) is a mono-
tonically increasing function of τ . It means that W (τ∗) = 0 for a certain τ∗ if and only
if

W (0)1−α <
aF0(1 − α)

β
. (14)

Taking into account the relation (11) between W and Ĝ, it is obvious that W (τ∗) = 0
is equivalent to Ĝ(τ∗) = 0. Since W (0) = G0, from (14) we obtain that Ĝ(τ∗) = 0 for any
G0 and F0 satisfying the following condition:

F0 >
β

a(1 − α)
G1−α

0
, (15)

where the explicit expression for the hitting time τ∗ can be readily obtained from (13):

τ∗ = − 1

β
log

[

1 − β

aF0(1 − α)
G1−α

0

]

. (16)

Finally, we recall that Ĝ is an upper bound for G(τ); if Ĝ(τ∗) = 0 then G(τ∗) ≤ 0,
which actually means that G(τ) becomes zero for some τ̂ ≤ τ∗. Since G(τ) cannot become
negative (because the axis G = 0 is a part of the G-isocline in the phase plane of system
(1–2)), G(τ) ≡ 0 for any τ ≥ τ̂ . Inequality (15) therefore gives a sufficient condition for
the prey species extinction. That completes the proof.

Remark 1. Once the prey goes extinct, the dynamics of the system (1–2) is reduced
to the exponential decay of the predator, so that the system’s trajectory in the phase plane
asymptotically approaches the state (0, 0) along the axis G = 0. Therefore, the meaning
of the theorem is that, in the phase plane (G,F ) of the system, there is a curvilinear
sector close to the vertical axis, which appears to be the attraction basin for the origin;
see Fig. 1. For the rest of the plane, the steady state (0, 0) acts as a saddle point. The
global structure of the phase plane is therefore very different from the one observed in the
standard predator-prey systems.
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Figure 1: The phase plane of the system (1–2). The thick blue curve shows the boundary
of the extinction domain S; see (5). For any initial conditions above this curve, the system
trajectories (shown in red colour) hit the vertical axis, which means species extinction.
For initial conditions below the curve, the trajectories (shown in green colour) approach
an attractor in the interior of the phase plane (either the stable coexistence steady state or
the stable limit cycle, depending on equation parameters) which means species persistence.
The dashed-and-dotted curve shows the R-isocline of the system. The systems trajectories
are obtained by solving Eqs. (1–2) numerically for parameters K = r = a = 1, e =
0.8, m = 0.7 and α = 0.5.

Remark 2. Note that inequality (15) gives only a sufficient condition of prey extinc-
tion but not a necessary one. Therefore, the actual extinction domain in the (G,F ) phase
plane is somewhat larger than the domain S defined by (5); the extinction may happen
as well for some F0 < F̃ (G0).

Thus this stability of “mixed type” of the origin always allows for extinction of the
system in case the initial density F0 of predator is sufficiently large, but for the species
persistence in case F0 is sufficiently small. We therefore infer that there must exist a
separatrix separating the two different trajectories flows. Although we cannot obtain its
explicit analytical expression, function F̃ (G) (see (5)) seems to provide a good approxi-
mation for it.

Remarkably, the chain of bifurcations does not end with the Hopf bifurcation. Numer-
ical simulations show that a further decrease in ρ results in a nonlocal bifurcation: for a
certain value ρ∗ < ρH , the limit cycle collides with the separatrix and disappears. For any
ρ < ρ∗ the system goes to extinction; the prey density decays to zero monotonically for
the initial conditions chosen above the separatrix and it approaches zero in an oscillatory
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manner if the initial values are taken below the separatrix.

