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Abstract

Persistence and global stability of the coexistence equilibrium of a

recently published model in biocontrol of crops are here shown both in

absence and presence of delays, introduced to simulate the handling

time of the prey. In the latter case, the system can behave in two differ-

ent ways, in dependence of whether a suitably defined key parameter

exceeds a certain threshold. Namely, below the threshold the delay

is shown not to be able to influence the stability of the coexistence

equilibrium; above it, existence of Hopf bifurcations is analytically

proven. Further, in this range, numerical simulations reveal a route to

chaotic behavior as function of the size of the delay. Some operative

conclusions for agroecosystem management are drawn, although they

ultimately depend on each particular situation.

Keywords: Global stability, Hopf bifurcations, chaos, spiders, delays

1 Introduction

The problem of biological control in agriculture is very important, in view
of its economic impact on the minimization of the use of insecticides. In the
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recent literature, it has received a lot of attention, [11, 13, 14]. The role of
spiders as generalist predators is of wide interest and well recognized, see
for instance [8] and the literature contained in [3]. The use of several spider
species for controlling pests in crops as diverse as rice, [12, 16], cereals,[1],
bananas, [10] is well documented. Mathematical models in this context play
an essential role, in that they can substitute costly and lengthy field experi-
ments with rather cheap simulations, using the power of now easily available
computational resources.

The purpose of this paper is to revisit a recent paper to improve on
its analytic findings, [3]. Specifically, the model considered concerns two
spider populations, distinguished because of their living habitats, predating
on insects.

In [3], the equilibria have been found and their local stability has been
analysed. A delay in transforming the captured prey into predators’ new-
borns has been considered. By means of simulations, the insurgence of Hopf
bifurcations has been investigated in terms of the delay parameter.

In this paper, we extend the analytic results, by first concentrating on
the non-delayed system, and precisely proving the persistence of and the
global stability for it. We then extend the analysis to the delayed model and
analytically prove also in this case the persistence, the global stability and
the existence of Hopf-bifurcations.

The paper is organized as follows. In the next Section we revisit the basic
model. Section 3 contains new results on the non-delayed model, specifically
we prove its persistence and the global stability of its coexistence equilibrium.
Section 4 contains analogous results for the delay system, and in addition we
also prove analytically the existence of Hopf-bifurcations, which in [3] were
only discovered numerically.

2 Background

In [3] the following three-dimensional system has been considered, modeling
an insect population which is hunted by two spider populations. The latter
are distinguishable since they reside in two different habitats, in both of which
the common prey insects thrive as well. These are represented in general by
the cultivated land, whose spider population is then be denoted by sc, and
the green patches of grass and small woods surrounding the agroecosystem,
whose spider population is denoted by sω. The insect population follows a
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logistic growth law in absence of spiders. Furthermore they represent the
only food source for the spider populations. Spiders are subject to natural
mortality and in addition they compete for resources.

The ecosystem dynamics is described by the following set of three coupled
nonlinear ordinary differential equations.

dp

dT
= rp

(
1 −

p

K

)
− apsω − bpsc, (1)

dsω

dT
= sω

(
eap− µω −

sω

W

)
,

dsc

dT
= sc

(
ebp− µc −

sc

V

)
.

subjected to feasible initial conditions p(0) > 0, sω(0) > 0, sc(0) > 0.
Here p(T ) denotes the insect population while sω(T ) and sc(T ) denote as

mentioned the webbuilder spider populations living in two different habitats.
The webbuilder spiders are known essentially to live in the same place for
their entire lifetime, with the exception of one possible migration known as
ballooning, when they are young instars. In fact, it occurs when they release
a thread and let themselves be carried by the wind. This phenomenon has
been thoroughly analyzed in [17], but here, as in [3], it will be disregarded,
in order to concentrate more in the present context on other issues.

All the parameters involved with the model (1) are positive constants.
Their ecological interpretation follows: r represents intrinsic growth rate for
the insects, with K denoting their environmental carrying capacity. The per
capita prey capturing rates are a and b for the spiders in the two habitats.
They turn hunted prey into new biomass via the conversion coefficient 0 <
e < 1. As stated above these spider populations compete with each other
intra-specifically, at respective rates W−1 and V −1. Finally spiders’ natural
mortality rates are denoted by µω and µc.

After adimensionalization, system (1) has been analysed in [3] and the
main results are here reported for the convenience of the reader. Specifi-
cally, the following equilibria have been found: the origin, the predator-free
equilibrium, two one predator-free points and the coexistence of the whole
ecosystem. Together with these results, local stability and boundedness of
the trajectories represent other relevant findings.
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3 New findings on the non-delayed model

We now proceed to extend the analysis. To this end, we need a slightly
different adimensionalization of (1) than the one used in [3]. We namely
introduce dimensionless variables into the model (1), as follows.

