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Abstract

Copyless messaging is a communication paradigm in which only pointers to mes-
sages are exchanged between sender and receiver processes. Because of its intrin-
sically low overhead, copyless messaging is suitable for the efficient implemen-
tation of communication-intensive software systems where processes have access
to a shared address space. Unfortunately, the very nature of the paradigm fosters
the proliferation of programming errors due to the explicit use of pointers and to
the sharing of data. In this paper we study a type discipline for copyless mes-
saging that, together with some minimal support from the runtime system, is able
to guarantee the absence of communication errors, memory faults, and memory
leaks in presence of exceptions. To formalize the semantics of processes we draw
inspiration from software transactional memories: in our case a transaction is a
process that is meant to accomplish some exchange of messages and that should
either be executed completely, or should have no observable effect if aborted by
an exception.

Keywords: Copyless message passing, Session types, Exception handling,
Memory leak prevention

1. Introduction

Communication has become a central aspect of all modern software systems,
which range from distributed processes connected by wide area networks down
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to collections of threads running on different cores within the same processing
unit. In all these scenarios, message passing is a flexible paradigm that allows
autonomous entities to exchange information and to synchronize with each other.
The term “message passing” seems to suggest a paradigm where messages move
from one entity to another, although more often than not messages are in fact
copied during communication. While this is inevitable in a distributed setting, the
availability of a shared address space makes it possible to implement a copyless
form of message passing, whereby only pointers to messages are exchanged.

The Singularity Operating System (Singularity OS) [1, 2] is a notable exam-
ple of system that heavily relies on the copyless paradigm. In Singularity OS,
processes have access to a shared region called the exchange heap, inter-process
communication solely occurs by means of message passing over channels allo-
cated on the exchange heap, and messages are themselves pointers to the exchange
heap. As detailed by Hunt et al. [1], Hunt and Larus [2], Finley [3], it is not practi-
cal to automatically garbage collect objects on the exchange heap, which therefore
must be explicitly managed by processes.

The copyless paradigm has obvious performance advantages over more con-
ventional forms of message passing. At the same time, it fosters the proliferation
of subtle programming errors arising from the explicit management of objects
and the sharing of data. For this reason the designers of Singularity OS have
equipped Sing#, the programming language used for the development of Singu-
larity OS, with explicit constructs, types, and static analysis techniques to assist
programmers in writing code that is free from a number of programming errors,
including: memory faults, namely the access to unallocated/deallocated objects in
the heap; memory leaks, that is the accumulation of unreachable allocated objects
in the heap; communication errors, which could cause the abnormal termination
of processes and trigger the previous kinds of errors.

Some aspects of Sing# have already been formalized and studied by Fähndrich
et al. [4], Stengel and Bultan [5], Villard et al. [6], Bono and Padovani [7]. In
particular, in [7] it was shown that Sing# channel contracts can be conveniently
represented as a variant of session types [8, 9], and that the information given by
session types along with a linear type discipline can prevent memory leaks, mem-
ory faults, and communication errors. In the present paper we focus on exceptions
and exception handling. The interest in our research stems from the observation
that copyless messaging and exceptions are clearly at odds with each other: on
the one hand, copyless messaging requires a very disciplined and controlled ac-
cess to memory; on the other hand, exceptions are in general unpredictable and
disrupt the normal control flow of programs. Consequently, and perhaps not sur-
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prisingly, these two aspects can be reconciled only with some native support from
the runtime system. Below is a summary of the contributions of this research:

• we formalize a calculus of processes that communicate through the copyless
paradigm and that can throw exceptions;

• we develop a type system for preventing the aforementioned errors even in
the presence of exceptions, if suitable exception handlers are provided;

• we show how to take advantage of the invariants guaranteed by the type
system in order to reduce the cost of exception handling.

Origin of the material. An early version of this paper appeared in the proceedings
of the PPDP 2012 conference [10]. The present paper corresponds to a revised
version of [10] where we provide detailed proofs of all the results and we general-
ize the process language (with multiple exceptions and exception propagation) as
well as the type system (with subtyping). In particular, we show that the exception
annotations within types induce an original subtyping relation that sheds light on
the differences between exceptions and regular messages.

Structure of the paper. In Section 2 we illustrate the problem we are addressing
and informally sketch our solution in terms of types and a revised exception han-
dling construct. In Section 3 we formally define the syntax and the semantics of
a language of processes to model Sing# programs. The section ends with the def-
inition of well-behaved processes, namely of those processes in which memory
faults, memory leaks, and communication errors do not occur. Section 4 develops
a type system for the process language presented in Section 3 and shows its sound-
ness (well-typed processes are well behaved). Section 5 provides an overview of
related work and discusses similarities and differences between our approach and
similar ones. Section 6 concludes with a brief summary of the work and hints at
further relaxations of the typing rules, in light of the common pattern usage of
exception handling mechanisms as found in the source code of Singularity OS.
For the sake of readability, the proofs of subject reduction and of type soundness,
which are fairly long and require a number of auxiliary lemmas, have been moved
to Appendix A and B, respectively.

2. Motivating Example

To introduce the context in which we operate and the kind of problems we have
to face we take a look at a real fragment of Singularity OS. In the discussion that
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follows it is useful to keep in mind that Singularity channels consist of pairs of
related endpoints, called the peers of the channel. Each endpoint is associated with
an unbounded queue containing the messages sent to that endpoint from its peer.
Communication is therefore asynchronous and send operations are nonblocking.

Figure 1 shows a Sing# function that computes the name for a newly allocated
RAM disk.1 The function has two output parameters, the computed disk name and
the endpoint that links the disk to the DirectoryService (abbreviated DS in the
code) which is part of the file system manager. The function begins by retrieving
an endpoint ns for communicating with DirectoryService (line 3). Then the
function repeatedly creates a new channel, represented as the peer endpoints imp
and exp which are the output parameters of the NewChannel method (lines 6–8),
computes a new disk name (line 9), and tries to register the chosen name along
with imp to DirectoryService through ns (line 10). The switch receive

construct (lines 11–24) is used to receive messages and to dispatch control to var-
ious cases depending on the type of message that is received. Each case block
specifies the endpoint from which a message is expected and the tag of the mes-
sage. In this example, one of two kinds of messages are expected from the ns

endpoint: either an AckRegister message (lines 12–15) or a NakRegister mes-
sage (lines 16–23). In the first case the registration is successful (line 12), so the
output parameter expService is properly initialized and the function terminates
correctly (line 15). In the second case the registration is unsuccessful (line 16),
hence a new registration is attempted if the error is recoverable (lines 17–18), oth-
erwise an exception is thrown to abort the execution of the function (line 20). The
main loop (lines 5–25) is protected within a try block with a finally clause that
is executed regardless of whether the function terminates correctly or not. In the
example, the clause deallocates the ns endpoint (line 27).

Sing# uses channel contracts to detect communication errors. Figure 2 shows
(part of) the DSContract contract associated with endpoint ns in Figure 1. A
contract is made of message specifications and of states connected by transitions.
Each message specification begins with the keyword message and is followed by
the tag of the message and the type of its arguments. In Figure 2, DSContract de-
fines the Register message with two arguments (a string and another endpoint)

1This function has been taken from ./Services/RamDisk/ClientManager/

RamDiskClientManager.sg in the Singularity OS source code available at http:

//www.codeplex.com/singularity/. Here we have shortened some identifiers to fit
the available space.
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1 void GetNextDiskPath(out string! diskName,

2 out SPContract.Exp! expService) {

3 DSContract.Imp:Ready ns = DS.NewClientEndpoint();

4 try {

5 while (true) {

6 SPContract.Imp! imp;

7 SPContract.Exp! exp;

8 SPContract.NewChannel(out imp, out exp);

9 diskName = pathPrefix + nextDiskNumber.ToString();

10 ns.SendRegister(Bitter.FromString2(diskName), imp);

11 switch receive {

12 case ns.AckRegister():

13 nextDiskNumber++;

14 expService = exp;

15 return;

16 case ns.NakRegister(nakImp, error):

17 if (error == ErrorCode.AlreadyExists)

18 nextDiskNumber++;

19 else

20 throw new RamDiskErrorException(error);

21 delete exp;

22 delete nakImp;

23 break;

24 }

25 }

26 } finally {

27 delete ns;

28 }

29 }

Figure 1: Example of Sing# function.
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contract DSContract {

out message Success();

in message Register(char[]! in ExHeap path,

SPContract.Imp:Start! imp);

out message AckRegister();

out message NakRegister(SPContract.Imp:Start imp,

ErrorCode error);

// ...more message types

state Start : one { Success! → Ready; }

state Ready : one {

Register? → DoRegister;

CreateDirectory? → ...

// ...more transitions

}

state DoRegister : one {

AckRegister! → Ready;

NakRegister! → Ready;

}

}

Figure 2: Example of Sing# contract.

and the AckRegister message with no arguments. The in and out qualifiers
specify the direction of messages from the point of view of the process exporting
the contract. The state of the contract gives information about which messages can
be sent/received at every given point in time. In DSContract we have a Ready

state from which Register, CreateDirectory, and other (here omitted) mes-
sages can be received. After receiving a Register message, the contract moves
to state DoRegister, from which one of the AckRegister or NakRegister mes-
sages can be sent, and then the contract goes back to the Ready state. In fact, each
contract has two complementary views – called exporting and importing views –
which are associated with the two peer endpoints of the channel. By convention,
a contract declaration like that in Figure 2 specifies the exporting view of the con-
tract: a provider of DSContract must adhere to its exporting view. In contrast,
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the function GetNextDiskPath in Figure 1 acts as a consumer of DSContract,
therefore the function performs complementary actions by sending a Register

message and then waiting for either an AckRegister or a NakRegister mes-
sage. In the code, the importing and exporting views correspond to the types
obtained by appending .Imp and .Exp suffixes to the name of the contract. For
example, the declaration on line 3 specifies that ns is an endpoint having as type
the importing view of DSContract in state Ready. After line 10, the type associ-
ated with ns changes to DSContract.Imp:DoRegister and then it goes back to
DSContract.Imp:Ready after any of the receive operations on lines 12 and 16.
Note that the changes in the state of the contract associated with ns (and therefore
of the type of ns) are not explicit in the source code. They follow from the ini-
tial declaration that brings ns into scope (line 3) and from the way ns is used in
the function. By keeping track of the contract state of ns, the compiler can stati-
cally check that the actions performed on ns (for sending and receiving messages)
match corresponding co-actions (for receiving and sending) performed on its peer
endpoint, which is in use by some other process in the system.

The code structure in Figure 1, involving channel allocation and deallocation,
messaging, delegation (sending endpoints over other endpoints), and exception
handling, is in fact typical throughout the whole Singularity OS and shows that
these aspects are frequently mixed in non-trivial ways. We can identify two main
problems caused by exceptions:

1. Since communication errors are prevented by the complementarity of ac-
tions performed by processes accessing peer endpoints, a jump in the con-
trol flow of one process, like that caused by an exception, may disrupt the
alignment of the peers of a channel and compromise subsequent interac-
tions.

2. When an exception is thrown, messages that have been sent but not yet re-
ceived and other objects allocated since the beginning of a try may become
unreachable and therefore turn into memory leaks.

