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Abstract

In this paper we consider a prey population that gathers in herds, to-
gether with its interactions with predators. The latter are affected by a
disease, and only the healthy individuals hunt. The defensive attitude of the
prey is reflected in the fact that mostly the individuals at the border of the
herd suffer from the attacks of the predators. Equilibria and their stability
are fully analysed. The system can either eliminate the predators, or the
disease can be eradicated, or finally infected and healthy predators can coex-
ist with prey. In particular circumstances persistent population oscillations
can arise. The ultimate behavior of the system is characterized by two suit-
ably introduced parameters, one of demographic nature, the other mainly
of epidemiological significance. As in other ecoepidemic models, the analysis
points out that the disease plays a relevant influence also when group defense
is considered, so that the ultimate outcome of the system is not prescribed
just by demographic considerations.

Keywords: predator-prey, group defense, ecoepidemic systems, ecosys-
tems

1. Introduction

Mathematical population theory, which dates back two centuries to the
work of the economist Malthus, [1], originally dealt with the study of the

1This paper was completed and written during a visit of this author at the Max Planck
Institut für Physik Komplexer Systeme in Dresden, Germany. The author expresses his
thanks for the facilities provided.
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dynamics of a single population. This original model was then modified to
compensate for its shortcomings, namely the impossible unbounded growth
of the population with only limited resources, by the so-called logistic version,
[2]. More than a century later through the influence of the works of Lotka
and Volterra, [3, 4], scientists began to consider interacting populations, in
particular of competing type, [5]. Mathematical epidemiology evolved from
its conception at about the same time, in the late 1920’s with the works of
Kermack, McKendrick and then of von Foerster, [6, 7]. These two disciplines
throughout the past century developed on parallel tracks without much com-
munication among them. The fact that diseases are a common fact in nature,
coupled with the consideration that most of them spread by contact among
healthy individuals and those infected, or through contaminated materials,
and the fact that they influence the mortality of the communities among
which they rage, prompted scientists to take a more general view of the de-
mographic interactions encompassing other phenomena such as diseases as
well. Similarly, epidemiologists started to investigate the spread of diseases
in populations that change in time, as their reproduction is a continuous
phenomenon, that influences the disease prevalence. Thus toward the turn
of the century, epidemiologists began to consider mathematical models of
diseases affecting variable size populations, [8, 9, 10]. This step led to a
cross fertilization among the two fields, as a number of papers appeared,
[11, 12, 13, 14], in which the spread of diseases began to be investigated
among populations that in some way or other were intermingling. A new
field of research developed, now called ecoepidemiology, see [15] for more
details on its development and more references.

In population theory the basic assumption among interacting populations
concerns individual encounters. This is generally modelled on a one-to-one
basis via the mass action law. However the case of interactions among iso-
lated predators hunting herds of prey has not been considered until very
recently. In fact an idea based on the shape of the response function has
been proposed quite some time ago, [16]. A more recent investigation hinges
on a rather different idea. Namely, models for prey gathering in herds and
using group defense, with the most fit, i.e. healthy, animals occupying the
edge of the bunch, have been proposed by one of the authors [17, 18] and
the idea has been further pursued [19]. A similar idea had been expounded
some time ago for predators hunting in groups, [20].

The next natural step was then to turn to ecoepidemiological models. For
a rather recent review of the field, see Chapter 7 of [15]. In this context, the
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models generally assume that the sound individuals do not recognize disease-
carriers. But in [23, 24], the situation in which the latter are purposely
avoided upon recognition by the healthy animals is expressely taken into
account. Prey group defense models have thus been extended to the ecoepi-
demic case, by considering predator-prey interactions in which the epidemics
affects the prey, [21]. In this paper we deal with the reverse situation, i.e.
when the disease spreads among predators, [25]. Several examples of diseases
affecting wild populations are provided in Table 2 of [26]. Such situations
can encompass populations living on the ground, in water and in the air.
For instance, with reference to the notation introduced in the model, rabies
and Sarcoptes spp. affect foxes (Vulpis vulpis); in water we can mention the
Phocine Distemper Virus, which affects the common seal (Phoca vitulina)
and the striped dolphin (Stenella coeruleoalba), here the prey being fishes,
which in some cases clearly gather in schools. For several bird species, com-
mon diseases are caused by, e.g. Avian Pox, Newcastle Disease, Influenza,
Pasteurella multocida, Apergillus fumigatus and Leukocytozoon simondi, with
mainly insects as their prey. The latter also can gather in swarms.