P =
p

K
, Sω =

asω

r
, Sc =

bsc

r
, t = rT,

to get the following dimensionless version of the system of equations,

dP

dt
= P (1 − P ) − PSω − PSc, (2)

dSω

dt
= αSωP − δωSω −

S2
ω

W1

, (3)

dSc

dt
= βScP − δcSc −

S2
c

V1

, (4)

with once again feasible initial conditions, P (0) > 0, Sω(0) > 0, Sc(0) > 0.
The new introduced parameters are given by

α =
eaK

r
, β =

ebK

r
, δω =

µω

r
, δc =

µc

r
, W1 = aW, V1 = bV.

Two interesting dynamical properties which have not been addressed in [3],
namely persistence of solutions originating from an interior point of the first
octant and the global stability of the interior equilibrium are still unexplored
and are investigated here.

3.1 Equilibrium points and persistence

The system has the following five equilibrium points: the origin E0; the
boundary points, in which the notation empasizes the nonvanishing compo-
nents, E1 ≡ (1, 0, 0);

E12 ≡

(
1 +W1δω
αW1 + 1

,
(α− δω)W1

αW1 + 1
, 0

)
; E13 ≡

(
1 + V1δc
βV1 + 1

, 0,
(β − δc)V1

βV1 + 1

)

and the interior equilibrium point E∗ ≡ (P ∗, S∗
ω, S

∗
c ) where

P ∗ =
1 + δωW1 + δcV1

1 + αW1 + βV1

, S∗
ω =

[α(1 + δcV1) − δω(1 + βV1)]W1

1 + αW1 + βV1

,

S∗
c =

[β(1 + δωW1) − δc(αW1 + 1)]V1

1 + αW1 + βV1

.
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For feasibility of E12 and E13, we need respectively the restrictions on the
parameters

α > δω, β > δc, (5)

while for the interior equilibrium we must require

α(1 + δcV1) > δω(1 + βV1), β(1 + δωW1) > δc(αW1 + 1). (6)

Persistence for a dynamical population system means that all its trajec-
tories originating from an interior point of the positive orthant, in our case
for (2) it is R

3
+, remain strictly positive and do not approach any boundary

of the non-negative cone as t → +∞. This implies the survival of all the
populations for all future times. We now prove persistence of (2) by means of
the well known “average Lyapunov function” technique, [5], which has been
applied to a wide range of population models [2, 7, 18].

Theorem 1. The system (2)-(4) is persistent if (5) hold together with

max

{
(αδc − βδω)W1

β − δc
,
(βδω − αδc)V1

α− δω

}
< 1.

Proof: For (P, Sω, Sc) ∈ R
3
+, consider the positive definite Lyapunov func-

tion of the form
ψ(P, Sω, Sc) = Pα1Sα2

ω Sα3
c

where αi > 0, i = 1, 2, 3 are three positive real numbers.
Calculating the logarithmic time derivative of ψ(·) along solution trajec-

tories of the system (2) we get

ψ̇

ψ
= α1[(1 − P ) − Sω − Sc] + α2

[
αP − δω −

Sω

W1

]
+ α3

[
βP − δc −

Sc

V1

]
.

To prove the system to be persistent we need to show that the above loga-
rithmic derivative is positive at all boundary equilibrium pointsE0 , E1 , E12 , E13

for suitable choices of positive αi’s.
The condition is ensured at the origin by the choice α1 > α2δω + α3δc

and for the boundary equilibria E1, E12 and E13 respectively, the following
conditions need to be satisfied:

E1 : α2(α− δω) + α3(β − δc) > 0,
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E12 :
(αδc − βδω)W1

β − δc
< 1,

E13 :
(βδω − αδc)V1

α− δω
< 1.

But these are an easy consequence of the theorem assumptions.

3.2 Global stability

In this subsection first we prove that the interior equilibrium point E∗ is
locally asymptotically stable whenever it exists. We calculate the Jacobian
matrix for the system (2)-(4) at the interior equilibrium point finding

J∗ =




−P ∗ −P ∗ −P ∗

αS∗
ω − S∗

ω

W1
0

βS∗
c 0 −S∗

c

V1



 . (7)

The characteristic equation for the matrix J∗ is given by

λ3 + A1λ
2 + A2λ+ A3 = 0,

where

A1 = P ∗
+

S∗
ω

W1

+
S∗

c

V1

> 0,

A2 = (1 + αW1)
P ∗S∗

ω

W1

+ (1 + βV1)
P ∗S∗

c

V1

+
S∗

ωS
∗
c

W1V1

> 0,

A3 = (1 + αW1 + βV1)
P ∗S∗

ωS
∗
c

W1V1

> 0.

According to the Routh-Hurwitz criteria [9], the interior equilibrium is locally
asymptotically stable if A1 > 0, A3 > 0 and A1A2 > A3. After some algebraic
calculations A1A2 − A3 > 0 can be verified, whenever E∗ is ecologically
feasible.