Sing# has limited and not fully satisfactory mechanisms for dealing with these
problems. Regarding the first, Sing# provides an InState method through which
it is possible to query, at runtime, the actual state of an endpoint. This infor-
mation can be used to attempt recovery from a possibly inconsistent state of the
endpoints. This mechanism implies an overhead for preserving and maintaining
typing information at runtime and is unreliable as it depends on the programmer.
The second problem seems to have been neglected. For example, the function
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in Figure 1 is prone to leak memory on line 20 in the case that the exception is
thrown, since neither exp nor nakImp are properly deallocated (imp has been sent
away in the call to SendRegister so it is not the current thread’s responsibility
to deallocate it). In this example it would suffice to move the delete instructions
on lines 21 and 22 between lines 16 and 17 but, in general, it may be impossible
to identify the exact point where an exception can be thrown and therefore when
it is appropriate to deallocate resources. Note that it is unreasonable to assume
that this clean-up code will be placed in the exception handler, if only because the
handler may not be in the scope of the resources to be deallocated: in the example,
exp and nakImp are not visible in the finally block so, by the time the exception
has been thrown, it is too late to prevent the leak.

In the present paper we put forward a solution that combines static analysis
(inspired by existing works on exception handling for sessions by Carbone et al.
[11], Capecchi et al. [12]) with a transaction-like, all-or-nothing semantics of try
blocks. The basic idea is that a try block is either executed completely, and then
its effects on the heap are committed and become permanent, or it is aborted by
an exception. If this happens, all the processes involved in the transaction are
notified of the exception, so that the types of the endpoints they are using can
remain aligned, and the state of the heap is restored to that at the beginning of the
try block. Our solution relies on the following key ideas:

(A) Following Carbone et al. [11], Capecchi et al. [12], we add explicit anno-
tations to the types of endpoints used inside a transaction so that all pro-
cesses involved in the transaction are aware of all the exceptions that can be
thrown (possibly by a different process) during the transaction. In addition,
these annotations make sure that the queues of endpoints used in a transaction
are empty at the beginning of the transaction so that heap restoration solely
amounts to removing messages from queues.

(B) Inside try blocks, we “seal” the type of any endpoint whose type is not prop-
erly annotated and we forbid processes to use endpoints with a sealed type.
In this way, the type system can statically ensure that well-typed processes
do not modify any portion of the heap outside the restorable one.

(C) We forbid the deallocation of endpoints inside try blocks, unless they have
been allocated within the very same block. In this way, state restoration does
not involve reallocations, which are difficult to implement correctly.

To prevent memory leaks, it is necessary to dynamically keep track of the
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P ::= Process
done (inaction)

| open(a,a).P (open channel)
| close(u).P (close endpoint)
| u!m(u).P (send)
| ∑i∈I u?mi(xi).Pi (receive)
| P⊕P (conditional)
| P |P (parallel)
| try(U) {ei : Pi}i∈IP (initiate transaction)
| throw e (exception)
| commit(U).P (commit transaction)
| X〈ũ〉 (invocation)

D ::= Definition
X(ũ) def

= P (rule)

Table 1: Syntax of processes and definitions.

memory allocated within a try block so that this memory can be properly re-
claimed in case an exception is thrown. It is unsafe to deallocate an endpoint if its
peer is not deallocated simultaneously: mechanism (A) guarantees that these deal-
locations are safe even if the type of these endpoints would not normally allow it,
because transactions define a “closed scope” that includes, for each endpoint used
in a transaction, also its peer. Starting with the next section we turn into the tech-
nical part of this work, in which we make precise all of the concepts informally
introduced so far.

3. Language

Notation. We assume that we are given an infinite set Pointers of heap addresses
ranged over by a, b, . . . , an infinite set Variables of variables ranged over by x, y,
. . . , and a set Exceptions of exceptions ranged over by e, . . . . We let names u, v,
. . . range over elements of Pointers∪Variables. We use A, B, . . . to denote sets of
pointers, E , . . . to denote sets of exceptions, U to denote sets of names, and ũ, ṽ
to denote sequences of names (we will sometimes use ũ to denote also the set of
names in ũ). Process variables are ranged over by X , Y , . . . .
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Syntax. The process language is essentially a variant of the π-calculus [13], ex-
cept that names represent heap pointers instead of communicating channels. Pro-
cesses are defined by the grammar in Table 1. The term done denotes the idle
process that performs no action. The term open(a,b).P denotes a process that al-
locates a new channel, represented as the two peer endpoints a and b, in the heap
and continues as P. The term u!m(v).P denotes a process that sends the message
m(v) on the endpoint u and then continues as P. A message is made of a tag m

and an argument v. The term ∑i∈I u?mi(xi).Pi denotes a process that waits for a
message from endpoint u. According to the tag mi of the received message, the
variable xi is instantiated with the argument of the message in the continuation
process Pi. We assume that the set I is always finite and non-empty. The term
P⊕Q denotes a process that nondeterministically decides to behave as either P
or Q, while the term P |Q denotes the standard parallel composition of P and Q.
The term try(U) {ei : Qi}i∈IP denotes a process willing to initiate a transaction
involving the endpoints in U . The process P is the body of the transaction and is
executed when the transaction is initiated, while the Qi’s are the handlers of the
transaction which are activated if the transaction is aborted during the execution
of the body by an exception ei. The term throw e denotes the throwing of the ex-
ception e, whose effect is to abort the currently running transaction and to execute
the appropriate handler. The term commit(U).P denotes a process willing to ter-
minate the currently running transaction (involving the endpoints in U). As soon
as the transaction has ended, the process continues as P. The term X〈ũ〉 denotes
the invocation of the process associated with the process variable X . We assume
that we work with a global environment of process definitions of the form

X(ũ) def
= P

defining these associations.
The binders of the language are open(a,b).P, which binds a and b in P, the

input prefix u?m(x).P, which binds x in P, and X(ũ) def
= P which binds the names ũ

in P. The formal definitions of free and bound names of a process P, respectively
denoted by fn(P) and bn(P), are standard. We identify processes modulo alpha
renaming of bound names.

Syntactic conventions. We adopt some standard conventions regarding the syntax
of processes: we sometimes use an infix form for receive operations and write,
for example u?m1(x1).P1+ · · ·+u?mn(xn).Pn instead of ∑i=1..n u?mi(xi).Pi; we omit
message arguments when they are not used; we sometimes use a prefix form for
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GetNextDiskPath(DS,ret) def
=

DS?NewClientEndpoint(ns).
try(ns) {RamDiskErrorException : Finally〈ns,DS,ret〉}

Loop〈ns,DS,ret〉

Loop(ns,DS,ret) def
=

open(imp,exp).ns!Register(imp).
ns?AckRegister().commit(ns).

ret!SetService(exp).Finally〈ns,DS,ret〉
+ns?NakRegister(nakImp).

throw RamDiskErrorException

⊕close(exp).close(nakImp).Loop〈ns,DS,ret〉

Finally(ns,DS,ret) def
= close(ns).ret!Result(DS).close(ret)

Figure 3: Encoding of the function in Figure 1.

parallel compositions and write, for example, ∏i=1..n Pi instead of P1 | · · · |Pn; we
identify done with ∏i∈ /0 Pi and we omit trailing occurrences of done.

To ease the formalization, our process language supports a minimal set of
critical features: we focus only on monadic messaging (messages have exactly
one endpoint argument) and exception handling, disregarding other constructs and
data types of Sing#; we assume that receive operations use the same endpoint in
every branch, forbidding processes like u?a(x).P+ v?b(y).Q which are allowed
by the switch receive construct in Sing#; we work with a purely prefix-based
language without sequential composition, encoding try-catch-finally blocks
in Sing# with transaction bodies and handlers and commit processes within bodies;
we encode if-else commands with the non-deterministic process P⊕Q omitting
the condition that determines the chosen branch. We claim that all the results
presented hereafter can be suitably extended to overcome these restrictions.

Example 3.1. Figure 3 shows the encoding of the function in Figure 1 using the
syntax of our process language. The structure of the process follows quite closely
that of the function, except for some details which we explain here.

The loop on lines 5–25 is encoded as a recursive process Loop parameterized
on its free names. The finally block on lines 26–28 is factored out as a named
process Finally, since it must be executed regardless of whether the try block

11



is terminated successfully (line 15) or not (line 20). Consequently, Finally is
invoked twice in the encoding.

The main difference between the function Figure 1 and its encoding concerns
parameter passing, which is encoded using explicit communication on the ret end-
point. In particular, the initialization of expService with exp on line 14 corre-
sponds to the output operation ret!SetService(exp) in Figure 3.

Note that in Figure 1 the function uses a global name DS for accessing a system
service. In order to obtain a closed term, in the encoding we explicitly mention a
parameter DS of the GetNextDiskPath process which represents DS. Because our
type system relies on the linear access to resources, invoking a parametric process
such as GetNextDiskPath means transferring the ownership of the parameters to
the process. To preserve linearity (of DS in this case), the Finally process sends
DS back on ret before ret is closed (more involved examples of function modeling
and ownership transfer are described in detail by Bono and Padovani [7]). �

Operational semantics. In order to describe the operational semantics of pro-
cesses, we need to represent the heap where channels are allocated and through
which messages are exchanged. Indeed, channels are accessed through the point-
ers to their endpoints and message arguments are themselves pointers to heap
objects. Intuitively, a heap µ is a finite map from pointers a to endpoint structures
[b,Q], where b is the peer endpoint of a and Q is the queue of messages waiting
to be received from a. In the model, we represent heaps and message queues as
terms generated by the grammar in Table 2. The term /0 denotes the empty heap,
in which no endpoints are allocated. The term a 7→ [b,Q] denotes an endpoint
allocated at a pointing to the endpoint structure [b,Q]. The term µ,µ ′ denotes the
composition of the heaps µ and µ ′. We write dom(µ) for the domain of the heap
µ , that is the set of pointers for which there is an allocated endpoint structure.
The heap composition µ,µ ′ is well defined provided that dom(µ)∩dom(µ ′) = /0
(there cannot be two endpoint structures allocated at the same address). In the
following, we identify queues assuming associativity of composition and the laws
ε :: Q =Q :: ε =Q and we identify heaps assuming associativity and commuta-
tivity of composition and the law /0,µ = µ . We write a 7→ [b,Q] ∈ µ to indicate
that the endpoint structure [b,Q] is allocated at location a in µ .

Message queues, ranged over by Q, are also represented as terms: ε denotes
the empty queue, m(c) is a queue made of an m message with argument c, and
Q :: Q′ is the queue composition of Q and Q′. We identify queues modulo asso-
ciativity of :: and we assume that ε is neutral for ::.

Before defining the operational semantics of processes we formalize two no-
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µ ::= Heap
/0 (empty heap)

| a 7→ [a,Q] (endpoint structure)
| µ,µ (heap composition)

Q ::= Queue
ε (empty queue)

| m(a) (message)
| Q :: Q (queue composition)

P ::= Runtime process
· · · (as in Table 1)

| 〈A,B,{ei : Pi}i∈IP〉 (running transaction)

Table 2: Syntax of heaps, queues, and runtime processes.

tions. The first one is that of peer endpoints:

Definition 3.1 (peer endpoints). We say that a and b are peer endpoints in µ ,
written a

µ←→ b, if a 6= b and a 7→ [b,Q] ∈ µ and b 7→ [a,Q′] ∈ µ .