The paper is organized as follows. In the next Section we give a math-
ematical description of the system and rephrase it in adimensional form.
Section 3 discusses the possible equilibria of the system. In Section 4 we anal-
yse their stability, showing that it is completely characterized by a suitably
introduced parameter, the relevance of which had been already discovered
in [17, 18]. Section 5 contains the bifurcation analysis. A final discussion
concludes the paper.

2. The model

Let R(τ) denote the prey population (the name of the variable is a
mnemonic shorthand for rabbits, although they do not live in herds), F (τ)
(shorthand for foxes) be the healthy predators and G(τ) the diseased ones
at time (τ). We assume that prey reproduce logistically, at intrinsic growth
rate r and with carrying capacity K, and are hunted at rate a by the healthy
predators. Since they gather together in herd, mainly the individuals on
its boundary will be mostly affected by the predators attacks. This, follow-
ing [17, 18], is modelled using a square root term for the prey population,
accounting for the prey population occupying this portion of the ground.

Now the square root term is used to model the fact that the perimeter
of the occupied ground is a one-dimensional measure, compared to the two-
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dimensional one for the area of a surface. Thus the real shape of the herd
need not necessarily be circular, as the root term is multiplied by a constant
factor ā, that accounts for geometric as well as biologic features. It can be
regarded as the product of two factors, the first one taking care of the likely
deformation from the circular shape to possibly a different one, the second
one expressing the hunting rate of the healthy predators on the prey.

Note that living in herds has a benefit for the whole population, this aris-
ing from the first two equations of the model (1) in that the predation term
grows following a concave function, and not linearly as it does in standard
predator-prey models. Therefore, as the number of prey grows, those that
are captured are in proportion less. This is similar to what happens using a
Holling-type II response function, but the underlying biological mechanism
is totally different, as the Holling-type II response models feeding satiation
in the predators.

The predators are disease-aected, thereby as already stated above, par-
titioned among susceptibles and infected, with transitions from the former to
the latter class at rate λ, denoting the disease transmission rate. The disease
is assumed to be unrecoverable. The prey r represent the only food source
for the predators. This is reected in the natural mortality m experienced
in absence of prey. When the latter are captured, they are converted into
new predators via the conversion factor 0 < e ≤ 1, which is applied to
the term expressing prey capturing. The infected predators are assumed to
be too weak to hunt, and therefore they will die at rate n, expressing the
combination of natural and disease-related mortality. The system reads

dR

dτ
= r

(

1 − R

K

)

R − a
√

R F

dF

dτ
= F (−m + ea

√

R − λ G) (1)

dG

dτ
= G(−n + λ F ).

Clearly, the model has an underlying demographic structure on top of which
an epidemic of SI (susceptible-infected) type is introduced. In this con-
text, other types of more complicated epidemics could be considered, such
as SIR (susceptible-infected-removed) or SIRS (susceptible-infected-removed-
susceptible), in case the disease can be overcome and individuals would be
subject to relapses. The problem however, for which we avoid these models
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at present, is that the number of classes in which the predator population
should be partitioned would increase, and correspondingly would the size of
the dynamical system (1) do, thereby complicating the analysis.

As it has already been observed in [18, 21], the square root terms upon
differentiation entail the possible presence of a singularity. By a suitable
change of dependent variables, we can remove the singularity appearing in
the Jacobian matrix, when the prey population vanishes. Namely, we set

√

R = P ,
dP

dτ
=

1

2
√

R

dR

dτ
.

Here, the new variable P can be interpreted as the number of prey on the
boundary of the herd. Substituting into (1) we get

dP

dτ
=

r

2

(

1 − P
2

K

)

P − a

2
F

dF

dτ
= F (−m + eaP − λ G)

dG

dτ
= G(−n + λ F )

Note that in this very step also the nature of the system changes in part. In
fact the last term of the first equation in (1) from nonlinear has become linear
in the reformulation. We then adimensionalise this system. We define the
adimensional time t = δτ and the new dependent variables P (t) = αP (τ),
F (t) = βF (τ), G(t) = γG(τ) to obtain

dP

dt
=

r

2δ

(

1 − P 2

α2K

)

P − aα

2βδ
F

dF

dt
= F

(

−m

δ
+

ea

αδ
P − λ

γδ
G

)

dG

dt
= G

(

−n

δ
+

λ

βδ
F

)

Finally, we can set

α2K = 1,
r

2δ
= 1,

aα

2βδ
=

a

αδ
,

λ

γδ
=

λ

βδ
.
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Thus we can now define the new adimensional parameters

m =
m

δ
, n =

n

δ
,

aα

2βδ
=

a

αδ
= a

λ

γδ
=

λ

βδ
= λ.