We now show that the coexistence equilibrium is a global attractor, by
constructing a suitable Lyapunov function. In fact, let us consider the fol-
lowing Lyapunov function,

V (t) =

[
P − P ∗ − P ∗ ln

P

P ∗

]
+A2

[
Sω − S∗

ω − S∗
ω ln

Sω

S∗
ω

]
+A3

[
Sc − S∗

c − S∗
c ln

Sc

S∗
c

]
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where A2 and A3 are two positive constants to be defined later. Taking the
time derivative of V (t) along solution curves of (2) we have,

V̇ = [(1 − P ) − Sω − Sc] (P − P ∗) + A2

[
αP − δω −

Sω

W1

]
(Sω − S∗

ω)

+A3

[
βP − δc −

Sc

V1

]
(Sc − S∗

c ).

Using

1 = P ∗ + S∗
ω + S∗

c , δω = αP ∗ −
S∗

ω

W1

, δc = βP ∗ −
S∗

c

V1

,

the above expression can be rewritten as

V̇ = −

[
(P − P ∗)2 +

A2

W1

(Sω − S∗
ω)2 +

A3

V1

(Sc − S∗
c )

2

]

−(P − P ∗) [(Sω − S∗
ω) + (Sc − S∗

c ) − A2α(Sω − S∗
ω) − A3β(Sc − S∗

c )] .

Taking then A2 = α−1 > 0 and A3 = β−1 > 0 we have

V̇ = −

[
(P − P ∗)2 +

1

αW1

(Sω − S∗
ω)2 +

1

βV1

(Sc − S∗
c )

2

]
< 0.

Now the set defined by
{
X ∈ R

3 : [dV/dt]X = 0
}

consists of a single point
E∗ and hence by La Salles’s theorem [6], E∗ is globally asymptotically stable
whenever it exists.

Combining the above results we can conclude that the destabilization
of the coexisting equilibrium by a Hopf bifurcation is not possible once the
parametric restrictions required for the existence of E∗ are satisfied. This
also eliminates the chance of oscillatory coexistence.

4 The delayed system

In this Section we analytically prove persistence, global stability and the
existence of a Hopf bifurcation for the model with delay, the latter being
introduced due to biological reasons. In fact predators need time for the food
consumption, due to prey handling and digesting. In particular webbuilding
spiders store the captured prey, and therefore can survive for long times even
without making new captures.
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The dimensionless form of the delayed version of (2-4) reads

dP (t)

dt
= P (t)(1 − P (t)) − P (t)Sω(t) − P (t)Sc(t), (8)

dSω(t)

dt
= αSω(t− τ)P (t− τ) − δωSω(t) −

S2
ω(t)

W1

, (9)

dSc(t)

dt
= βSc(t− τ)P (t− τ) − δcSc(t) −

S2
c (t)

V1

, (10)

subject to the initial conditions P (θ) = φ1(θ) > 0, Sω(θ) = φ2(θ) > 0,
Sc(θ) = φ3(θ) > 0, θ ∈ [−τ, 0] where φr ∈ C([−τ, 0] → R+), (r = 1, 2, 3)
are given functions.

4.1 Positivity

First we prove the positivity of solutions for the model (8)-(10). Formally
integrating (8) we find the following result

P (t) = P (0)e[
R t

0 {1−P (ξ)−Sω(ξ)−Sc(ξ)}dξ],

which implies P (t) > 0 for all t whenever P (0) > 0.
Now from (9) we can write

Sω(t) = Sω(0)e
−

R t

0

n

δω+
Sω(ξ)

W1

o

dξ
+ α

∫ t

0

Sω(ξ − τ)P (ξ − τ)e
−

R t

ξ

n

δω+
Sω(η)

W1

o

dη
dξ.

In view of the positive initial conditions P (t) > 0 and Sω(t) > 0 for t ∈
[−τ, 0], from the above expression we infer that Sω(t) > 0 for t ∈ [0, τ ].
Repeating this argument in the successive intervals of length τ , namely [τ, 2τ ],
[2τ, 3τ ] and so on we find that Sω(t) ≥ 0 for all t > 0. Again from equation
(10) we have

Sc(t) = Sc(0)e
−

R t

0

n

δc+
Sc(ξ)

V1

o

dξ
+ β

∫ t

0

Sc(ξ − τ)P (ξ − τ)e
−

R t

ξ

n

δc+
Sc(η)

V1

o

dη
dξ.

Using similar arguments as above we easily establish that Sc(t) ≥ 0 for t > 0.
Hence the interior of the first octant is an invariant set for the delayed model
(8)-(10).
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4.2 Persistence

Now we establish persistence of the delayed model, using the positivity of
the dependent variables. We need to recall the following two lemmas, whose
proofs can be found in [4] and [15] respectively.

Lemma 1. If a, b > 0 and u′(t) ≤ (≥)u(t)(b− au(t)), with u(t0) > 0, then

lim sup
t→∞

u(t) ≤
b

a

(
lim inf

t→∞
u(t) ≥

b

a

)
.

Lemma 2. Consider the following equation

du(t)

dt
= Au(t− τ) −Bu(t) − Cu2(t),

where A,B,C, τ > 0 and u(t) > 0 for t ∈ [−τ, 0], then we have following two
results:

lim
t→+∞

u(t) =
A−B

C
, if A > B; lim

t→+∞
u(t) = 0, if A < B.