Note that
µ←→ is a symmetric relation. The notion of “closed scope” that we

mentioned in Section 2 is formalized as a predicate on sets of pointers:

Definition 3.2 (balanced set of pointers). We say that A⊆ dom(µ) is balanced in
µ , written µ-balanced(A), if, for every a ∈ A, a

µ←→ b implies b ∈ A.

In words, A is balanced in µ if for every a in A, the peer of a is also in A
provided that it is still allocated in µ . Since a message sent over a ends up in
the queue of its peer, this means that any communication occurring on one of the
endpoints in A remains within the scope identified by A.

In the operational semantics of processes, we need to distinguish between a
transaction that has not started yet (and which is represented using the try con-
struct of Table 1), and a running transaction. This need arises for two reasons:
First, a running transaction generally involves more than one process, each with
its own set of handlers. Therefore, it is technically convenient to devise an explicit
construct that defines the scope of the transaction. Second, it is necessary to keep
track of the part of the heap that has been allocated since the initiation of the trans-
action. Table 2 extends the syntax of processes with the term 〈A,B,{ei : Pi}i∈IP〉
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Structural congruence

[S-PAR IDLE]
P |done≡ P

[S-PAR COMM]
P |Q≡ Q |P

[S-PAR ASSOC]
P | (Q |R)≡ (P |Q) |R

Reduction relation

[R-OPEN]
µ # open(a,b).P→ µ,a 7→ [b,ε],b 7→ [a,ε] # P

[R-PARALLEL]
µ # P→ µ

′ # P′

µ # P |Q→ µ
′ # P′ |Q

[R-CLOSE]
µ,a 7→ [b,Q] # close(a).P→ µ # P

[R-CHOICE]
i ∈ {1,2}

µ # P1⊕P2→ µ # Pi

[R-SEND]
µ,a 7→ [b,Q],b 7→ [a,Q′] # a!m(c).P→ µ,a 7→ [b,Q],b 7→ [a,Q′ :: m(c)] # P

[R-RECEIVE]
k ∈ I

µ,a 7→ [b,mk(c) :: Q] # ∑i∈I a?mi(xi).Pi→ µ,a 7→ [b,Q] # Pk{c/xk}

[R-INVOKE]
X(ũ) def

= P
µ # X〈ã〉 → µ # P{ã/ũ}

[R-STRUCT]
P≡ P′ µ # P′→ µ

′ # Q′ Q′ ≡ Q
µ # P→ µ

′ # Q

Table 3: Operational semantics of processes.

where A is the set of endpoints involved in the transaction, B is the set of end-
points that have been allocated since the transaction has started, P is the (residual)
body of the transaction, and the Pi’s represent the handlers of the transaction. In
general, P and the Pi’s will be parallel compositions of the bodies and the handlers
of the processes that have cooperatively initiated the transaction.

The operational semantics of processes is defined in terms of a structural con-
gruence over processes (identifying structurally equivalent processes) and a re-
duction relation. Structural congruence is the least relation ≡ including alpha
conversion and the laws in Table 3, stating that parallel composition is commuta-
tive, associative, and has done as neutral element. As process interaction mostly
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occurs through the heap, the reduction relation describes the evolution of config-
urations µ # P rather than of processes alone, so that

µ # P→ µ
′ # P′

denotes the fact that process P evolves to P′ and, in doing so, it changes the heap
from µ to µ ′.

Reduction is the smallest relation between configurations defined by the rules
in Tables 3 and 4. We explain the rules in the following paragraphs. Rule [R-OPEN]
describes the creation of a new channel, which causes the allocation of two new
endpoint structures in the heap. The endpoints are initialized with empty queues
and are allocated at fresh locations, for otherwise the resulting heap would be ill
formed. Since we have assumed that Pointers is infinite, it is always possible to
alpha rename a and b to fresh pointers using structural congruence, so that an
open(a,b).P is always able to reduce.

Rule [R-CLOSE] describes the closing of an endpoint, which deallocates its
structure from the heap and discards its queue. Note that both endpoints of a
channel are created simultaneously by [R-OPEN], but each is closed independently
by [R-CLOSE] (this is the same semantics as the one of Sing#).

Rule [R-CHOICE] states that a process P⊕Q nondeterministically reduces to
either P or Q.

Rule [R-SEND] describes the sending of a message m(c) on the endpoint a.
The message is enqueued at the right end of the queue associated with the peer
endpoint b of a. Note that, for this rule to be applicable, it is necessary for both
endpoints of a channel to still be allocated.

Rule [R-RECEIVE] describes the receiving of a message from endpoint a. In
particular, the message at the left end of the queue associated with a is removed
from the queue, its tag mk is used to select one branch of the process, and its
argument c instantiates the corresponding variable xk.

Rule [R-PARALLEL] describes the independent evolution of parallel processes.
Note how the heap is treated globally even if it is only one subprocess to reduce.

Rule [R-INVOKE] describes process invocations simply as the replacement of
a process variable with the process it is associated with, modulo the substitution
of its parameters. In this rule and in [R-RECEIVE], P{ũ/ṽ} denotes the capture-
avoiding substitution of ũ in place of ṽ in P.

Rule [R-START TRANSACTION] describes the initiation of a transaction by a
number of processes. The transaction is identified by a set of endpoints

⋃
i∈I Ai

which are distributed among the processes. In order for the transaction to start, this
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[R-START TRANSACTION]
µ-balanced(

⋃
i∈I Ai)

µ # ∏i∈I try(Ai) {e j : Qi j} j∈JPi→ µ # 〈
⋃

i∈I Ai, /0,{e j : ∏i∈I Qi j} j∈J ∏i∈I Pi〉

[R-END TRANSACTION]
µ # 〈A,B,{e j : Q j} j∈J ∏i∈I commit(Ai).Pi〉 → µ # ∏i∈I Pi

[R-RUN TRANSACTION]
µ # P→ µ

′ # P′

µ # 〈A,B,{e j : Q j} j∈JP〉 → µ
′ # 〈A, track(B,dom(µ),dom(µ ′)),{e j : Q j} j∈JP′〉

[R-CATCH EXCEPTION]
k ∈ J

µ1,{ai 7→ [bi,Qi]}i∈I,µ2 # 〈{ai}i∈I,dom(µ2),{e j : Q j} j∈Jthrow ek |P〉
→ µ1,{ai 7→ [bi,ε]}i∈I # Qk

[R-PROPAGATE EXCEPTION]
∀ j ∈ J : e j 6= e

µ1,{ai 7→ [bi,Qi]}i∈I,µ2 # 〈{ai}i∈I,dom(µ2),{e j : Q j} j∈Jthrow e |P〉
→ µ1,{ai 7→ [bi,ε]}i∈I # throw e

Table 4: Operational semantics of transactions.

set of endpoints must be balanced, so that for every endpoint in the set its peer is
also in the set. The rule is nondeterministic, in the sense that there can be multiple
combinations of processes that can initiate a transaction. We leave the choice of a
particular strategy (for example, requiring

⋃
i∈I Ai to be non-empty, minimal, and

µ-balanced) to the implementation. The residual process is the tuple

〈
⋃

i∈I Ai, /0,{e j : ∏i∈I Qi j} j∈J ∏i∈I Pi〉

combining the bodies and the handlers of the processes involved in the transaction.
The second component is /0 indicating that at this stage no new endpoints have
been allocated yet within the transaction. Note that the combined processes must
be able to handle the same set {e j} j∈J of exceptions for the reduction to occur.
Even if this seems to require a runtime check, the fact that all processes involved
in a transaction are able to handle the same set of exceptions will be ensured by
the type system (see rule [T-TRY] in Table 8).
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Rule [R-END TRANSACTION] reduces a running transaction to its continuation
when its body has terminated. The handlers are discarded. The sets Ai play no
role in the operational semantics and are used for typing purposes only. In fact,
we will see that the type system enforces the invariant that these sets coincide with
the ones decorating the try blocks corresponding to the commit processes and, in
particular, A =

⋃
i∈I Ai.

Rule [R-RUN TRANSACTION] allows the reduction of a transaction according
to the reductions of its body. The rule keeps track of the memory changes oc-
curred during the reduction of the body of the transaction by updating the second
component of the transaction to track(B,dom(µ),dom(µ ′)), where

track(B,A0,A1)
def
= (B∪ (A1 \A0))\ (A0 \A1)

In practice, the pointers to objects allocated during the reduction are added to B,
while the pointers to objects deallocated during the reduction are removed from
B.

Rule [R-CATCH EXCEPTION] describes the abnormal termination of a running
transaction when an exception is thrown and the transaction provides an handler
for it. In this case, the queues of all the endpoints involved in the transactions
are emptied, the memory allocated within the transaction is reclaimed, and the
appropriate handler is run. In a similar way, rule [R-PROPAGATE EXCEPTION] ab-
normally terminates running transactions when there is no suitable handler for
the thrown exception. Also in this case the queues of the endpoints involved in
the transactions are emptied and the memory allocated within the transaction is
reclaimed, but the exception is propagated (technically, re-thrown) at the outer
level.

We write µ # P→ if µ # P→ µ ′ # P′ for some µ ′ and P′ and µ # P X→ if not
µ # P→; we write⇒ for the reflexive, transitive closure of→.

Well-behaved processes. We conclude this section providing a characterization
of well-behaved processes, those that are free from memory leaks, memory faults,
and communication errors. A memory leak occurs when no pointer to an allocated
region of the heap is retained by any process. In this case, the allocated region has
no owner, it occupies space, but it is no longer accessible. A memory fault occurs
when a pointer is accessed and the endpoint it points to is not (or no longer)
allocated. A communication error occurs when some process receives a message
of unexpected type. To formalize well-behaved processes, we need to define the
reachability of a heap object with respect to a set of root pointers. Intuitively, a
process P may directly reach any object located at some pointer in the set fn(P)
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[ST-INACTIVE]
µ # done ↓

[ST-INPUT]
µ,a 7→ [b,ε] # ∑i∈I a?mi(xi).Pi ↓

[ST-COMMIT]
µ # commit(A).P ↓

[ST-TRY]
¬µ-balanced(A)

µ # try(A) {e j : Q j} j∈JP ↓

[ST-PARALLEL]
µ # P ↓ µ # Q ↓

µ # P |Q ↓

[ST-RUNNING TRANSACTION]
µ # P ↓ P 6≡∏i∈I commit(Ai).Pi

µ # 〈A,B,{e j : Q j} j∈JP〉 ↓

Table 5: Stuck configurations.

(we can think of the pointers in fn(P) as of the local variables of the process
stored on its stack); from these pointers, the process may reach other heap objects
by reading messages from the endpoints it can reach, and so forth.

Definition 3.3 (reachable pointers). We say that c is reachable from a in µ , nota-
tion c≺µ a, if a 7→ [b,Q :: m(c) ::Q′]∈ µ . We write4µ for the reflexive, transitive
closure of ≺µ and we define µ-reach(A) = {c ∈ Pointers | ∃a ∈ A : c4µ a}.

The last auxiliary notion we need provides a syntactic characterization of those
configurations that cannot reduce but that do not represent any of the errors de-
scribed above.