The final form of the system is

dP

dt
= (1 − P 2)P − aF, (2)

dF

dt
= F (−m + eaP − λG),

dG

dt
= G(−n + λF ).

In part following what has been done in [18], let us further introduce the new
parameters, which again are dimensionless, since m, a, h and n are, while e
is by definition a pure number,

ρ :=
m

ea
, h :=

an

λ
. (3)

3. Equilibria

The possibile equilibria of the system are: extinction, predator-free, disease-
free and coexistence. They correspond respectively to the always feasible
points E0 = (0, 0, 0), E1 = (1, 0, 0) and

E2 =
(

ρ,
ρ

a
(1 − ρ2), 0

)

, E3 =

(

P3,
h

a
,
ea

λ
(P3 − ρ)

)

,

where the latter can be a multiple equilibrium, since P3 can attain at most
two different values, as described below. For E2 the feasibility condition is
immediately found,

ρ < 1. (4)

The coexistence equilibrium E3 needs positivity of the third component as
feasibility condition, thereby imposing the lower bound on the prey popula-
tion

P3 > ρ, (5)

which is more stringent than the nonnegativity of the first component, namely
given just by the value of the prey population P3. The value of the prey
population P3 is obtained as a root of the cubic equation

f(P ) ≡ P 3 − P + h = 0. (6)
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This function has a positive value at the origin, f(0) = h > 0, a minimum at

P0 = 3−
1

2 and the inflection point at P = 0. To have a positive intersection
with the P axis, we must have f(P0) ≤ 0, thus

h ≤ 2
√

3

9
(7)

Further, f(1) = f(0) = h > 0. We can thus conclude that if (7) holds, there
are two real positive roots,

P−
3 ∈

[

0,
1√
3

]

, P+

3 ∈
[

1√
3
, 1

]

.

These roots clearly coalesce if h = 2
√

3/9. In view of (5) and of the fact
that both roots are smaller than one, for compatibility we must impose the
additional feasibility condition ρ < 1, thereby obtaining

1 ≥ P3 ≥ ρ. (8)

We summarize our findings in the following proposition.
Proposition 1 The system admits the origin, the predator-free, the

disease-free and the coexistence with endemic disease equilibria. For the
latter two, feasibility is ensured respectively by condition (4) for E2 and
conditions (5) and (8) for the coexistence.

4. Local Stability Analysis

The Jacobian matrix of (2) is

J =





1 − 3P 2 −a 0
eaF −m + eaP − λG −λF
0 λG −n + λF





At the origin, the eigenvalues of the Jacobian matrix are 1, −m and −n,
implying thus instability for E0. At E1 we find instead −n, −2 and −m+ea.
To have stability, we must impose

ρ > 1. (9)
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At E2 the characteristic equation of the Jacobian matrix in x factors to give
one explicit eigenvalue x1 = λa−1 [ρ(1 − ρ2) − h], and the two roots of the
quadratic equation

x2 − x
(

1 − 3ρ2
)

+ m(1 − ρ2) = 0,

namely

x2,3 =
1

2

[

(

1 − 3ρ2
)

±
√

∆
]

, ∆ =
(

1 − 3ρ2
)2 − 4m(1 − ρ2).

Imposing that the real parts of these latter eigenvalues of the Jacobian ma-
trix are negative, ℜ(x2,3) < 0, we find 3ρ2 > 1, which must be combined
with negativity of the first eigenvalue of the Jacobian matrix. In summary,
stability of E2 holds for

3ρ2 > 1, h > ρ(1 − ρ2). (10)

The characteristic equation of the Jacobian matrix
∑

3

n=0
anx

3−n = 0 for
the coexistence equilibrium E3 reads

x3 − (1 − 3P 2

3 )x2 + aex [n (P3 − ρ) + h] − aen(1 − 3P 2

3 ) (P3 − ρ) = 0. (11)

We now apply the Routh-Hurwitz criterion, see p. 67 of [22], to find that
stability is ensured if

a1 > 0, a1a2 − a0a3 > 0, a3 > 0.

From this, assuming feasibility, the following stability condition is obtained,

P3 >
1√
3
. (12)

The function f(P ) = P 3 − P + h has two real positive roots, one in the
interval [0, 1√

3
], the other one in [ 1√

3
, 1]. The first one, P−

3 , in view of (12) is

always unstable, the second one instead, P+

3 , is always locally asymptotically
stable, when it exists. Table 1 summarizes our findings.