2.2 Spatially explicit model

In a natural environment it is clear that prey gather together not just in one herd, but on
a large territory we expect to find several groups of the same population wandering about.
At the same time, predators are on the lookout for food and possibilities of hunting their
prey. It is widely recognized that predators, when hunting collectively, do not accept
newcomers as new individuals in their midst. However, such behavior is not matched by
the large herbivores feeding in the savannas (FitzGibbon, 1989, 1990), nor in the aquatic
environment (Magurran, 1990). It makes therefore sense to consider a spatial system in
which rather than modeling each individual in the two populations, a reduction in scale
is achieved by using the above model. We therefore consider two interacting populations
in which the prey are allowed to gather together in herds. Each spatial location is meant
as a large enough territory, in which exactly one bunch of prey can wander around as
well as some individually behaving predators. Therefore, at each location in space, (1–2)
constitutes the local, i.e. non-spatial, model for interactions. We need to describe the
dynamics of the system in the larger environment. To this end, keeping in mind that
the individualistic behavior of predators can easily be captured via a standard diffusion
equation, as it has been the case for many such models (Malchow et al., 2008) the extension
of (2) with a diffusion term is straightforward. For the prey, a similar term can also be
added. Clearly, the reaction-diffusion scheme constitutes only an approximation of the
above described settings. It could be regarded as an approximation of a cellular automata
model. Implicitly, then, the grid size is assumed to be always much larger than the average
size of the herd and at least of the size of the much larger territory in which it wanders.
We need also to keep in mind the previous remark, that one herd can migrate into a new
pasture, where perhaps another group of individuals of the same population lives, and
can easily be accepted to share the food. The evidence available from biology shows that
the herbivores in the African savannas drift to find new pastures, with their predators
eventually following them. In Valeix et al. (2009), for instance, it is shown that all kind
of herbivores seek more open habitats preferentially when predators are nearby, so that
predators’ behavior can structure the African herbivore communities and thus the whole
savanna ecosystems. Thus this movement occurs throughout their lifetime, as feeding
does, and therefore the time scales of the two phenomena in consideration, migration and
predation, are of the same order. A time scale separation thus does not occur. Note
also that from the same source, we gather that intermingling for the herbivores does not
constitute a “social” problem, other than the standard intraspecific competition for the
resources, which in our system (1–2) is modeled via the classical logistic term (Thaker
et al., 2010, 2011).

Here we thus want to extend (1–2) to space. Therefore each variable will be a function
of time and space location, G(x, y, t) and F (x, y, t). We assume again that the prey G
gather together, while the predators F still go around loose. Ignoring t for the moment,
let G(U) then denote the size of the prey population at location U = (x, y) gathered

together to form one single patch at that location. F (U) is the total loose predator
population at location U . Diffusion means that some of the prey population at location
U will move toward a neighboring location W incrementing the number of prey there, or
better incrementing the size of the single patch present at W . In fact in both places,
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U and W , there is always only one prey patch. Also, as mentioned, the spatial

location is assumed much larger than the average herd size, so that some free

ground in between the herds is always present.
With these assumptions it is meaningful to write down the following general reaction-

diffusion model on the plane, in which ∆ represents the Laplacian operator,

∂G(X,Y, τ)

∂τ
= r

(

1 − G(X,Y, τ)

K

)

G(X,Y, τ) (17)

−aG(X,Y, τ)αF (X,Y, τ) + δG∆G(X,Y, τ) ,

∂F (X,Y, τ)

∂τ
= (aeG(X,Y, τ)α − m) F (X,Y, τ) + δF ∆F (X,Y, τ) . (18)

Here δG and δF denote the diffusivities respectevely of prey and predators. Again, it
differs from the classical ones due to the presence of the nonstandard predation terms in
the reaction part.

We now nondimensionalize the one spatial dimensional version of system (17) via the
following rescaling: G(τ) = KB(t), F (τ) = ωV (t), τ = χt, X = γx. Letting then

χ =
1

aeKα
, ω =

1

aKα−1χ
= eK, γ =

√

χδG

and defining the new nondimensional parameters

µ =
m

aeKα
, θ =

r

aeKα
, D =

δF

δG

we get

∂B(x, t)

∂t
= θB(x, t) (1 − B(x, t)) − B(x, t)αV (x, t) +

∂2B(x, t)

∂x2
,

∂V (x, t)

∂t
= V (x, t) (B(x, t)α − µ) + D

∂2V (x, t)

∂x2
. (19)

The equilibria of the space independent version of the nondimensionalized model (19)
are the points Q1 = (0, 0), Q2 = (1, 0), and Q3 ≡ (G∗

a, F
∗
a ) with

G∗
a = µ

1

α , F ∗
a = θµ

1

α
−1

(

1 − µ
1

α

)

.