Definition 3.4 (stuck configuration). We say that the configuration µ # P is stuck
if the judgment µ # P ↓ is inductively derivable by the rules in Table 5.

Rules [ST-INACTIVE] and [ST-PARALLEL] are obvious, while rules [ST-TRY]
and [ST-COMMIT] state that transaction initiations and termination are stuck, if
taken in isolation. In the former case, the set of involved endpoints must not be
balanced, for otherwise the transaction could initiate. Rule [ST-RUNNING TRANSACTION]
states that a running transaction is stuck if its body is stuck and different from a
combination of processes willing to terminate the transaction, for otherwise the
transaction could terminate. Note also that no exception can have been thrown
within the body of a stuck running transaction, for the stuckness predicate is un-
defined for throw e processes. Finally, rule [ST-INPUT] states that a process wait-
ing for a message from endpoint a is stuck only if the endpoint a is allocated and
its queue is empty. Then, a configuration whose processes are all waiting for a
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message corresponds to a genuine deadlock. From these rules we deduce that a
process willing to send a message on a is never stuck, and so is a process willing
to receive a message from a if the queue associated with a is not empty.

Definition 3.5 (well-behaved process). We say that P is well behaved if /0 # P⇒
µ # Q implies:

1. dom(µ)⊆ µ-reach(fn(Q));

2. Q≡ Q1 |Q2 and µ # Q1 X→ imply µ # Q1 ↓.

In words, a process P is well behaved if every residual Q of P is such that Q can
reach every pointer in the heap and every subprocess Q1 of Q that does not reduce
is stuck (recall that the definition of µ # Q1 ↓ captures also the possibility that Q1
is in deadlock). Here are a few examples of ill-behaved processes to illustrate the
sort of errors we want to spot with our type system:

• The process open(a,b).done violates condition (1), since it leaks endpoints
a and b.

• The process open(a,b).(close(a).close(a) |close(b)) tries to deallocate
the same endpoint a twice. This is an example of fault.

• The process open(a,b).(a!a().close(a) | b?b().close(b)) violates condi-
tion (2) since it reduces to a parallel composition of subprocesses where
one has sent an a message, but the other one was expecting a b message.

• The process

open(a,b).try( /0) {e : done}
throw e⊕commit( /0).close(a).close(b)

may leak a and b if the exception is thrown.

Observe that, in item (1) of Definition 3.5, the domain of µ is only required
to be included in (instead of being equal to) the set of pointers reachable from
the free names of Q. In particular, it may be the case that Q contains references
to unallocated objects, and yet it never attempts to use them. This formulation
of leak-freedom, which is slightly more general than the one used by Jakšić and
Padovani [10] where equality between the two sets was required, is necessary
because the type system that we are about to define allows subtyping, which was
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t ::= Type
T (endpoint type)

| [t] (sealed type)

T ::= Endpoint type
end (termination)

| α (type variable)
| {!mi(Ti).Ti}i∈I (internal choice)
| {?mi(Ti).Ti}i∈I (external choice)
| {ei : Ti}i∈IJT (initiate transaction)
| KT (commit transaction)
| rec α : r.T (recursive type)
| {ei : Ti}i∈IT (running transaction)

Table 6: Syntax of types and endpoint types.

not considered in [10]. Also note that our notion of leak-freedom does not require
a process to eventually deallocate the objects it owns, but only to guarantee the
reachability of all the objects it owns. For example, the process open(a,b).X〈a,b〉
where X(u,v) def

= X〈u,v〉, maintains the reachability of a and b without ever using
them. This process is well behaved according to Definition 3.5 and is also well
typed according to the type system that will be developed in Section 4.

4. Type System

We now develop a type system that enforces well-behavedness of processes: in
Section 4.1 we introduce the syntax of the type language; in Section 4.2 we de-
fine a notion of type weight which is used for discriminating between safe and
unsafe communications; Section 4.3 is devoted to extending classical subtyping
for session types by Gay and Hole [14] so as to take transactions and exceptions
into account; Sections 4.4, 4.5, and 4.6 define the actual typing rules; finally, Sec-
tion 4.7 presents the soundness result.

4.1. Syntax of Types
We assume that we are given an infinite set of type variables ranged over by
α; we use t, s, . . . to range over types, and T , S, . . . to range over endpoint
types. The syntax of types and endpoint types is defined in Table 6. An endpoint
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type describes the behavior of a process with respect to a particular endpoint:
the process may send messages over the endpoint, receive messages from the
endpoint, deallocate the endpoint, initiate and terminate transactions involving the
endpoint. The endpoint type end denotes an endpoint that can only be deallocated.
An internal choice {!mi(Si).Ti}i∈I denotes an endpoint on which a process may
send any message mi for i ∈ I. The message has an argument of type Si and,
depending on the tag mi, the endpoint can be used thereafter according to Ti. In a
dual manner, an external choice {?mi(Si).Ti}i∈I denotes an endpoint from which a
process must be ready to receive any message mi for i∈ I and, depending on the tag
mi of the received message, the endpoint is to be used according to Ti. In endpoint
types {!mi(Si).Ti}i∈I and {?mi(Si).Ti}i∈I we assume that I 6= /0 and mi = m j implies
i = j for every i, j ∈ I. That is, the tag mi of the message that is sent or received
identifies a unique continuation Ti. The endpoint type {ei : Si}i∈IJT denotes an
endpoint on which it is possible to initiate a transaction. The type T specifies
how the endpoint is used within the body of the transaction, whereas each type Si
specifies how the endpoint is used if the transaction is aborted by the exception
ei. The endpoint type KT denotes the termination of the transaction in which
an endpoint with this type is involved. As soon as the transaction is properly
terminated, the endpoint can be subsequently used according to T . Terms α and
rec α : r.T can be used to specify recursive behaviors, as usual. The annotation
r associated with α represents the rank of α , which will be explained shortly.
Finally, the endpoint type {ei : Si}i∈IT is analogous to {ei : Si}i∈IJT , except that
it specifies the type of an endpoint involved in a transaction which has already
been initiated, but has not terminated yet. In fact, this type is needed for technical
reasons only, and will be used in conjunction with running transaction processes
〈A,B,{ei : Pi}i∈IP〉. In no case the programmer is supposed to deal with endpoint
types of this form.

Clearly, not every endpoint type written according to the syntax in Table 6
makes sense. For example, it is possible to write terms such as {e : end}Jend
where a transaction is initiated but not terminated or terms where recursions do
not respect the intended nesting of transactions, like in rec α.{e : end}Jα or in
{e : end}Jrec α.Kα . As far as our analysis is concerned, the syntax does not
even prevent end subterms from occurring within transactions, which as we have
argued in Section 2 is undesirable since endpoints involved in transactions should
not be closed. For all these reasons we define a subset of well-formed endpoint
types based on a notion of rank. Intuitively, the rank of a term T gives the number
of transactions within which T may occur, with the proviso that end must have
rank 0.
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[WF-END]
Θ ` end : 0

[WF-VAR]
Θ,α : r ` α : r

[WF-REC]
Θ,α : r ` T : r

Θ ` rec α : r.T : r

[WF-PREFIX]
† ∈ {?, !} Θ ` Si : 0 (i∈I) Θ ` Ti : r (i∈I)

Θ ` {†mi(Si).Ti}i∈I : r

[WF-COMMIT]
Θ ` T : r

Θ ` KT : r+1

[WF-INITIATE]
Θ ` Si : r (i∈I) Θ ` T : r+1

Θ ` {ei : Si}i∈IJT : r

[WF-RUN]
Θ ` Si : r (i∈I) Θ ` T : r+1

Θ ` {ei : Si}i∈IT : r

Table 7: Rank of endpoint types.

In general, we say that the endpoint type T is well formed and has rank r
in Θ if Θ ` T : r is inductively derivable by the axioms and rules in Table 7,
where Θ ranges over ranking contexts associating ranks to type variables. Then,
a derivation of /0 ` T : 0 means that T is a closed endpoint type where transac-
tion initiations and terminations are balanced. Rules [WF-INITIATE], [WF-RUN],
and [WF-COMMIT] count the number of nested transactions. Rule [WF-PREFIX]
requires all branches of a choice to have the same rank, while rules [WF-REC]
and [WF-VAR] deal with recursive types in a standard way, by respectively aug-
menting and accessing the ranking context. In the following we will omit Θ from
judgments Θ ` T : r if Θ is empty.

As welcome side effects of well formedness, note that:

• message types have rank 0 (rule [WF-PREFIX]). Thus, well-typed processes
will not be able to send/receive endpoints involved in pending transactions;

• end cannot occur inside transactions (rule [WF-END]). Thus, well-typed
processes will not be able to close endpoints involved in pending transac-
tions.

The rank annotation r in recursive terms rec α : r.T guarantees that every
well-formed endpoint type has a uniquely determined rank. Without this annota-
tion a term like rec α.!m(end).α could be given any rank. The following propo-
sition guarantees that the rank of well-formed endpoint types is unaffected by
folding/unfolding of recursions:
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Proposition 4.1. If ` rec α : r.T : r, then ` T{rec α : r.T/α} : r.

Proof. A simple induction on the derivation of Θ,α : r ` T : r.

In what follows, we will assume that all endpoint types are closed and well
formed and we will usually omit the rank annotation from recursive terms with
the assumption that they can be properly annotated so that they are well formed;
we will also write rank(T ) for the rank of T . We will identify endpoint types
modulo alpha renaming of bound type variables (the only binder being rec )
and folding/unfolding of recursions knowing that this does not change their rank
(Proposition 4.1). In particular, we have rec α.T = T{rec α.T/α}. Finally, we
will sometimes use an infix notation for internal and external choices and write
!m1(S1).T1⊕·· ·⊕!mn(Sn).Tn instead of {!mi(Si).Ti}i∈{1,...,n} and ?m1(S1).T1+ · · ·+
?mn(Sn).Tn instead of {?mi(Si).Ti}i∈{1,...,n}.

Types are possibly sealed endpoint types of the form

[· · ·[T ]· · ·]

for some arbitrary (possibly zero) number of seals [· · ·]. Seals protect the end-
points not involved in a transaction: they are applied when the transaction is ini-
tiated (the try primitive is executed) and are stripped off when the transaction
terminates (the commit primitive is executed). The type system prevents end-
points with a sealed type from being used, since any change to them would not be
undoable in case the currently running transaction is aborted.