We have thus shown the following result.
Proposition 2 Extinction of the system (2) is never possible. The

predator-free equilibrium is stable if ρ > 1. The disease-free equilibrium
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EQUILIBRIUM FEASIBILITY STABILITY
POINT CONDITIONS CONDITIONS

E0 = (0, 0, 0) — always unstable

E1 = (1, 0, 0) — ρ > 1

E2 =
(

ρ, ρ

a
(1 − ρ2), 0

)

ρ < 1 h > ρ(1 − ρ2),
ρ > 1√

3

E3 =
(

P3,
h
a
, eaP3−m

λ

)

, 1 > P3 > ρ,

where P3 solves h ≤ 2
√

3

9
, P3 > 1√

3

P 3 − P + h = 0

Table 1: Summary of feasibility and stability conditions for the equilibria of (2).

is stable if conditions (10) hold. Coexistence with an endemic disease in the
predators is ensured by (12).

Remark 1. As a check, we run simulations with the parameter values:
λ = 0.4, a = 0.5, n = 0.5, e = 0.5, with m varying in the range [0.31, 0.51].
We find the results of Figures 1 and 2. In these cases, equilibrium E1 is
stable, since ρ > 1.

Remark 2. For the parameters λ = 0.5, a = 0.5, m = 0.2, e = 0.5, with
n in the range [0.41, 0.61] we have the results of Figures 3 and 4. In this case
E2 is stable, since 3−1 = 0.577 < 0.8 = ρ < 1 and n = h > ρ(1− ρ2) = 0.288.

Remark 3. Finally we consider the parameters λ = 0.5, a = 0.5,
n = 0.4, e = 0.5, with m ∈ [0.205, 0.305], we have the results of Figures
5 and 6. Now in this situation E2 is initially stable, but when m varies ρ
changes from values smaller than 1 to values higher than 1, so that feasibility
of E2 does not hold anymore. We rather obtain stability of E1, thus showing
a transcritical bifurcation, which is also apparent from the interchange of
feasibility and stability conditions for E1 and E2, which can be easily seen
for ρ = 1 in Table 1.

5. Study of the bifurcations

In this section we investigate the behavior of the system as parameters
change.
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Figure 1: Time series of the solutions trajectories of (2) for the parameter values λ = 0.4,
a = 0.5, n = 0.5, e = 0.5, and m ∈ [0.31, 0.51].

Proposition 3 The system (2) exhibits a transcritical bifurcation for
ρ = 1, involving equilibria E1 and E2. Furthermore, for ρ = 1√

3
the system

undergoes a supercritical Hopf bifurcation at the equilibrium E2.
Proof . It is easy to check the first claim, as the stability condition for E1

(9) and the feasibility condition for E2 (4) are the opposite of one another.
For the second claim, we remark that (2) is a polynomial differential system
in R3, [27] and observe that two of the roots of the characteristic equation

of the Jacobian evaluated at E2 become pure imaginary for ρ = 3−
1

2 , while
the third eigenvalue does not vanish in general, namely

x1 =
λ

a

[

2

3
√

3
− h

]

6= 0, x2,3 = ±
√

2m

3
i.

Also the transversality condition holds, as the derivative of the real part
of the complex conjugate roots does not vanish for the critical value of the
bifurcation parameter ρ. We find in fact

dRe(x2,3)

dρ
= −3ρ,

dRe(x2,3)

dρ
|ρ=

1
√

3

= −
√

3 6= 0.

Hence, the second claim. �
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Figure 2: Phase space portrait of the solutions trajectories of (2) for the same parameter
values of Figure 1.

Proposition 4 At endemic coexistence, equilibrium E3, the system (2)
admits Hopf bifurcations.

Proof . We can follow closely the ideas of [27] and impose that the
point with P3 = 0.75 gives the prey population at the endemic coexistence
equilibrium. It follows then

F3 =
h

a
=

n

λ
=

21

64 a
, G3 =

ae

λ

(

3

4
− ρ

)

, h =
21

64
,

feasible for ρ > 0.75. The first two Routh-Hurwitz conditions on the charac-
teristic equation (11) become:

a1 =
11

16
> 0, a3 = −11

16
× 21

64
eλ

(

3

4
− ρ

)

> 0.

Furthermore,

a2 = ae

(

3

4
n − ρn + h

)

.