Since the nonspatial counterpart of the system (19) is effectively the original system
(1–2) considered for the special choice of parameters, i.e. for a = e = K = 1, the results
of Section 2.1 immediately apply here with ρ = µ1/α. In particular, the first two equilibria
are unconditionally feasible, Q2 is stable for µ > 1 and unstable otherwise. Figure 2 shows
the phase portraits of the local system in the two qualitatively different cases µ < 1 and
µ > 1. Q3 is feasible for

µ < 1 , (20)

and it is stable for

1 > µ >

(

1 − α

2 − α

)α

≡ µH . (21)

The Hopf bifurcation arises at µ = µH . A further decrease in µ leads to the limit cycle
disappearing as a result of a nonlocal bifurcation at a certain µ∗. Based on the results
of numerical simulation of the nonspatial counterpart of the nondimensionalized system
(19) performed for θ = 1 and α = 0.5, we roughly estimate its value as µ∗ ≈ 0.55.
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Figure 2: Phase portraits of the local nondimensional system (19) in the two cases µ =
1.3 > 1 (left) and µ = 0.6 < 1 (right) for θ = 5.2 and α = 1

3
.

3 Simulation results and preliminary discussion

The system (17) can unlikely be studied analytically, so we use computer simulations
instead. For numerical simulations we use the forward finite difference method, with
temporal stepsize chosen so as to satisfy the von Neumann stability condition,

max{1, D} ∆t

∆x2
<

1

2
.

Numerical simulations are carried out in a spatial domain 0 < x < Lx with ∆x = 1
and time-step ∆t = 0.01. The homogeneous Neumann condition is used as boundary
condition over the whole perimeter of the domain. For the initial conditions, we use
constant values for both populations, concentrating the prey in one half of the space
domain. The predators are distributed instead in a smaller interval located at the center
of the domain and partly overlapping with the prey, see Figure 3. To check the robustness
of the simulation results, the numerical experiments have been repeated with smaller
timesteps without any qualitative change in the final outcomes.
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Figure 3: System’s initial configuration for all the simulations.
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We report here the main results of our simulations. In all cases, we kept α = 0.5 as
it allows an immediate geometrical interpretation of the grouping behavior of the prey
(see Section 2.1); in this case, in the nonspatial system the Hopf bifurcation takes place
at µH = 1√

3
≈ 0.58. We used two values for the the diffusion coefficient, larger predators

diffusivity D = 3.5 and the opposite case of higher prey diffusivity D = 0.35, and we let
the remaining two parameters vary in wide ranges: for µ we used the values 2.5, 1.5, 0.8,
0.5, 0.2; for θ, we used 15.3, 5.3, 1.3, 0.4, combining then the results. The simulations
were initially run for the domain size Lx = 1000 but in some cases the size has been
extended to 3000, 6000 and even occasionally to 10000 in order to check the sensitivity
of the simulations results to the domain size.

Some typical results are shown in Figs. 4–10. All the figures are designed in the same
way: the snapshot of the final densities in space is shown in the left column, while the
right column pictures contain the time series of the populations. The stopping times are
case-dependent and therefore not uniform across the various simulations. Also the prey
are always represented in the top row, the predators in the bottom one.

We obtained clear-cut situations almost in every case, with results reported in Table 1
for the selected choices of the diffusivity D. We discuss at first the case of larger relative
predator diffusivity, D = 3.5, top part of Table 1. Here, we found that the system’s final
outcome hinges on the value of predators mortality µ only, independently of the prey
reproductivity θ, see Table 1. For µ > 1, according to what happens for the system with
no space description, the predators are eradicated and the prey settle at their carrying
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Figure 4: Settling time toward prey-only equilibrium, at carrying capacity for the param-
eter values: D = 0.35, µ = 2.5, θ = 15.3. On the left column, the densities as function of
space, on the right column the whole populations as function of time.
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capacity. This happens also when the space structure is considered. Namely this settling
occurs at every location in space, Figure 4. For intermediate values µH < µ = 0.8, 0.9 < 1
the system locally settles at coexistence, at every space location, third and fourth rows of
Table 1, and the resulting space system therefore does not show any pattern formation,
as expected. For a lower value µ = 0.5 < µ∗ < µH , instead, persistent oscillations arise
and these in space lead to patterns, Figure 5. Interestingly, for these parameter values the
only attractor in the corresponding nonspatial system is the extinction state; the system’s
persistence is therefore essentially an effect of space. Finally, for a still lower value of the
dimensionless mortality µ, the system is not capable of exhibiting persistent oscillations
anymore and the same behavior is inherited by the spatial model, since it ultimately gets
extinguished everywhere in the spatial domain, Fig. 6.