Example 4.1. According to the process definitions in Figure 3, the endpoint
ns is involved in the transaction around the Loop process, it is used for send-
ing a Register message and then for receiving either an AckRegister or a
NakRegister message. The same endpoint is then closed regardless of whether
the transaction completes successfully or not. We can describe the overall behav-
ior of GetNextDiskPath, Loop, and Finally on ns with the following endpoint
type:

Tns = {RamDiskErrorException : end}Jrec α.!Register(Timp).
(?AckRegister().Kend+ ?NakRegister(Timp).α)

where Timp is the endpoint type associated with the imp and nakImp endpoints.
The endpoint ret is not used within the transaction, but its usage differs de-

pending on whether or not the exception is thrown:

Tret = !Result(TDS).end⊕ !SetService(Texp).!Result(TDS).end
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If no exception is thrown, ret is used for sending a SetRegister message fol-
lowed by a Result one; if an exception is thrown, only the Result message is
sent. The above type Tret takes into account both possibilities. �

In order to avoid communication errors, we associate peer endpoints with end-
point types describing complementary actions: if a process sends a message of
some kind on one endpoint, another process must be able to receive a message of
that kind from the peer endpoint; if one process initiates a transaction involving
one endpoint, the other process will do so as well on the peer endpoint; if one
process has finished using an endpoint, the process owning the peer endpoint has
finished too. We formalize this complementarity of actions by defining a function
that, given an endpoint type, computes its dual:

Definition 4.1 (duality). Duality is the function · on endpoint types defined coin-
ductively by the equations:

end = end

{?mi(Si).Ti}i∈I = {!mi(Si).Ti}i∈I

{!mi(Si).Ti}i∈I = {?mi(Si).Ti}i∈I

{ei : Si}i∈IJT = {ei : Si}i∈IJT
KT = KT

{ei : Si}i∈IT = {ei : Si}i∈IT

Roughly speaking, the dual of an endpoint type T is obtained from T by swap-
ping internal and external choices. For example, the dual of the endpoint type Tret
defined in Example 4.1 is

Tret = ?Result(TDS).end+ ?SetService(Texp).?Result(TDS).end

Note that the dual T of T cannot be defined by a simple induction on the struc-
ture of T according to this intuition because the type of message arguments is
unaffected by duality. In particular we have

rec α.?m(α).end = ?m(rec α.?m(α).end).end
= !m(rec α.?m(α).end).end
6= rec α.!m(α).end .

The interested reader may refer to Bono and Padovani [7] for an equivalent
inductive definition of duality.

We list here two important properties of duality, namely that it is an involution
and it preserves ranks:

24



Proposition 4.2. The following properties hold:

1. T = T ;

2. rank(T ) = rank(T ).

Proof. Item (1) is an easy consequence of the definition of duality (Definition 4.1).
Item (2) follows from the fact that the rank is only affected by the nesting of
transaction types in T and internal/external choices are treated in the same way by
rule [WF-PREFIX].

4.2. Type Weight
In previous work by Bono and Padovani [7] it was observed that the delegation
of endpoints having some particular types can generate memory leaks even if the
delegating process appears to behave correctly with respect to the type of the
endpoints it uses. For example, the process

P def
= open(a,b).a!m(b).close(a) (1)

uses a and b according to the endpoint types

T = !m(S).end and S = rec α : 0.?m(α).end (2)

respectively. Note that T = S, therefore the complementarity of actions performed
on the peer endpoints a and b is guaranteed. Now, the process P sends endpoint
b over endpoint a. According to T , the process is indeed entitled to send an
m message with argument of type S on a and b has precisely that type. After
the output operation, the process no longer owns endpoint b and endpoint a is
deallocated. Despite its apparent correctness, P generates a leak, as shown by the
reduction:

/0 # P → a 7→ [b,ε],b 7→ [a,ε] # a!m(b).close(a)
→ a 7→ [b,ε],b 7→ [a,m(b)] # close(a)
→ b 7→ [a,m(b)] # done

In the final configuration we have µ-reach(fn(done)) = /0 while dom(µ) =
{b}. In particular, the endpoint b is no longer reachable and therefore this con-
figuration violates condition (1) of Definition 3.5. A closer look at the heap in
the reduction above reveals that the problem lies in the cycle involving b resulting
from the send operation a!m(b): it is as if the b 7→ [a,m(b)] region of the heap
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needs not be owned by any process because “it owns itself”. Fortunately, it is pos-
sible to detect the situations in which these cycles may be generated by looking at
the structure of the types of the endpoints that are sent as messages. More specif-
ically, for each endpoint type we compute a value in the set N∪{∞}, which we
call weight, that estimates the length of any chain of pointers originating from the
queue of the endpoints it denotes. A weight equal to ∞ means that this length can
be infinite, in the sense that cycles such as the one shown above may be generated.
Then, the type system makes sure that only endpoints having a finite-weight type
can be sent as messages, and this has been shown to be enough for preventing
these kinds of memory leaks (see Bono and Padovani [7]).

We proceed by recalling here the definition of weight from [7], adapted to our
context where we deal also with transaction types:

Definition 4.2 (weight). We say that W is a coinductive weight bound if (T,n) ∈
W implies either:

• T = end or T = {ei : Si}i∈IJT ′ or T = KT ′ or T = {!mi(Si).Ti}i∈I , or

• T = {?mi(Si).Ti}i∈I and n > 0 and (Si,n−1) ∈W and (Ti,n) ∈W for every
i ∈ I, or

• T = {ei : Si}i∈IT ′ and (T ′,n) ∈W .

We write T :: n if (T,n) ∈ W for some coinductive weight bound W . The
weight of an endpoint type T , denoted by ‖T‖, is defined by

‖T‖= min{n ∈ N | T :: n}

where we let min /0=∞. When comparing weights we extend the usual total orders
< and ≤ over natural numbers so that n < ∞ for every n ∈ N and ∞≤ ∞.

The weight of T is defined as the least of its weight bounds, or ∞ if there is
no such weight bound. For example we have ‖end‖ = ‖{!mi(Si).Ti}i∈I‖ = 0. In-
deed, the queues of endpoints with type end and those in a send state are empty
and therefore the chains of pointers originating from them have zero length. The
same happens for endpoints whose type is {ei : Si}i∈IJT and KT , since we will
enforce the invariant that when a transaction is initiated or successfully termi-
nated, the endpoints involved in it have empty queues. Endpoint types in a receive
state have a strictly positive weight. For instance we have ‖?m(end).end‖ = 1
and ‖?m(?m(end).end).end‖ = 2. Indeed, the queue of an endpoint with type
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?m(end).end may contain another endpoint with an empty queue. Therefore, the
chain of pointers originating from the endpoint with type ?m(end).end has at most
length 1. If we go back to the endpoint types in (2) that we used to motivate this
discussion, we have ‖T‖= 0 and ‖S‖= ∞, from which we deduce that endpoints
with type S, like b in (1), are not safe to be used as messages.

4.3. Subtyping
The last notion we need before proceeding with the definition of the type system is
a subtyping relation for endpoint types. Because of the close relationship between
endpoint types and session types, the subtyping relation for endpoint types turns
out to be a variant of that for session types [14]. However, the peculiar nature of
exceptions has interesting consequences. The original subtyping relation for ses-
sion types is based on the fundamental duality between input and output actions.
In particular, it establishes that subtyping is covariant for external choices (inputs)
and contravariant for internal ones (outputs). For example,

T = !a(S1).T1⊕ !b(S2).T2 6 !a(S1).T1 = S

is a valid subtyping relation between T and S. The underlying intuition is based
on the usual principle of safe substitution of an endpoint of type S with another
endpoint of type T . If a (well-typed) process is using an endpoint c of type S, then
it can only send an a message on c. So, replacing the endpoint c with another one
of type T , which allows both a and b messages to be sent, does not compromise
communication safety. In a dual manner,

T ′ = ?a(S1).T1 6 ?a(S1).T1 + ?b(S2).T2 = S′

is a valid subtyping relation between T ′ and S′. In this case, a (well-typed) pro-
cess using an endpoint of type S′ must be capable of handling (at least) a and b

messages received from the endpoint. Replacing that endpoint with another one
of type T ′ is safe because from the latter one only a messages can be received.

The covariance and contravariance properties of subtyping with respect to in-
put and output operations follow from the duality of endpoint types associated
with peer endpoints: when a process is entitled to send a message on an endpoint,
the process using its peer must be ready to receive it, and vice-versa. By contrast,
during a transaction, exceptions can be thrown on both peers of a channel. As a
consequence, the two transaction types

{e1 : S1,e2 : S2}JT and {e1 : S1}JT
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cannot be related. Indeed, if we had {e1 : S1,e2 : S2}JT 6 {e1 : S1}JT , then
the process using the endpoint a with type {e1 : S1}JT might not be prepared to
handle the exception e2 thrown by the process using the peer b of a. Similarly,
the process using the peer endpoint b might be unable to handle the exception
e2 thrown on a if we had the opposite relation. In the end, because of the bi-
directional nature of exceptions thrown during a transaction, subtyping must be
invariant for transaction types.

We now proceed to define subtyping formally, extending it to possibly sealed
endpoint types in the natural way:

Definition 4.3 (subtyping). Subtyping is the largest relation 6 such that t 6 s
implies either:

• t = [t ′] and s = [s′] and t ′ 6 s′, or

• t = s = end, or

• t = {?mi(Ti).T ′i }i∈I and s = {?mi(Si).S′i}i∈I∪J and Ti 6 Si and T ′i 6 S′i for
every i ∈ I, or

• t = {!mi(Ti).T ′i }i∈I∪J and s= {!mi(Si).S′i}i∈I and Si6 Ti and T ′i 6 S′i for every
i ∈ I, or

• either (t = {ei : Ti}i∈IJT and s = {ei : Si}i∈IJS) or (t = {ei : Ti}i∈IT and
s = {ei : Si}i∈IS) and Ti 6 Si for every i ∈ I and T 6 S, or

• t = KT and s = KS and T 6 S.

According to the definition of6, the covariance and contravariance properties
for external and internal choices informally introduced earlier are extended to
message argument types, in the usual manner. Observe that subtyping is always
covariant with respect to continuations. It is easy to show that 6 is a pre-order
that is contravariant with respect to duality:

Proposition 4.3. The following properties hold:

1. 6 is reflexive and transitive;

2. T 6 S if and only if S6 T .

Proof. See Gay and Hole [14]. Transaction types do not pose additional issues.
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In Section 4.2 we have introduced a notion of weight that will be used in
the type system for discriminating between safe and unsafe messages. Since the
weight is computed on the (static) type of endpoints and subtyping allows for the
substitution of endpoints with related but possibly different types, one important
question arises whether subtyping and type weight are coherent with each other.
This is indeed the case:

Proposition 4.4. T 6 S implies ‖T‖ ≤ ‖S‖.

Proof. It is easy to see that W = {(T,n) | ∃S : T 6 S & S :: n} is a coinductive
weight bound. In particular, when T is an internal choice we have T :: 0 regardless
of the number of branches in T .

4.4. Typing Processes
We can now proceed to defining a type system for processes. A type environment
is a finite map Γ = {ui : ti}i∈I from names to types. We write dom(Γ) for the
domain of Γ , namely the set {ui}i∈I; we write Γ ,Γ ′ for the union of Γ and Γ ′

when dom(Γ)∩dom(Γ ′) = /0; finally, we write Γ ` u : t if Γ(u) = t. An exception
environment Ẽ is a finite sequence E1 · · ·En of sets of exceptions. We write e ∈ Ẽ
if e ∈ Ek for some k ∈ {1, . . . ,n}. We say that a type t is local, written local(t), if t
is not sealed and has a null rank, namely t = T for some T such that rank(T ) = 0.
Intuitively, a local type denotes an endpoint that can be modified (its type is not
sealed) and is not involved in any transaction. We extend the notion of local types
to type environments so that local(Γ) holds if every type in the codomain of Γ is
local.