The last condition, if we force it to be zero, a1a2 = a3, gives the critical value
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Figure 3: Time series of the solutions trajectories of (2) for the parameter values λ = 0.5,
a = 0.5, m = 0.2, e = 0.5, and n ∈ [0.41, 0.61].

of the bifurcation parameter, which we choose here to be ρ:

ρ† =
64h

(21 + 64h)n

[

3

4
n +

63

256

n

h
+ h

]

.

The conditions for a Hopf bifurcation in this situation are thus verified when
ρ > ρ†. �

Remark 4. We have obtained several simulations showing limit cycles
around E3, by varying the parameter values. However the amplitude of the
oscillations is always small. We show in Figure 7 one of these results, for the
parameter values λ = 23.8, m = 0.01, n = 0.3, e = 0.99 and a = 26.0313,
providing complex conjugate eigenvalues with not too small real part, namely
0.8780 ± 0.9271 i and the equilibrium E3 = (0.7500, 0.0126, 0.8117).

We now discuss the feasibility of these equilibria in the ρ − h parameter
space. The feasibility regions for E1 is easy to draw, namely it is the half
plane ρ > 1, independently of h, and for E2 we have the stability region
3−

1

2 < ρ < 1 with h > ρ(1 − ρ2), see Figure 8. In it, note that the boundary
separating the regions for E2 and E3 is given by the curve h = ρ(1 − ρ2),
which is part of a cubic. For E3, we certainly need ρ < 1 and h < 2

9

√
3.

Since E3 solves the cubic (6), and for both feasibility and stability we need
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Figure 4: Phase space portrait of the solutions trajectories of (2) for the same parameter
values of Figure 3.

P3 > max{3− 1

2 , ρ}, we have two cases. In case ρ < 3−
1

2 , 3−
1

2 < P3 holds,

since one of the roots of (6), namely P+

3 , is always larger than 3−
1

2 , since the
latter value corresponds to a negative minimum of the cubic. Conversely, we
must have P3 > ρ > 3−

1

2 and from the fact that P3 solves the cubic (6) we
have the estimate 0 = P 3

3 − P3 + h > ρ3 − ρ + h from which h < ρ(1 − ρ2).
These two results thereby identify the stability region for E3, see Figure 8.

Considering now the parameter ρ as it changes from values larger than
1 to values lower than 1, E1 and E2 exchange their stability properties, the
former also becoming feasible, so that we have the transcritical bifurcation
identified earlier.

Consider now 3−
1

2 < ρ < 1. In this region, we study the system as h
moves from above the critical curve h = ρ − ρ3 to values below it. Initially,
E2 is feasible and stable. E3 depends on the cubic (6) which has only one

negative root, thus is unfeasible, but it would be stable if ρ < 3−
1

2 , since the
stability condition P3 > 3−

1

2 is obtained from P 2
3 < 3−1 and P3 > 0. As h

crosses the critical curve, E2 becomes unstable and two new equilibria arise,
of which only one is stable, while the former unfeasible equilibrium remains
stable. We obtain a situation very similar to a fork bifurcation, an imperfect
fork bifurcation, [28, 29, 30].
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Figure 5: Time series of the solutions trajectories of (2) for the parameter values λ = 0.5,
a = 0.5, n = 0.4, e = 0.5, and m ∈ [0.205, 0.305]. Note the different equilibrium point
attained as m changes its value.

The behavior on the boundaries between the regions of Figure 8 falls into
the following cases

1. h = 2
√

3

9
and 0 < ρ < 1√

3
: P3 = 1√

3
has multiplicity 2, so that E3 =

( 1√
3
, h

a
, −

√
3m+ea

λ
√

3
). One of the eigenvalues of E3 is µ1 = 0.

2. h = ρ(1 − ρ2) and 1√
3

< ρ < 1: E2 = (ρ, h
a
, 0). One of the eigenvalues

of E2 is µ1 = 0.
3. ρ = 1√

3
and h > 2

√
3

9
: E2 = ( 1√

3
, 2

√
3

9a
, 0). One of the eigenvalues of E2 is

real and always negative, the other two are pure imaginary numbers.
4. ρ = 1: E2 = (1, 0, 0) = E1 and one of the eigenvalues of E1 is µ1 = 0.

5. ρ = 1√
3

and h = 2
√

3

9
: P3 = 1√

3
with multiplicity 2, so that E3 =

( 1√
3
, 2

√
3

9a
, 0) = E2. One of the eigenvalues of E3 is µ1 = 0.