These two lemmas are used to prove the persistence result. As the de-
pendent variables are positive, from (8) we have the following inequality,

dP (t)

dt
≤ P (t)(1 − P (t)),

and using Lemma 1 we get

lim sup
t→+∞

P (t) ≤ 1 =: MP
1 .

So, for arbitrary ǫ > 0 there exist a positive real number T such that

P (t) ≤MP
1 + ǫ, ∀ t ≥ T.

Then for all t ≥ T + τ from (9) we find

dSω(t)

dt
≤ α(MP

1 + ǫ)Sω(t− τ) − δωSω(t) −
S2

ω(t)

W1

,
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and then using Lemma 2 if α(MP
1 + ǫ) > δω we have

lim sup
t→+∞

Sω(t) ≤ W1

(
α(MP

1 + ǫ) − δω
)
.

As ǫ > 0 is arbitrary, we can write

lim sup
t→+∞

Sω(t) ≤ W1

(
αMP

1 − δω
)

=: MSω

1 ,

whenever αMP
1 > δω. Using a similar argument from (10) we obtain when-

ever βMP
1 > δc

lim sup
t→+∞

Sc(t) ≤ V1

(
βMP

1 − δc
)

=: MSc

1 .

On the other hand, using upper bounds for Sω and Sc, from (8) for an
arbitrary ǫ > 0, we get

dP (t)

dt
≥ P (t)(1 − P (t)) − (MSω

1 + ǫ)P (t) − (MSc

1 + ǫ)P (t),

for sufficiently large t. As ǫ > 0 is arbitrarily small, if MSω

1 + MSc

1 < 1 it
follows

lim inf
t→+∞

P (t) ≥ 1 −MSω

1 −MSc

1 =: mP
1 .

Using the above result and for arbitrary ǫ > 0 and for t > T1, where T1

denotes a sufficiently large positive number, from (9) we have

dSω(t)

dt
≥ α(mP

1 − ǫ)Sω(t− τ) − δωSω(t) −
S2

ω(t)

W1

.

Using Lemma 2, and the arbitrariness of ǫ > 0 we find

lim inf
t→+∞

Sω(t) ≥ W1(αm
P
1 − δω) =: mSω

1 ,

if αmP
1 > δω. Similar arguments and the assumption βmP

1 > δc give

lim inf
t→+∞

Sc(t) ≥ V1(βm
P
1 − δc) =: mSc

1 .

Summarizing, we have established the following two results:
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Theorem 2. If max{ δω

α
, δc

β
} < 1 then any solution of (8)-(10) starting from

the interior of the first octant satisfies the following inequalities:

lim sup
t→+∞

P (t) ≤ 1 =: MP
1 ,

lim sup
t→+∞

Sω(t) ≤ W1

(
αMP

1 − δω
)

=: MSω

1 ,

lim sup
t→+∞

Sc(t) ≤ V1

(
βMP

1 − δc
)

=: MSc

1 .

Theorem 3. If MSω

1 +MSc

1 < 1 and max{ δω

α
, δc

β
} < mp

1 then any solution of

(8)-(10) starting from the interior of the first octant satisfies the following
inequalities:

lim inf
t→+∞

P (t) ≥ 1 −MSω

1 −MSc

1 =: mP
1 ,

lim inf
t→+∞

Sω(t) ≥ W1(αm
P
1 − δω) =: mSω

1 ,

lim inf
t→+∞

Sc(t) ≥ V1(βm
P
1 − δc) =: mSc

1 .

These results thus ensure persistence of the delayed system.

4.3 Global stability

Let us introduce a new parameter

ρ ≡ αW1 + βV1. (11)

Theorem 4. If the interior equilibrium E∗ exists and the conditions of
Theorems 2 and 3 are satisfied together with

ρ < 1 (12)

then E∗ is a global attractor.

Proof. Let

I1 = lim sup
t→+∞

P (t), J1 = lim inf
t→+∞

P (t),

I2 = lim sup
t→+∞

Sω(t), J2 = lim inf
t→+∞

Sω(t)

I3 = lim sup
t→+∞

Sc(t), J3 = lim inf
t→+∞

Sc(t).
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Then by Theorems 2 and 3,

I1 ≤MP
1 , I2 ≤MSω

1 , I3 ≤MSc

1 ,

J1 ≥ mP
1 , J2 ≥ mSω

1 , J3 ≥ mSc

1 ;

I1 ≤MP
2 , I2 ≤MSω

2 , I3 ≤MSc

2 ,

J1 ≥ mP
2 , J2 ≥ mSω

2 , J3 ≥ mSc

2 ,

where,

MP
2 = 1 −mSω

1 −mSc

1 , MSω

2 = W1(αM
P
2 − δω), MSc

2 = V1(βM
P
2 − δc);

mP
2 = 1 −MSω

2 −MSc

2 , mSω

2 = W1(αm
P
2 − δω), mSc

2 = V1(βm
P
2 − δc).