The typing rules for processes are inductively defined in Table 8. Judgments
have the form

Ẽ ;Γ ` P

denoting that process P is well typed in the exception environment Ẽ and type en-
vironment Γ . In particular, P can only throw exceptions that occur in Ẽ . The type
system makes use of a global process environment Σ associating process variables
X with pairs (t̃, Ẽ ) containing the type of the parameters of X as well as the ex-
ception environment Ẽ in which X is supposed to be invoked. It is understood
that the process environment Σ contains associations for all the global definitions
D and that the judgment Σ ` D defined by

Σ(X) = (t̃, Ẽ ) Ẽ ; ũ : t̃ ` P

Σ ` X(ũ) def
= P
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[T-INACTION]
Ẽ ; /0 ` done

[T-THROW]
e ∈ Ẽ

Ẽ ;Γ ` throw e

[T-CLOSE]
Ẽ ;Γ ` P

Ẽ ;Γ ,u : end ` close(u).P

[T-INVOKE]
Σ(X) = (s̃, Ẽ ) t̃ 6 s̃

Ẽ ; ũ : t̃ ` X〈ũ〉

[T-OPEN]
` T : 0 Ẽ ;Γ ,a : T,b : T ` P

Ẽ ;Γ ` open(a,b).P

[T-SEND]
k ∈ I S6 Sk ‖S‖< ∞ Ẽ ;Γ ,u : Tk ` P

Ẽ ;Γ ,u : {!mi(Si).Ti}i∈I,v : S ` u!mk(v).P

[T-CHOICE]
Ẽ ;Γ ` P Ẽ ;Γ ` Q

Ẽ ;Γ ` P⊕Q

[T-RECEIVE]
Si 6 S′i

(i∈I) Ẽ ;Γ ,u : Ti,xi : S′i ` Pi
(i∈I)

Ẽ ;Γ ,u : {?mi(Si).Ti}i∈I ` ∑i∈I∪J u?mi(xi).Pi

[T-PARALLEL]
Ẽ ;Γ1 ` P Ẽ ;Γ2 ` Q

Ẽ ;Γ1,Γ2 ` P |Q

[T-TRY]
Ẽ {e j} j∈J; [Γ ],{ui : Ti}i∈I ` P Ẽ ;Γ ,{ui : Si j}i∈I ` Q j

( j∈J)

Ẽ ;Γ ,{ui : {e j : Si j} j∈JJTi}i∈I ` try({ui}i∈I) {e j : Q j} j∈JP

[T-COMMIT]
local(Γ2) Ẽ ;Γ1,{ui : Ti}i∈I,Γ2 ` P

Ẽ E ; [Γ1],{ui : KTi}i∈I,Γ2 ` commit({ui}i∈I).P

Table 8: Typing rules for processes.
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holds. In particular, all of the free names of P must occur in its binding variable
X(ũ).

We describe the typing rules for processes in the following paragraphs. Rule
[T-INACTION] states that the idle process is well typed only in the empty type
environment. This is a standard rule for linear type systems implying, in our case,
that the terminated process has no leaks.

Rule [T-CLOSE] states that a process close(u).P is well typed provided that
u corresponds to an endpoint with type end, on which no further interaction is
possible, and P is well typed in the remaining type environment.

Rule [T-OPEN] deals with the creation of a new channel, which is visible in
the continuation process as two peer endpoints typed by dual endpoint types. The
premise ` T : 0 means that newly created endpoints have no pending transactions
on them.

Rule [T-SEND] states that a process u!m(v).P is well typed if u is associated
with an endpoint type T that permits the output of m messages. The type S of
the argument v must be unsealed, finite-weight, and has to be a subtype of the
expected type in the endpoint type. Finally, the continuation P must be well typed
in a type environment where the endpoint u is typed according to the continuation
Tk of T and the endpoint v is no longer visible. This models the fact that the
ownership of v is transferred to the process that receives the message.

Rule [T-RECEIVE] deals with inputs: a process waiting for a message from an
endpoint u : {?mi(Si).Ti}i∈I is well typed if it can deal with all of the messages mi.
The continuation processes may use the endpoint u according to the endpoint type
Ti and can access the message argument xi of some supertype S′i of Si.

Rules [T-CHOICE] and [T-PARALLEL] are standard. In the latter, the type envi-
ronment is split into two disjoint environments to type the processes being com-
posed.

Rule [T-INVOKE] declares that a process invocation X〈ũ〉 is well typed pro-
vided that the number and type of actual parameters ũ match the number and type
of formal parameters in Σ(X) and that the process is invoked in the correct excep-
tion environment. In this rule we write t̃ 6 s̃ for the pointwise extension of 6 to
sequences of types.

We now turn our attention to the constructs dealing with transactions and ex-
ceptions.

Rule [T-THROW] states that the process throw e is well typed in any type
environment, provided that it occurs within a transaction (the exception being
thrown must be among the ones occurring in the exception environment). For
this reason, the violation of linearity for the assumptions in the type environment
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is only apparent, as control will be transferred at runtime to some appropriate
exception handler.

Rule [T-TRY] deals with transaction initiations. All the endpoints in the dec-
oration U must have a type allowing them to be involved in a transaction, while
the types of other names are sealed so that P is prevented from using them until
the transaction is terminated. Seals are not applied in the type environment for
the handlers since they execute only if and when the transaction is aborted and
therefore act outside of the transaction. Note that the admitted exceptions are
augmented in P but not in Q.

Rule [T-COMMIT] is almost the dual of rule [T-TRY] and deals with transaction
termination. Again, the endpoints in the decoration U must have a matching type
in the context indicating the end of the transaction. Names with a sealed type must
have been inherited from the context surrounding the transaction being terminated,
so a seal is stripped off them in the continuation P. Names with a local type must
have been created within the transaction being terminated, and can be used in the
continuation as well. Note that the rightmost set E in the exception environment
is stripped off when type checking P, since P executes after the transaction has
terminated hence outside of the scope where the exceptions in E can be thrown.

Observe that the type system requires the endpoints specified in a commit

process to be exactly the same as the ones in the corresponding try. This is a
consequence of the properties of well-formed endpoint types: endpoints involved
in a transaction have a type with a strictly positive rank (see [WF-INITIATE] in
Table 7) meaning that they cannot be closed (because end has null rank) and they
cannot be sent as messages (again because [WF-PREFIX] requires messages to
have a type with null rank). For the same reason they cannot be qualified as local,
because local endpoints have a type with a null rank. Therefore, the set {ui}i∈I
associated with a given try process will be exactly the same set associated with
the corresponding commit process.

Example 4.2. Using the types defined in Example 4.1, the reader can verify that
the bodies of the process definitions in Figure 3 for GetNextDiskPath, Loop, and
Finally are respectively well typed according to the type environments

Γ1 = DS : ?NewClientEndpoint(Tns).TDS,ret : Tret
Γ2 = ns : T ′ns,DS : TDS,ret : Tret
Γ3 = ns : end,DS : TDS,ret : Tret

where

T ′ns = !Register(Timp).(?AckRegister().Kend+ ?NakRegister(Timp).Tns)
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is an appropriate residual of the unfolding of Tns. Note the role played by sub-
typing in this example: ret is used according to the type !Result(TDS).end in
Finally and according to the type !SetService(Texp).!Result(TDS).end in Loop.
Since Tret is a subtype of both these types, ret can be passed to Finally and Loop

thanks to the subtyping relation in [T-INVOKE]. �

4.5. Typing the Heap
The typing rules in Table 8 are not sufficient for proving the soundness of the type
system, because they are solely concerned with the static syntax of processes. At
runtime, we must take into account running transaction processes (see Tables 2
and 4) as well as the heap. Indeed, since inter-process communication relies on
heap-allocated structures, several properties of well-behaved processes depend on
properties of the heap saying that its content is consistent with a given type en-
vironment. In this section and in the following one we develop a type system
for the runtime components of our process language. We remark that the pro-
grammer is solely concerned with the typing rules for static processes presented
in Section 4.4, while the technical material presented hereafter, which builds on
and extends the previous one, is only required for proving that the type system is
sound.

Just as we have type checked a process P against a type environment that
associates types with the names occurring in P, we also need to check that the
heap is consistent with respect to the same environment. This leads to a notion of
well-typed heap that we develop in this section. More precisely, well-typedness
of a heap µ is checked with respect to a pair Γ0;Γ of type environments: the
context Γ0,Γ must provide type information for all the allocated structures in µ

(that is, dom(Γ0,Γ) = dom(µ)); the splitting Γ0;Γ distinguishes the pointers in
dom(Γ) from the pointers in dom(Γ0) so that Γ contains the roots of µ , namely the
pointers that are not referenced from any endpoint structure in the heap, while Γ0
contains pointers that are referenced from some endpoint structure.

Among the properties that must be enforced is the complementarity between
the endpoint types associated with peer endpoints. This notion of complemen-
tarity does not coincide with duality because the communication model is asyn-
chronous: since messages can accumulate in the queue of an endpoint before they
are received, the types of peer endpoints can be misaligned. The two peers are
guaranteed to have dual types only when their queues are both empty. In general,
we need to compute the actual endpoint type of an endpoint by taking into ac-
count the messages in its queue. To this aim we introduce a tail(·, ·) function for
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endpoint types such that

tail(T,m1(S1) · · ·mn(Sn)) = T ′

indicates that messages having tag mi and an argument of type Si can be received
in the specified order from an endpoint with type T , which can be used according
to type T ′ thereafter. The function is inductively defined by the following rules:

tail(T,ε) = T

k ∈ I S6 Sk

tail({?mi(Si).Ti}i∈I,mk(S)) = Tk

tail(T,m(S)) = T ′

tail({ei : Si}i∈IT,m(S)) = T ′

tail(T,m1(S1)) = T ′ tail(T ′,m2(S2) · · ·mn(Sn)) = T ′′

tail(T,m1(S1)m2(S2) · · ·mn(Sn)) = T ′′

Note that tail(T,m(S)) is undefined when T = end or T is an internal choice
or T denotes the initiation or the termination of a transaction. This will enforce
the property that the queue of endpoints having these types must be empty. In
the particular case of transaction initiation, this makes sure that, if an exception is
thrown, heap restoration simply amounts to emptying the queues of the endpoints
involved in the transaction (mechanism (A) in Section 2). The fact that the queues
of the endpoints involved in the transaction are guaranteed to be empty at the end
of a transaction is solely motivated by our notion of duality (Definition 4.1), which
demands a perfect correspondence between the actions on such endpoints during
a transaction. In principle, it would be possible to relax duality in such a way
that a message sent within a transaction is received only after the transaction is
terminated. However, it would still be necessary for the receive operation to first
wait for the actual termination of the transaction, for otherwise the soundness of
the transaction would be compromised. This means that this increased flexibility
in the syntax of programs would bear no concrete advantage in their semantics.

We now have all the notions to express the well-typedness of a heap µ with
respect to a pair Γ0;Γ of type environments.

Definition 4.4 (well-typed heap). Let dom(Γ0)∩dom(Γ) = /0. We write Γ0;Γ  µ

if all of the following conditions hold:

1. If a 7→ [b,Q] ∈ µ and b 7→ [a,Q′] ∈ µ , then either Q= ε or Q′ = ε .
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2. If a 7→ [b,m1(c1) :: · · · :: mn(cn)] ∈ µ , then

tail(T,m1(S1) · · ·mn(Sn)) = S

where Γ0,Γ ` a : [· · ·[T ]· · ·] and Γ0 ` ci : Si and ‖Si‖ < ∞ and ` Si : 0 for
1 ≤ i ≤ n and b 7→ [a,ε] ∈ µ implies Γ0,Γ ` b : [· · ·[S]· · ·] and b 6∈ dom(µ)
implies S = end.