Remark 5. In all of them, the behavior depends strongly on the initial
conditions. For instance, taking the initial condition (0.5, 0.3, 0.1) and the
parameter values λ = 0.18, a = 0.4, m = 0.069, n = 0.1

√
3, e = 0.3 giving

ρ = 0.575 ∼= 3−
1

2 and h = 2
√

3/9 ∼= 0.38, i.e. the above case 5, we get the
persistent oscillations behavior of Figure 9. Its phase space representation is
plotted in Figure 10.
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Figure 6: Phase space portrait of the solutions trajectories of (2) for the same parameter
values of Figure 5.

Remark 6. Instead for the initial condition (0.57, 0.96, 0.001), very close
to the former one, we find the behavior of Figure 11 with phase space behavior
in Figure 12, giving again a limit cycle, with trajectories tending to it from
within. Note that persistent oscillations are not uncommon in epidemiology,
[31].

Remark 7. In case 3 the presence of purely imaginary eigenvalues sug-
gests the presence of a Hopf bifurcation for ρ‡ = 3−

1

2 . For the parameter
values λ = 0.1, a = 0.1

√
3, m = 0.02, n = 0.3, e = 0.2, giving ρ = 3−

1

2 and
h ∼= 0.51 we have a limit cycle as shown in Figures 13 and 14.

6. Discussion

We have presented a simple ecoepidemic model for predator-prey inter-
actions in which the prey gather together in herds and a disease affects the
predators. There are only three possible stable equilibrium states. The
predators are wiped out, E1, the disease is eradicated and prey and predators
both thrive, E2, and the disease remains endemic, with the three subpopu-
lations coexisting, E3. The relevant role of the parameter ρ, (3), is apparent
in this context as it has been originally discovered in [17], and in adimen-
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Figure 7: Tiny persistent oscillations around the endemic coexistence equilibrium E3 for
the parameter values λ = 23.8, m = 0.01, n = 0.3, e = 0.99 and a = 26.0313.

sionalized form in [18], using a different rescaling. However, the parameter
ρ of [17, 18] has a different definition in the ecoepidemic context. We have
used the same letter here, to conform ourselves to what already used in [21],
in which the parameter ρ is defined in terms also of the predation rate a.
In any case, ρ discriminates among all the possible dynamics of the system.
It contains almost all the relevant information needed to assess the ultimate
behavior of the system. Interestingly enough, its ranges are the same discov-
ered already in [18]; those in [17] differ instead due to the different definition
of ρ, stemming from the fact that the system has not been adimensionalized.
And again, the same range appears in [21].

In summary, for ρ > 1 the predators are wiped out, a result which agrees
with what found when the disease affects the prey, [21]. For the critical
value of the parameter, ρ = 1 a transcritical bifurcation occurs and the
predators establish themselves permanently in the ecosystem. For further
decreasing values and also with an essential role played by the parameter h,
also the disease becomes endemic. The three subpopulations coexist either
at the stable equilibrium, bottom left blue region in Figure 8. Note that the
top left white region in Figure 8 corresponds to the unfeasible equilibrium
E−

1 = (−1, 0, 0). Persistent oscillations have been discovered, in suitable
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Figure 8: Feasibility and stability regions for the equilibria of the system in the ρ − h

parameter space.

circumstances, at the boundaries of the stability regions, and proven to exist
also around the endemic coexistence equilibrium.

Note that in comparison with the other ecoepidemic case [21], when the
prey are disease affected, here we have been able to better characterize the
behavior of the system, the essential reason being the simpler form that the
stability conditions for the coexistence equilibrium have. The background
for that is the fact that the cubic characteristic equation (11) takes in this
case a more workable mathematical expression.

All these remaks strongly support the claim that the ultimate outcome
of the system depends mainly on ρ, while a smaller role is due to h. But
while in the definition of the former only demographic-related parameters
appear, in h also the disease transmission is present. Thus our major bio-
logical conclusion consists in the finding that in this ecoepidemic model with
group defense also the disease has some relevant influence, and therefore the
outcome of the trajectories of the system is not prescribed just by demo-
graphical considerations. These considerations are in line with the standard
results in ecoepidemic theory, [12, 13, 14, 15, 32, 33, 34].

Acknowledgments: The authors thank the referees for their very con-
structive criticism.
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√

3, e = 0.3 giving ρ = 0.575 ∼= 1
√

3
and h = 2

√

3

9

∼= 0.77 and

initial condition (0.5, 0.3, 0.1).
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