For the case in which prey diffuse more rapidly than predators, i.e. for D = 0.35 (bot-
tom part of Table 1), the situation is similar as for the predators’ dominating diffusivity,
except for µ = 0.5 where we have found two types of behavior depending on the value of
θ, namely, formation of self-sustained patterns and extinction. Interestingly, in the latter
case we have discovered that initially patterns are formed, but then the system collapses
throughout the space domain, which is hardly surprising taking into account that for
small values of µ the only attractor in the system is the extinction state. We have also
tried one order of magnitude larger prey reproductive rate θ = 115.3 for the case D = 3.5,
to see if also in case of faster diffusing predators the model shows the same feature and
found persistent patterns for long times. Instead, for the same parameter values and prey
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Figure 5: Persistent oscillations arise leading to patterns in space for the parameter values:
D = 3.5, µ = 0.5, θ = 1.3. On the left column, the densities as function of space, on the
right column the whole populations as function of time.
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diffusing faster, D = 0.35, again the system is doomed. In Figures 7 and 8 we respectively
show the patterns generated and those just before extinction. The wavefront of the trivial
equilibrium in Fig. 8 moves from right to left.

We then explored the conjecture whether it is the effect of the boundaries that makes
the system collapse. We have thus enlarged the simulation domain to assess for possible
changes in the system’s behavior. Interestingly, for α = 0.5 and θ = 1.52 in the domain
[0, 1000] persistent patterns develop that show the total populations having also a cyclic
nature, see Figure 9, but on further scrutiny this is seen as an artifact. In fact, running
the simulations in [0, 3000] up to a larger time this cyclic behavior of the total populations
dampens, see Fig. 10.

In Tables 2-5 we summarize the times the system takes toward attaining equilibria as
a function of the predators mortality, the prey reproductivity, and the size of the space
domain, for two values of the diffusivity. As a general obvious remark, we find that the
larger the domain, i.e. the complexity of the computations, the longer the time for the
system to attain the steady state. The settling time is estimated, for instance in Figure 4,
as the point at which the plot of the total prey population has a kink, and becomes steady,
given that the total predator population has already reached its (vanishing) equilibrium.
The corresponding nondimensional time can be read off on the bottom axis.

In Table 2, the settling times, empirically estimated as stated above, toward the prey
only equilibrium (BCC), the predator-prey coexistence at steady state (CSS) and the
system’s extinction (EXT) are compared. As mentioned above, the role of predators’
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Figure 6: The system becomes extinct for the parameter values: D = 3.5, µ = 0.2,
θ = 5.3. On the left column, the densities as function of space, on the right column the
whole populations as function of time.
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mortality is mainly to establish the type of the final simulation result. For the case BCC,
the prey reproduction rate θ seems instead to influence more the outcome, as it is natural
to expect. The higher it is, the faster the prey will reach the carrying capacity, in both
cases when they diffuse faster (top portion of the Table) and slower (bottom part of the
Table) than predators. The reaching of coexistence, rows labeled CSS, is hardly infuenced
by θ, except for very low values of it, which somewhat delay the attainment of steady
state. This is also evident, since the prey do not reproduce fast and therefore their total
population attains more slowly the carrying capacity. It is very interesting instead the
fact that for the extinction, the faster the prey reproduce, the faster the system collapses.
This is probably to be ascribed to the fact that larger prey abundance allows growth of
the predators, which then hunt the prey more and wipe them out, thus leading to the final
system’s collapse. The times toward extinction are different for the two diffusivities, here
apparently slower when the prey diffuse faster. Again, an interpretation could be the fact
that in this way they may be more able to escape hunting than for the situation in which
predators diffuse faster. As function of the predators’ mortality, µ instead, the reaching
of the prey-only equilibrium (BCC) does not seem to be significantly affected, as it should
be expected. A larger predators mortality instead makes the time to attain coexistence
equilibrium (CSS) much longer, when the prey diffuse more rapidly. In the converse
case, the same situation occurs, but the differences between the times to equilibrium are
smaller. Extinction times (EXT) appear instead to be hardly affected by the predators’
mortality.