3. dom(µ) = dom(Γ0,Γ) = µ-reach(dom(Γ));

4. A∩B = /0 implies µ-reach(A)∩µ-reach(B) = /0 for every A,B⊆ dom(Γ).

Condition (1) requires that at least one of the queues of peer endpoints in a
well-typed heap is empty. This invariant corresponds to half-duplex communica-
tion and is ensured by duality of endpoint types associated with peer endpoints,
since a well-typed process cannot send messages on an endpoint until it has read
all the pending messages from the corresponding queue (we will see in Exam-
ple 4.4 how to safely circumvent half-duplex communication thanks to transac-
tions). Condition (2) requires that the content of the queue of an endpoint must
be consistent with the type of the endpoint, in the sense that the messages in the
queue have the expected tag and an argument with the expected type. In addi-
tion, the endpoint types of message arguments must all have finite weight and null
rank. Finally, the endpoint types of peer endpoints are dual of each other, modulo
the content of the non-empty queue. Condition (3) states that the type environ-
ment Γ0,Γ must specify a type for all of the allocated objects in the heap and, in
addition, every object (located at) a in the heap must be reachable from a root
b ∈ dom(Γ). Finally, condition (4) requires the uniqueness of the root for every
allocated object. Overall, since the roots are distributed linearly among the pro-
cesses of the system, conditions (3) and (4) guarantee that every allocated object
belongs to one and only one process.

There are a few subtleties regarding conditions (1) and (2) and the fact that, in
condition (2), the property b 7→ [a,ε] ∈ µ is the head of an implication. First of
all, condition (2) must hold for both peers of a channel, therefore if a is the peer
with the empty queue (n = 0) while b has messages in its queue, then the type of
a is not necessarily the dual of the type of b. The correct dual correspondence
is checked when the symmetric pair of endpoints is considered. Second, it is
possible that at some point only one endpoint of a channel is allocated. For exam-
ple, the well-typed process open(a,b).close(b).close(a) reduces to close(a)
in a configuration where the heap contains only a 7→ [b,ε]. When this happens,
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[T-RUNNING PROCESS]
Γ0;ΓR,Γ  µ Ẽ ;Γ ` P

Ẽ ;Γ0;ΓR;Γ ` µ # P

[T-RUNNING PARALLEL]
Ẽ ;Γ0;ΓR,Γ2;Γ1 ` µ # P Ẽ ;Γ0;ΓR,Γ1;Γ2 ` µ # Q

Ẽ ;Γ0;ΓR;Γ1,Γ2 ` µ # P |Q

[T-RUNNING TRANSACTION]
µ-balanced({ai : Si j}i∈I)

( j∈J)
µ-balanced(B) local(Γ2)

{ai}i∈I ∪B = µ-reach({ai}i∈I ∪dom(Γ2))

Ẽ {e j} j∈J;Γ0;ΓR; [Γ1],{ai : Ti}i∈I,Γ2 ` µ # P Ẽ ;Γ1,{ai : Si j}i∈I ` Q j
( j∈J)

Ẽ ;Γ0;ΓR;Γ1,{ai : {e j : Si j} j∈JTi}i∈I,Γ2 ` µ # 〈{ai}i∈I,B,{e j : Q j} j∈JP〉

Table 9: Typing rules for configurations.

the type of the remaining endpoint forbids any send operation (last property of
condition (2)). Note that condition (1) is not implied by condition (2) and both
conditions are necessary.

4.6. Typing Configurations
Table 9 defines typing rules for configurations µ # P as an extension of the typing
rules for processes. Judgments have the form

Ẽ ;Γ0;ΓR;Γ ` µ # P

and state that the configuration µ # P is well typed with respect to the exception
environment Ẽ and the triple Γ0;ΓR;Γ of type environments. Intuitively, Γ is the
type environment used to type check P, ΓR is the type environment describing the
type of root pointers owned by processes that are running in parallel with P, and
Γ0 describes the type of pointers that occur in some queue.

Rule [T-RUNNING PROCESS] lifts well-typed processes to well-typed configu-
rations by requiring the heap to be well typed with respect to the pair of environ-
ments Γ0;ΓR,Γ where ΓR,Γ represents the whole set of roots obtained from those
owned by the process being typed (in Γ ) and those owned by processes in parallel
with it (in ΓR).

Rule [T-RUNNING PARALLEL] is similar to [T-PARALLEL], except that it deals
with three type environments which are appropriately rearranged for keeping track
of the roots of the heap.

Rule [T-RUNNING TRANSACTION] captures the basic properties regarding run-
ning transactions 〈{ai}i∈I,B,{e j : Q j} j∈JP〉, which we describe here. The rule
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makes use of a balancing predicate over type environments that generalizes the
notion of balancing for sets of pointers (Definition 3.2):

Definition 4.5. We say that Γ is balanced in µ , written µ-balanced(Γ), if a ∈
dom(Γ) and a

µ←→ b imply b ∈ dom(Γ) and Γ(a) = Γ(b).

First of all, it must be possible to partition the type environment into three
parts Γ1, {ai : {e j : Si j} j∈JTi}i∈I , and Γ2 such that the environment Γ1 corresponds
to the endpoints owned by P but which are not involved in the transaction. Con-
sequently, the types of these endpoints are sealed in the judgment corresponding
to the typing of P. The environment {ai : {e j : Si j} j∈JTi}i∈I corresponds to the
endpoints involved in the transaction (the first component of the running trans-
action process), and their type indicates that the transaction is in progress. The
environment Γ2 corresponds to the endpoints that have been allocated inside the
transaction. Their type is not sealed in the judgment corresponding to the typing
of P. The premises µ-balanced({ai : Si j}i∈I) for every j ∈ J and µ-balanced(B)
indicate that the set of all the endpoints to which P has full access is balanced.
Therefore, the transaction operates in a closed scope and cannot have “side ef-
fects” from the point of view of other processes. The first premise indicates, in
addition, that the types Si j associated with peer endpoints are dual of each other
(this property is a consequence of well-typedness of the heap before the transac-
tion initiates, but it must be explicitly stated in [T-RUNNING TRANSACTION] where
the heap is checked against a type environment where the Si’s do not occur any
more). The premise local(Γ2) identifies the Γ2 partition of the context correspond-
ing to the endpoints that have been created inside the transaction. The premise
{ai}i∈I ∪B = µ-reach({ai}i∈I ∪ dom(Γ2)) states that all the endpoints allocated
within the transaction have not escaped the scope of the transaction. The last two
premises correspond to the premises of rule [T-TRY]. In particular, note that the
exception environment is properly augmented when typing the body of the trans-
action.

Since running transaction processes appear only at runtime as the result of
[R-START TRANSACTION] reductions, they can never occur behind a prefix and
therefore the three rules in Table 9 cover all possible forms of runtime configura-
tions.

4.7. Type Soundness
We can now formulate the two main results about our framework: well-typedness
is preserved by reduction, and well-typed processes are well behaved. Subject
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reduction takes into account the possibility that types in the environment may
change as the process reduces, which is common in behavioral type theories.

Theorem 4.1 (subject reduction). Let Ẽ ;Γ0;ΓR;Γ ` µ # P and µ # P→ µ ′ # P′.
Then Ẽ ;Γ ′0;ΓR;Γ ′ ` µ ′ # P′ for some Γ ′0 and Γ ′.

Proof. See Appendix A.

In fact, the proof of this theorem requires to specify a number of additional
properties showing the precise relationship between Γ and Γ0 (before the reduc-
tion) and Γ ′ and Γ ′0 (after the reduction).

Theorem 4.2 (safety). Let /0 `0 P. Then P is well behaved.

Proof. See Appendix B.

We conclude this section with two examples showing how transaction types
increase the expressiveness of session types by allowing the safe modeling of
timeouts and mixed choices.

Example 4.3 (timeouts). In some cases it is possible and desirable to establish
a timeout for a receive operation to succeed. Using transaction types and ex-
ceptions, it is easy to model timeouts in our process language. As an example,
suppose one is interested in modeling a process

a?m(x).P+ τ.Q

which behaves as P as soon as it receives an m message from endpoint a and
reduces to Q through an internal τ move if no message is received after some
unspecified amount of time. This can be modeled by means of the process

try(a) {timeout : Q}
a?m(x).commit(a).P
| try({}) {ok : done}(throw ok⊕throw timeout)

where the nondeterministic choice between throwing ok or timeout is the abstract
representation of the mechanism that activates the timeout. Note that the modeling
uses exception propagation to trigger the timeout. The type associated with a is
{timeout : S}J?m(t).KT where T describes the behavior of P on a if the m message
is received within the timeout, while S describes the behavior of Q on a if the
timeout expires. Note that the modeling in this example is not meant to suggest
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an actual implementation of the timeout mechanism, but rather to describe its
effect in abstract terms. In particular, the m message may have already been sent
by the time the timeout expires (and the exception timeout is thrown). Yet, the
sender of the message should be aware of this eventuality, it should be notified
in case the timeout expires, and it should provide a suitable recovery action for
this eventuality, possibly involving the resending of the m message. This is all
guaranteed by the fact that the sender, which uses the peer endpoint of a, must do
so according to the endpoint type {timeout : S}J!m(t).KT . �

Example 4.4 (mixed choices). The Sing# implementation allows the definition of
contracts with so-called mixed choices, namely states in which there are two (or
more) alternative operations involving both inputs and outputs. If mixed choices
were allowed in our type language we would have, for example, endpoint types of
the form {!a(t).T,?b(s).S} allowing either sending an a message or receiving a b
message. Mixed choices break the half-duplex communication modality and are
known to make protocols less robust and prone to deadlock [5, 6]. Yet, they can
be safely modeled using transaction types as, for example

Tm = {a : !a(t).T,b : ?b(s).S}J Kend

The intuition is that a process behaving as Tm may throw either an a or a b

exception to notify its party as to which operation (output an a message or input a
b message) it will perform. An example of such process is

try(c){a : c!a(u).P,b : c?b(x).Q}(commit(c).close(c) |X〈u〉)

where
X(y) def

= X〈y〉⊕throw a

represents an internal computation that may eventually throw the a exception and
cause the sending of the a message.

Below is part of the proof derivation showing that the process is well typed
in the environment c : Tm,u : t. The branch related to the b exception has been
omitted, but it is analogous to the one for the a exception; where necessary, the
exception environment E = {a,b} is used:
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E ; /0 ` done

E ;c : end ` close(c)

E ;c : Kend ` commit(c).close(c) E ;u : [t] ` X〈u〉

E ;c : Kend,u : [t] ` commit(c).close(c) |X〈u〉

...

c : T ` P

c : !a(t).T,u : t ` c!a(u).P
...

c : Tm,u : t ` try(c){a : c!a(u).P,b : c?b(x).Q}(commit(c).close(c) |X〈u〉)

Finally,

E ;u : [t] ` X〈u〉 E ;u : [t] ` throw a

E ;u : [t] ` X〈u〉⊕throw a

is the proof tree proving that the definition of X〈u〉 is well typed. �

5. Related Work

Our research fits in the broad spectrum of works developing hybrid static/dy-
namic techniques for the controlled management of the heap, and relies on in-
variants regarding the configuration of heap-allocated structures for enabling the
efficient implementation of transactional mechanisms. Controlled heap manage-
ment has fostered the development of a wide spectrum of techniques aimed at the
most diverse purposes, of which we provide here a small account.