Iterating the procedure we obtain

mP
n ≤ J1 ≤ I1 ≤MP

n , mSω

n ≤ J2 ≤ I2 ≤MSω

n , mSc

n ≤ J3 ≤ I3 ≤MSc

n ,

where

MP
n = 1 −mSω

n−1 −mSc

n−1, MSω

n = W1(αM
P
n − δω), MSc

n = V1(βM
P
n − δc);(13)

mP
n = 1 −MSω

n −MSc

n , mSω

n = W1(αm
P
n − δω), mSc

n = V1(βm
P
n − δc).(14)

So we have,

MP
n+1 = (1 +W1δω + V1δc)(1 − αW1 − βV1) + (αW1 + βV1)

2MP
n .

Noting that MP
n ≥ P ∗ and αW1 + βV1 < 1 it then follows

MP
n+1 −MP

n = [1 − (αW1 + βV1)
2]P ∗ − [1 − (αW1 + βV1)

2]MP
n ≤ 0.

Thus the sequence {MP
n } is monotonically decreasing and bounded below,

and this implies that limn→∞MP
n exists. Also limn→∞MP

n = P ∗. Similarly
from (13) and (14) we get

lim
n→∞

MSω

n = S∗
ω, limn→∞MSc

n = S∗
c ,

lim
n→∞

mP
n = P ∗, limn→∞mSω

n = S∗
ω, lim

n→∞
mSc

n = S∗
c .

Now, limn→∞mP
n ≤ J1 ≤ I1 ≤ limn→∞MP

n ⇒ I1 = J1, and similarly the
results I2 = J2 and I3 = J3 follow. Hence every sequence starting from an
interior point of the first quadrant converges to the interior equilibrium point
E∗. This completes the proof of the theorem.

Remark. An immediate consequence of this result is that whenever the
conditions of Theorems 2 and 3 and ρ < 1 are satisfied the discrete time
delay cannot alter the stability property of the delayed system. Hence, in
this situation the time delay is harmless, and this holds independently of the
delay size.
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4.4 Hopf-bifurcation analysis

It is well known that discrete delays can destabilize the systems equilibria.
Here we investigate whether this destabilization is possible through Hopf bi-
furcations. For this purpose we perform the Hopf-bifurcation analysis around
the coexistence equilibrium E∗, taking ‘τ ’ as our bifurcation parameter. To
this end, let us introduce perturbations of the variables of the delayed sys-
tem (8)-(10) around the coexistence equilibrium as follows: x = P − P ∗,
y = Sω −S∗

ω and z = Sc −S∗
c such that |x|, |y|, |z| ≪ 1. Linearizing we find

dx

dt
= −P ∗x(t) − P ∗y(t) − P ∗z(t), (15)

dy

dt
= −

(
δω +

2S∗
ω

W1

)
y(t) + αS∗

ωx(t− τ) + αP ∗y(t− τ), (16)

dz

dt
= −

(
δc +

2S∗
c

V1

)
z(t) + βS∗

cx(t− τ) + βP ∗z(t− τ). (17)

The characteristic equation of the linearized system is,

P1(λ) + P2(λ)e−λτ + P3(λ)e−2λτ = 0, (18)

where

P1(λ) = λ3+A1λ
2+A3λ+A6, P2(λ) = −(A2λ

2+A4λ+A7), P3(λ) = A5λ+A8.

The coefficients of the polynomials Pr(λ), r = 1, 2, 3 are

A1 = P ∗ + (δω + δc) + 2

(
S∗

ω

W1

+
S∗

c

V1

)
, A2 = (α+ β)P ∗,

A3 =

[
(δω + δc) + 2

(
S∗

ω

W1

+
S∗

c

V1

)]
P ∗ +

(
δω +

2S∗
ω

W1

) (
δc +

2S∗
c

V1

)
,

A4 =

[
β

(
δω +

2S∗
ω

W1

)
+ α

(
δc +

2S∗
c

V1

)
+ (α+ β)P ∗ − (αS∗

ω + βS∗
c )

]
P ∗

A5 = αβ(P ∗)2, A6 =

(
δω +

2S∗
ω

W1

) (
δc +

2S∗
c

V1

)
P ∗

A7 =

[
β

(
δω +

2S∗
ω

W1

)
(P ∗ − S∗

c ) + α

(
δc +

2S∗
c

V1

)
(P ∗ − S∗

ω)

]
P ∗

A8 = [αβ(P ∗ − S∗
ω − S∗

c )](P
∗)2.
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Theorem 5. Necessary and sufficient conditions for E∗ to be locally asymp-
totically stable for all τ ≥ 0 are: E∗ is stable in absence of time delay τ ;
there is no purely imaginary root of the characteristic equation (18).

This situation is indeed possible for our system, but the proof is quite
tedious. However the last theorem in the previous section can be considered
as an alternative proof of our claim. We will further verify in Section 4.5 this
result by means of a numerical example.