In Table 3, the extinction times are compared as functions of the space domain. The
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Figure 7: Patterns generated in space (right column) for the parameter values: D = 0.35,
µ = 0.5, θ = 115.3 at time t = 1310.
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predators mortality is fixed, and the prey reproduction has little or no effect on the
extinction time, always making it shorter whenever it is higher, for the reason discussed
above. The larger the space domain instead, the longer the system can survive, a fact
that occurs also when prey diffuse faster. The net result is that the extinction time is
dependent on the size of the space domain, but the ultimate system’s behavior is not
affected.

In Table 4, the time to reach coexistence is shown as function of the space domain.
The irrelevance of the prey reproduction rate is retained also in larger domains in almost
every situation. Further, the larger the domain, the longer the system takes to settle. But
a higher predators diffusion favors faster settling times.

Table 5 contains the results for the prey-only equilibrium. Here a larger prey repro-
duction implies quicker convergence toward carrying capacity, as it should be expected.
The larger the space domain however, the more time is required. Clearly, the results are
essentially independent of the predators diffusivity, since the latter are wiped out.
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Figure 8: The spatial patterns generated in Fig. 7 become extinguished as the trivial
equilibrium propagates in space from right to left (right column); parameter values: D =
0.35, µ = 0.5, θ = 115.3. The extinction starts slightly after the situation of Fig. 7 and
is here pictured at time t = 1360. The whole ecosystem will collapse by time t = 1500.
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µ \ θ 15.3 5.3 1.3 0.4
2.5 BCC BCC BCC BCC
1.5 BCC BCC BCC BCC
0.9 CSS CSS CSS CSS

D = 3.5 0.8 CSS CSS CSS CSS
0.5 CPP CPP CPP CPP
0.3 EXT EXT EXT EXT
0.2 EXT EXT EXT EXT

2.5 BCC BCC BCC BCC
1.5 BCC BCC BCC BCC
0.9 CSS CSS CSS CSS

D = 0.35 0.8 CSS CSS CSS CSS
0.5 EXTAP EXTAP CPP CPP
0.3 EXT EXT EXT EXT
0.2 EXT EXT EXT EXT

Table 1: Simulation results. BCC: the prey at carrying capacity, extinction of the preda-
tors; CSS: coexistence at steady state; CPP: coexistence through persistent patterns;
EXT: ecosystem extinction; EXTAP: extinction after pattern formation.

µ \ θ 15.3 5.3 1.3 0.4

BCC 2.5 60 120 230 440
BCC 1.5 60 110 240 420
CSS 0.9 1400 1400 1400 1400

D = 0.35 CSS 0.8 950 950 1000 1000
EXT 0.3 470 470 550 850
EXT 0.2 460 470 550 800

BCC 2.5 60 110 240 420
BCC 1.5 60 110 230 420
CSS 0.9 500 500 500 520

D = 3.5 CSS 0.8 340 340 350 450
EXT 0.3 260 260 260 260
EXT 0.2 230 320 320 320

Table 2: Comparison of settling times for the cases of higher prey diffusivity and higher
predators diffusivity. BCC, the prey attain carrying capacity, predators get extinguished;
CSS, coexistence at steady state; EXT, system’s extinction.
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domain \ θ 15.3 5.3 1.3 0.4
D = 0.35 [0, 1000] 460 470 550 800

[0, 3000] 1350 1350 1450 1650
[0, 6000] 2700 2700 2750 3000
[0, 10000] 4500 4450 4520 4770

D = 3.5 [0, 1000] 230 320 320 320
[0, 3000] 520 520 520 520
[0, 6000] 1100 900 900 900
[0, 10000] 1550 1550 1550 1550

Table 3: Extinction times versus domain size for some selected values of θ and of space
ranges, when µ = 0.2.

domain \ θ 15.3 5.3 1.3 0.4
D = 0.35 [0, 1000] 950 950 1000 1000

[0, 3000] 2800 2800 2800 2300
[0, 6000] 5600 5600 5600 5600
[0, 10000] 9300 9300 9300 9300

D = 3.5 [0, 1000] 340 340 350 450
[0, 3000] 950 950 950 1250
[0, 6000] 1840 1840 1840 2450
[0, 10000] 3050 3050 3050 4000

Table 4: Settling times to coexistence at steady state versus domain size for some selected
values of θ and of space ranges, when µ = 0.8.

domain \ θ 15.3 5.3 1.3 0.4
D = 0.35 [0, 1000] 60 120 230 440

[0, 3000] 180 310 650 1200
[0, 6000] 350 600 1250 2370
[0, 10000] 560 1000 2150 3950