Next we try to find under what conditions the system undergoes a Hopf
bifurcation near the coexistence equilibrium E∗. We take the discrete time
delay τ as a bifurcation parameter. Putting λ = µ + iω into equation (18)
and separating the real and imaginary parts we get,

µ3 − 3µω2 + A1(µ
2 − ω2) + A3µ+ A6 − e−µτ [A2(µ

2 − ω2) cosωτ

+A4µ cosωτ + A7 cosωτ + 2A2µω sinωτ + A4ω sinωτ ]

+e−2µτ [A5µ cos 2ωτ + A8 cos 2ωτ + A5ω sin 2ωτ ] = 0, (19)

3µ2ω − ω3 + 2A1µω + A3ω − e−µτ [2A2µω cosωτ + A4ω cosωτ

−A2(µ
2 − ω2) sinωτ − A7 sinωτ − A4µ sinωτ ]

+e−2µτ [A5ω cos 2ωτ − A8 sin 2ωτ − A5µ sin 2ωτ ] = 0. (20)

The necessary condition for a change of stability of the equilibrium point
is that one of the characteristic roots is purely imaginary. Let τ = τ̂ be the
particular magnitude of for which µ(τ̂) = 0 and ω(τ̂) = ω̂ > 0. Substituting
τ = τ̂ , µ = 0 and ω = ω̂ in (7) we get

−ω̂3 − A2ω̂
2 sin ω̂τ̂ + A3ω̂ − A4ω̂ cos ω̂τ̂

+A5ω̂ cos 2ω̂τ̂ + A7 sin ω̂τ̂ − A8 sin 2ω̂τ̂ = 0, (21)

−A1ω̂
2 + A2ω̂

2 cos ω̂τ̂ − A4ω̂ sin ω̂τ̂ + A5ω̂ sin 2ω̂τ̂ + A6

−A7 cos ω̂τ̂ + A8 cos 2ω̂τ̂ = 0. (22)

Eliminating cos 2ω̂τ̂ and sin 2ω̂τ̂ , from the above system of equations we
get

(A3ω̂ + A5ω̂ − ω̂3) cos ω̂τ̂ + (A6 − A8 − A1ω̂
2) sin ω̂τ̂ = A4ω̂ (23)

(A3ω̂ − A5ω̂ − ω̂3) sin ω̂τ̂ − (A6 + A8 − A1ω̂
2) cos ω̂τ̂ = A2ω̂

2 − A7.(24)

Solving (23) and (24) for cos ω̂τ̂ and sin ω̂τ̂ , letting

∆ = A2
6 − 2A6A1ω̂

2 − A2
8 + A2

1ω̂
4 + A2

3ω̂
2 − 2A3ω̂

4 − A2
5ω̂

2 + ω̂6,

15



we get

cos ω̂τ̂ =
1

∆
[A2ω̂

2A6 − A5ω̂
2A4 + A2ω̂

4A1 − ω̂4A4

−A7A8 + A2ω̂
2A8 + A7A6 + A3ω̂

2A4 − A7A1ω̂
2], (25)

sin ω̂τ̂ = −
1

∆
[A2ω̂

4 + ω̂2A4A1 − ω̂2A3A2 − ω̂2A5A2

−ω̂2A7 + A5A7 + A3A7 − A4A6 − A4A8]ω̂. (26)

By squaring and adding the above two equations, we get a sixth degree
algebraic equation in ζ = ω̂2 with very complicated coefficients, which we
omit. The required value of ω̂ is the positive square root of the positive root
of this sixth degree equation. The critical magnitude for the delay parameter
is given by

τ̂ =
1

ω̂
arc sin

[
(A3ω̂ + A5ω̂ − ω̂3)(A2ω̂

2 − A7) + A4ω̂(A6 + A8 − A1ω̂
2)

(A3ω̂ − ω̂3)2 + (A6 − A1ω̂2)2 − A2
5ω̂

2 − A2
8

]
.

The transversality condition for the Hopf bifurcation at τ = τ̂ is
[

dµ

dτ

]
τ=bτ

6=
0. Differentiating (7a) and (7b) with respect to τ and putting τ = τ̂ , ω = ω̂,
µ = 0, we get

E

[
dµ

dτ

]

τ=bτ

+ F

[
dω

dτ

]

τ=bτ

= G, −F

[
dµ

dτ

]

τ=bτ

+ E

[
dω

dτ

]

τ=bτ

= H

where

E = −3ω̂2 + A3 − A2ω̂
2τ̂ cos ω̂τ̂ + A7τ̂ cos ω̂τ̂ + A4ω̂τ̂ sin ω̂τ̂ − A4 cos ω̂τ̂

−2A2ω̂ sin ω̂τ̂ − 2A8τ̂ cos 2ω̂τ̂ − 2A5ω̂τ̂ sin 2ω̂τ̂ + A5 cos ω̂τ̂ ,

F = −2A1ω̂ + 2A2ω̂ cos ω̂τ̂ − A2ω̂
2τ̂ sin ω̂τ̂ + A7τ̂ sin ω̂τ̂ − A4 sin ω̂τ̂

−A4ω̂τ̂ cos ω̂τ̂ − 2A8τ̂ sin 2ω̂τ̂ + A5 sin 2ω̂τ̂ + 2A5ω̂τ̂ cos 2ω̂τ̂ ,

G = A2ω̂
3 sin ω̂τ̂ − A7ω̂ sin ω̂τ̂ + A4ω̂

2 cos ω̂τ̂ + 2A8ω̂ sin 2ω̂τ̂ − 2A5ω̂
2 cos 2ω̂τ̂ ,

H = A2ω̂
3 cos ω̂τ̂ − A7ω̂ cos ω̂τ̂ − A4ω̂

2 sin ω̂τ̂ + 2A8ω̂ cos 2ω̂τ̂ + 2A5ω̂
2 sin 2ω̂τ̂ .

Thus we have [
dµ

dτ

]

τ=bτ

=
GE −HF

E2 + F 2
.

But from this expression it is quite difficult to assess whether the transversal-
ity condition is satisfied. We verify it only numerically in the next Section.
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4.5 Numerical simulations

Now we can verify the above results numerically. For this purpose we choose
two sets of parameter values. Using the former we prove that the delay
cannot destabilize the coexistence equilibrium. The second set shows a
Hopf-bifurcating periodic solution originating as the discrete delay crosses
the threshold magnitude.

In the first case consider these parameter values: α = .6, β = .8, δω = .1,
δc = .2, W1 = .2, V1 = 1, for which the interior equilibrium point of the
non-delayed model is globally asymptotically stable and all other axial and
boundary equilibria are saddle points. In Fig. 1 the unstable equilibrium
points are denoted by black circles and the globally stable interior equilib-
rium point is marked with a red-filled circle. For the origin there are two
stable manifolds, the deep green lines. Its unstable manifold, the blue curve,
connects it with E1. The two unstable manifolds of E1, the cyan curves, con-
verge to the boundary equilibria E12 and E13. The two unstable manifolds
of E12 and E13, the violet curves, connect them with the interior equilibrium
point. Another violet curve coming from above and converging to the interior
equilibrium point lies on the center manifold of E∗; two eigenvalues of E∗ are
complex conjugate with negative real parts for the chosen parameter values.

For the parameter values given above, the characteristic equations (23)-
(24) become

ζ6+2.227852ζ5+2.239491ζ4+1.269975ζ3+.424629ζ2+.07849ζ+0.006165 = 0.

This equation does not have positive real roots and consequently the discrete
delay parameter cannot alter the stability properties. In this case there
is no delay-induced instability as the conditions of Theorems 2 and 3 and
αW1 + βV1 = 0.92 < 1 are satisfied and hence E∗ is a global attractor for
the delayed system also. The stable solution is presented in Fig 2 for a quite
large value of the delay.

Next we consider the following parameters: α = 2, β = 3, δω = .1, δc = .2,
W1 = 2.5, V1 = 2. For this choice of parameter values the equations (23)-(24)
become

ζ6 + .751406ζ5 + .178689ζ4 + .020433ζ3 + .000141ζ2− .000955ζ− .000133 = 0.

This has only one positive root ζ = .1578675228. Thus in this case the
system undergoes a Hopf bifurcation for τ = 1.913741915. Since the above

17



Figure 1: The stable and unstable manifolds of all equilibria are presented
here, see the text for details. The interior equilibrium point, filled and
coloured in red, is the only attractor lying in the interior of the positive
octant.

equation possesses only one positive root, and hence there is no possibility
of switching of stability. The Hopf-bifurcating periodic solution is in fact
presented in Fig 3.

In this situation one may ask what happens if the magnitude of delay
parameter increases beyond the Hopf-bifurcation threshold. To answer this
question we have investigated numerically the delayed model with a second
set of parameter values α = 2, β = 3, δω = .1, δc = .2, W1 = 2, V1 = 2.5,
keeping τ as free parameter. The chosen set of parameter values satisfy all
necessary criteria for the persistence of all species and hence extinction of
any species is not possible even for large values of the delay parameter. The
model undergoes a period doubling route to chaos with increasing magnitudes
of the delay parameter. Projection of the three dimensional attractors on the
P −Sw-plane is presented in Fig. 4 for four different values of τ depicting the
period doubling scenario. Projection of chaotic attractor on ln(P )−Sw-plane
is given in Fig. 5, logarithmic scale on P axis is chosen for clear visualization.
Sensitivity to initial condition is checked to ensure the chaotic nature of the
attractor obtained for τ = 30. The divergence of two nearby trajectories,
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Figure 2: Stable solution for τ = 10. Top blue dash-dotted curve for the
prey, bottom green dashed for the first spider population and middle red
dotted curve for the second spider population.

another signature of chaos, is presented in Fig. 6. The divergence of P (t)
for two solution trajectories is plotted against time. A bifurcation diagram,
indicating chaotic dynamics for the prey population is presented in Fig. 7.
Analogous ones arise for the predators.