D = 3.5 [0, 1000] 60 110 230 440
[0, 3000] 180 310 650 1200
[0, 6000] 350 600 1250 2370
[0, 10000] 560 1000 2150 3950

Table 5: Settling times to prey only equilibrium versus domain size for some selected
values of θ and of space ranges, when µ = 2.5.
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Figure 9: Persistent spatial patterns (left) develop and the total populations (right)
seem to behave cyclically for the parameter values: D = 0.35, µ = 0.5, θ = 1.52. On the
left column, the densities as function of space, on the right column the whole populations
as function of time.
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Figure 10: In reference to Fig. 9, over a larger space domain and over a longer simulation
run up to time t = 10000, the cycles of the total populations in Fig. 9 are lost, showing
that it is mainly an effect of the boundaries. In fact the earlier kinks in the previous Fig.
9 correspond to the times at which the population wave hits the boundaries. This picture
holds for the very same parameter values: D = 0.35, µ = 0.5, θ = 1.52. On the left
column, the densities as function of space, on the right column the whole populations as
function of time.
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θ 15.3 5.3 1.3 0.4
time 0.4 1.2 5 18

Table 6: Settling times for the prey to carrying capacity in the nondimensional model for
some selected values of θ, for the same initial conditions chosen for the spatial model, but
in absence of predators.

4 Concluding Remarks

The dynamics of social interactions in animal population and communities and their
impact on fitness and population persistence, both within one generation and on a multi-
generation scale, have recently been attracting an increasing attention. In theoretical and
modeling studies, they are usually investigated using an individual based approach, i.e.
by following the behaviour, movement and fate of each individual explicitly, (Maynard
Smith and Price, 1973; Clark, 1993). This approach has proved to be very useful to identify
the main tendencies in the dynamics of the corresponding communities. However, this
approach is essentially simulation-based. It is therefore very difficult to obtain general
system’s properties in a wider parameter range.

In order to overcome these inherent drawbacks of the individual based approach, the
impact of social interactions can alternatively be studied in terms of the corresponding
population densities, (Fryxell and Lundberg, 1997; Petrovskii and Blackshaw, 2003). In
this paper, we use this approach to consider the consequences of animal grouping as a
response to predation. We describe the system by a prey-predator type model where
predation has an unconventional functional form. We first consider the properties of the
nonspatial system and show that it exhibits a peculiar behaviour not observed in the
traditional Rosenzweig-McArthur type prey-predator models. In particular, in a certain
parameter range the phase plane of the system appears to be split into two parts. While
for most of the plane the extinction state (0, 0) acts as a saddle point, there exists a
curvilinear sector adjoining the vertical axis for which the extinction state acts as an
attractor. Note that similar properties have earlier been observed in ratio-dependent
systems (Jost et al., 1999) but never in prey-dependent ones.

We then explore the properties of the spatially explicit system by means of exten-
sive computer simulations. For the spatiotemporal dynamics, our main findings can be
summarized as follows:

• Settling of species toward trivial equilibria could often be preceded by transient
behaviors, which may be very long, depending on the system parameters and the
size of the space domain. The system may be thriving on the scale of t ∼ 103 to
104, see fourth and last rows of Tables 3-5, exhibiting a significant growth in the
population sizes before it finally collapses.

Note that it is not straightforward to compare the timings of the local model with the
space-dependent ones, because all the simulations and the corresponding results in the
Tables have been obtained using nonhomogeneous initial conditions in space. Therefore
the corresponding situation cannot be mimicked at the local level: either initially the
predators are zero or at a nonzero level, and the behavior of the local model will cor-
respondingly either tend to the predator-free equilibrium, or possibly to coexistence, or
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even become extinct. What the Tables contain are the settling times of the whole popu-
lations in the spatial domain. Thus, only relative comparisons are possible. However, the
initial conditions are chosen so that over 1% of the domain prey and predators coexist,
over another 1% of the domain only predators are present, over 49% of the domain only
prey are present, all these populations being always at constant level, and the remaining
49% of the spatial domain is empty, Figure 3. In view of the fact that the overwhelming
nontrivial initial spatial condition contains only prey, in Table 6 we provide the settling
times of the prey to their carrying capacity for the nondimensional model, starting from
the very same initial condition of the spatial model, when predators are absent. The
table is a function only of the nondimensionalized prey reproductive rate θ, as evidently
in this case the nondimensionalized predators’ mortality µ plays no role. By comparing
the results of Tables 2-5 with those in Table 6, the claim of much longer settling times
in the spatial model is thus evident. Turning now to relative comparisons, from Tables
2 and 4 we find that the prey settle to the predator-free equilibrium much faster than
the sytem takes to get extinguished, if the prey diffuses faster than the predators. If the
reproductive rate is high enough, θ = 15.3 for instance, the predator-free equilibrium is
attained in about a eighth of the time for system’s extinction. For low values of the repro-
ductive rate, θ = 0.4, the ratio becomes about one half. Reaching the coexistence state
however, Table 4, in such situation requires 16 times the settling time to the predator-free
equilibrium for a fast reproducing prey population, and about 2.5 times in case of the
prey low reproductive rate. The general picture holds also in case the predators diffuse
faster, although in such case coexistence can be attained in about a third of the time of
the previous case, thereby reducing by the same ratio the comparisons. Here the time to
reach the prey-only equilibrium is not affected by the predators’ diffusivity higher than
the prey’s, as it can easily be foreseen, since the predators vanish. In Tables 4-5 observe
that the settling time to the different equilibria grows about linearly with the size of the
domain. When the settling times toward coexistence are considered, a marked decrease
occurs for the largest domain in case predators diffuse faster. Once more note that for the
settling times toward the prey-only equilibrium point clearly the predators’ have no role,
the entries in the top and bottom parts of Table 5 coincide. The times exhibit instead
a marked decrease for increasing prey reproduction rates starting from their lowest value
θ = 0.4.

• Persistent irregular oscillations are discovered as temporal patterns among the cu-
mulative populations evolving in time. This feature should be expected, as it is
well-known that limit cycles in the local model induce patterns in its spatial coun-
terpart; see Malchow et al. (2008). Let us note, however, that a comprehensive
theory relating the existence of local oscillations to pattern formation in space is
largely lacking and hence the system (19) provides a valuable extension of the ex-
isting results.

• The spatial system disappearance provides a sufficient condition for its non-spatial
counterpart: whenever the conditions for system collapse at the local level are satis-
fied also its spatial counterpart gets extinguished. Extinction of the system can also
be enhanced by predators diffusing faster than the prey, as it takes about half the
time of the opposite case. In Table 3 the extinction time grows about linearly with
the size of the domain, but if the prey diffuse faster there is a sharp reduction when
the reproduction rate grows from the lowest value θ = 0.4 and thereafter becomes
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almost constant. This is more marked for low-sized domains. For the predators
diffusing faster instead, the timings are essentially constant.

With regard to species extinction observed in numerical simulations, we ascribe it to
the impact of two factors. Firstly, extinction of species is obviously predicted by Theorem
1 when the densities fall into the corresponding domain of the phase plane, i.e. into
the basin of the extinction state. Secondly, in a broad parameter range, the population
oscillations show a large amplitude so that the limit cycle lies close to the phase plane
boundaries. The observed extinction of species than can happen as a result of these large
oscillations which may bring the population densities to values very close to zero for the
prey and very large for the predators. When this happens, the trajectories will fall into
the basin of attraction of the origin. Note that this behavior is fully relevant to what
actually happens in ecosystems due to the impact of stochastic factors, even though those
environmental factors are not included explicitly into our model.

Thus the spatial system is less likely to become extinct than the local one. Persistence
in the spatial domain is obtained via pattern formation, although in some cases, when
the prey diffuse faster, these lead to system’s extinction anyway. The prey survive either
alone or at coexistence state or via the patterns. In the former case the predator-free
equilibrium is reached under the very same theoretical conditions that imply it in the
local model.

The equilibria of the system are obtained in general through features such as waves
of prey propagating with predators on their pursuit. Thus the proposed system exhibits
excitability properties, in which pulses propagate along the spatial one-dimensional di-
rection. Models of related nature and similar conclusions have recently been investigated
in the literature, see for instance Petrovskii et al. (2005); Morozov and Petrovskii (2009);
Banerjee and Petrovskii (2011). Also ecoepidemic models involving prey group defense
have been proposed and examined, and show also interesting phenomena as the trigger-
ing of persistent oscillations, (Venturino, 2011). Extensions of the present model could
consider competing interactions or those of mutualistic nature.
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