5 Discussion

A nonlinear ordinary differential equation model and its corresponding de-
layed version ware proposed in [3] for an agro-ecosystem consisting of two
spider populations and an insect pest population which serves as their prey.
Here we have established the global stability of the coexistence equilibrium
point for the non-delayed model together with the impossibility of oscilla-
tory coexistence. We have derived the persistence conditions for both the
non-delayed and delayed models. The criteria for global stability of the co-
existing equilibrium point for the delayed model is derived without using any
Lyapunov-like function. Recalling (11), if the criteria for global stability is
satisfied the delay has no destabilizing effect. In order to capture the oscil-
latory coexistence we performed the Hopf-bifurcation analysis with discrete
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Figure 3: Hopf-bifurcating periodic solution for the three populations ob-
tained for τ = 4 > τ̂ . Blue dash-dotted curve for the prey, green dashed
for the first spider population and red dotted curve for the second spider
population

delay as bifurcation parameter and our analysis reveals that oscillatory coex-
istence is possible under certain circumstances. Hence the destabilizing role
of the delay is related with the growth rates of spider populations and the
strength of their intra-specific competition rates. With numerical investiga-
tion we have shown that once the threshold condition ρ > 1 holds, persistent
large amplitude oscillations as well as chaotic coexistence become possible.
Satisfaction of the conditions in Theorems 2 and 3 for chosen parameter
values ensure the persistence of all species.

The interpretation of the threshold parameter ρ is as follows. If we ignore
spiders’ mortalities, i.e. setting δc ≈ 0, δω ≈ 0, indicating with bars the
population levels at the coexistence equilibrium in this case, we find that
(6) becomes trivially satisfied. Moreover, S̄ω = αW1P̄ , S̄c = βV1P̄ . Hence,
indicating with S̄ the total spiders population, we find

ρ = αW1 + βV1 =
S̄ω + S̄c

P̄
=
S̄

P̄
. (27)

Thus, ignoring spiders’ mortality, ρ is a measure of the fraction of the to-
tal spiders population versus the pest population at equilibrium. Thus, if
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Figure 4: Projection of stable attractors on P − Sw-plane for τ = 10 (upper
panel, left), τ = 17 (upper panel, right), τ = 20 (lower panel, left) and
τ = 21.5 (lower panel, right). Stable attractors having period one, two, four
and eight respectively. Other parameter values are mentioned in the text.

the latter exceed the predators, a stable equilibrium is attained also in the
presence of delays. But conversely, the magnitude of the delay may trigger
oscillations. In view of the fact that spiders are known to be able to survive
long times of starvation, mortalities can be assumed to have values close to
zero, thereby satisfying the assumption behind (27). Further, this implies
also that the prey is stored for long times, making its handling time likely
to attain large values. Thus the influence of the delay parameter becomes of
paramount importance in this situation as it certainly triggers oscillations,
corresponding to periodic outbreaks of the pests in the field. Our simula-
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Figure 5: Projection of the chaotic attractor on ln(P ) − Sw-plane (τ = 30).
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Figure 6: Two solution trajectories are obtained for a small deviation (of
the order of 10−2) in the initial condition, and divergence of trajectories is
captured through the divergence of the P component.

tions, Figures 2 and 3, are based on hypothetical parameter values and show
that the peaks of the oscillations are essentially at the same level as the pop-
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Figure 7: Bifurcation diagram for route to chaos with τ as bifurcation pa-
rameter. Here the local maximum and minimum of P (t) are plotted after
deleting some initial transients for a large range of values of the delay τ .

ulations at steady state. In fact, the peaks for the prey in Figure 3 are lower
than their equilibrium values in Figure 2. But in practical situations, the
result depends on the model parameter values. It could be possible that the
pest outbursts be much larger than the equilibrium levels. Note that in our
situation also the assumption of Theorem 2 holds, since δc ≈ 0, δω ≈ 0, as
well as the ones of Theorem 3, since the first one corresponds to (12). Since
persistence of the system is thus ensured if (12) holds, to try to eradicate the
pests one could think of artificially increasing the number of spiders. This
measure should then destabilize the equilibrium, but as seen, in the presence
of long delays in prey consumption it could lead to pests outbursts. If the
latter much exceed their usual equilibrium value at steady state, one has
to evaluate whether it is better to accept the pests equilibrium level, or to
have most of the time the pests at low levels, paying the price of periodically
experiencing large outbreaks of them. Finally it should be remarked that
with these types of oscillations, there is the usual danger that environmental
fluctuations may very well wipe out the populations that thrive at low levels
in the troughs of these cycles, and this collapsing could include also spiders,
thereby just worsening the situation. To assess the best course for the field
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manager is beyond the purpose of this paper, as it hinges on the values of the
model parameters that need to be obtained by field measurements. There-
fore the final outcome of the system and the possible recommendations for
the course to take in order to control pests invasions depend ultimately on
the particular situation at hand.
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