Pure functional programming languages are excellent candidates for the im-
plementation of implicitly parallel computations. Parallelism is usually achieved
by allowing multiple processing units to independently reduce disjoint parts of a
program (represented as a graph) stored in a (possibly virtual) shared memory.
Both hardware [15] and software [16] architectures have been explored. In these
architectures, the crucial aspect is to achieve an optimal distribution of tasks, tak-
ing into account the fact that each processing unit often has its own local memory
where subgraphs to be reduced must be copied, and that for improved efficiency
it is necessary to take into proper account locality properties of the program [17].

Type-based approaches for enforcing and reasoning on properties of the heap
are also popular. The seminal work by Tofte and Talpin [18] describes an effect
type system for region-based memory management that allows for efficient alloca-
tion and deallocation of related heap structures. Interestingly, effects can be seen
as primitive forms of behavioral types. There exist type systems with resource
annotations that allow computing bounds on the heap space usage of functions
and methods. Examples of such type systems are given in [19] for (first-order)
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functional programs and in [20] for object-oriented programs. These approaches
are usually motivated by the need to provide firm guarantees in code meant to be
executed in embedded systems with constrained resources. Such forms of analy-
ses can be carried out also for untyped programs. For instance, Albert et al. [21]
work directly on Java bytecode, while Hammond [22] studies bounded time/space
semantics for a functional and concurrent language.

Suenaga et al. [23] study a type discipline for safe resource deallocation in
concurrent programs with shared memory. The idea is to associate each shared
resource with a fractional ownership, namely a rational number in the interval
[0,1], which denotes the level of sharing of the resource: 0 means that the re-
source is not owned, 1 means that the resource is owned exclusively, while any
intermediate rational number indicates a shared ownership of the resource (often
constraining the operations allowed on it). The type system allows a thread to
deallocate a resource only if the thread is the only owner of the resource and if all
of the other resources contained in it have been deallocated or transferred to other
threads. In our type system, a similar effect is achieved by the combination of the
type rule for the close primitive (which allows for the deallocation of endpoints
only when they are owned exclusively) and the notion of well-typed heap (which
guarantees endpoints with type end to have an empty queue).

There are strong analogies between our endpoint types and usage expressions
defined by Iwama et al. [24], which are used for controlling access to resources
(such as files and memory) in a functional language with exceptions. Usage ex-
pressions are akin to behavioral types and describe the valid sequence of oper-
ations allowed on some resource. In particular, [24] defines a usage construc-
tor U1;E U2 where U1 describes how the resource is accessed under “nominal”
conditions while U2 describes how the resource is accessed if an exception is
thrown. The structure of this usage constructor resembles that of a transaction
type {E : U2}JU1. Because usage expressions can be composed in sequence, there
is no need to explicitly mark the points where the scope of an exception ends.

The present work continues the type-based formalization of Singularity OS
described by Bono and Padovani [7]. To simplify the formal development of
the present paper we dropped polymorphism and non-linear types from the type
system in [7]. These are orthogonal features that are independent of exception
handling and can be added without affecting the results we have presented here.
A radically different approach for the static analysis of Singularity processes is
explored by Villard et al. [6, 25], where the authors develop a proof system based
on a variant of separation logic. Exceptions are not taken into account in these
works.
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The works more closely related to ours, and which we used as starting points,
are by Carbone et al. [11] and Capecchi et al. [12]. In [11], which was the first to
investigate exceptions in calculi for session-oriented interactions and to propose
type constructs to describe explicitly, at the type level, the handling of exceptional
events, it is possible to associate an exception handler to a whole (dyadic) session;
[12] generalizes this idea to multiparty sessions (those with multiple participants)
and allows the same channel to be involved, at different times, in different try
blocks, each with its own dedicated exception handler. In both [11] and [12] it
is possible that messages already present in channel queues at the time an ex-
ception occurs are forgotten. In our context, this would immediately yield mem-
ory leaks, which we avoid by keeping track of the resources allocated during a
transaction and by restoring the system to a consistent configuration in case an
exception is thrown. State restoration is made possible in our context because the
system is not distributed and the heap is shared by the communicating processes.
Neither [11] nor [12] consider session delegation, namely the communication of
channels. Also, in [12] the type system forces inner try blocks to use a subset
of the channels involved in outer blocks. We relax these restrictions and allow
locally created channels to be involved in inner transactions. The most notable
difference between [12] and the present work regards the semantics of exceptions
in nested transactions: in [12], an exception thrown in one transaction is sus-
pended as long as there are active handlers in the nested ones. This semantics is
motivated by the observation that, in a distributed setting, it may be desirable to
complete the execution of potentially critical handlers before outermost handlers
take control. Our semantics allows handlers of outer transactions to take control
at any time following the throwing of an exception. As a consequence, more con-
strained policies, such as the one adopted in [12], can be implemented without
invalidating the results presented in our work.

The recent interest on Web services has spawned a number of works investi-
gating (long running) transactions in a distributed setting; a detailed survey with
many references is provided by Ferreira et al. [26]. In our context, the components
Qi of a process 〈A,B,{ei : Qi}i∈IP〉 are analogous to compensation handlers. The
main difference between our handlers and those used for compensations is that, in
the latter case, it is usually made the assumption that it is not possible to restore
the state of the system as it was at the beginning of the transaction. In our case,
state restoration is made possible by the fact that the system is local and all the
interactions occur through shared memory. In this context, we can rely on some
native support from the runtime system to properly cleanup the state of the system
and avoid memory leaks.
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The operational semantics of exceptions and exception handling in the present
paper has been loosely inspired by that of Haskell memory transactions described
by Harris et al. [27]. In particular, our semantics describes what happens when
an exception is thrown but not how exception notification and state restoration
are implemented. In this sense our semantics is somewhat more abstract than the
semantics given in similar works [12]. The semantics of [27] uses a clever combi-
nation of small- and big-step reduction rules and is even more abstract than ours.
Technically, having an abstract semantics is an advantage because it allows the
meaning of programs to be expressed more concisely and in an implementation-
independent way. However, because the big-step semantics is affected by diverg-
ing programs, it is more appropriate in a functional setting where non-termination
is typically considered as a misbehavior. In our context, where non-terminating
processes are useful, we had to resort to a more detailed operational semantics
that dynamically keeps track of the allocated memory within a transaction.

Donnelly and Fluet [28] put forward a programming abstraction called trans-
actional events for the modular composition of communication events into trans-
actions with an all-or-nothing semantics. Their approach focuses on finding syn-
chronization paths between threads communicating synchronously, while in our
case transactions are required for preserving type consistency of endpoints and for
undoing the effects of asynchronous communication.

Inadequacy of the standard error handling mechanisms provided by main-
stream programming languages has already been recognized, even in sequen-
tial and communication-free scenarios. Weimer and Necula [29], Weimer [30],
Weimer and Necula [31] develop a static analysis technique that spots error han-
dling mistakes concerning proper resource release. Their technique is based on
finite-state automata (in other words, a basic form of behavioral type) for keep-
ing track of the state of resources along all possible execution paths. They also
propose a more effective mechanism for preventing runtime errors. The basic
idea is to accumulate compensation actions regarding resources on a compensa-
tion stack as resources are allocated. This technique closely resembles dynamic
compensations in [26]. Because of their dynamic nature, compensation stacks do
not provide any assistance as far as type consistency is concerned.

6. Conclusions and Future Work

We have formalized a core language of processes that communicate and synchro-
nize through the copyless message passing paradigm and can throw exceptions.
In this context, where the sharing of data and explicit memory allocation require
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controlled policies on the ownership of heap-allocated objects, special care must
be taken when exceptions are thrown to prevent communication errors (arising
from misaligned states of channel endpoints) and memory leaks (resulting from
messages forgotten in endpoint queues). We have studied a type system guaran-
teeing some safety properties, in particular that well-typed processes are free from
communication errors and do no leak memory even in presence of (caught) excep-
tions. We have taken advantage of invariants guaranteed by the type system for
taming the implementation costs of exception handling: the queues of endpoints
involved in a transaction are guaranteed to be empty when the transaction starts,
so that state restoration in case of exception simply means emptying such queues;
also, only endpoints local to a transaction can be freed inside the transaction, so
that state restoration in case of exception does not involve re-allocations.

The choice of Sing# as our reference language has been motivated by the fact
that the Singularity code base provides concrete programming patterns that the
formal model is supposed to cover (for example, previous works on exception
handling for session-oriented languages by Carbone et al. [11], Capecchi et al.
[12] do not consider delegation inside try-blocks, which instead is ubiquitous in
Sing#). In addition, Sing# already accommodates channel contracts, which play
a crucial role in our formalization. However, we claim that our approach is ab-
stract enough to be applicable to other programming languages and paradigms,
provided that suitable type information (possibly in the form of code annotations)
is attached to channel endpoints.

To measure the practical impact of our mechanism of exception handling, one
can take advantage of the availability of Singularity’s source code for verifying
whether the constraints imposed by the type discipline are reasonable in practice.
Even without thorough investigations, however, we are able to provide some fa-
vorable arguments to our type discipline, in particular with respect to the weight
and rank restrictions on types. As regards type weights, one has to consider that
messages allocated on the exchange heap are explicitly managed by means of
reference counting [2], which notoriously falls short in handling cyclic data struc-
tures, and that the finite-weight restriction on the type of communicated messages
is just aimed at preventing cycles in the exchange heap. Regarding ranks, the sub-
class of well-formed, null-ranked types are just those in which transactions are
properly balanced. In fact, the notion of well formedness arises solely because
of our choice of modeling transactions using two matching constructs try and
commit marking their beginning and end. Their balancing arises naturally in a
structured language such as Sing#. We also plan to work on a prototype imple-
mentation of the exception handling so as to explore its practical costs.
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Even if the type system has been tailored for a process calculus with a minimal
set of critical features, it can be easily extended to incorporate commonly used
programming constructs. Some restrictions of the type system can also be relaxed
without endangering its soundness. For example, according to rule [T-SEND], only
local endpoints (those that have an unsealed and null-ranked type) can be sent as
messages inside transactions. This restriction results from the syntax of endpoint
types (requiring that message arguments must have an unsealed type) and from
rule [WF-PREFIX] regarding well-formed endpoint types (requiring that message
argument types must have null rank). Endpoints with a sealed type cannot be
accessed from within a transaction, because all the operations that modify the
state of the heap require the access to endpoints with unsealed type. Therefore, we
claim that endpoints with a sealed type are also safe to be sent as messages. In case
an exception is thrown, the only thing that must be restored is their ownership at
the beginning of the transaction. Nonetheless, the proof of this relaxed discipline
seems to require a non-trivial modification of rule [T-RUNNING TRANSACTION],
which is already quite elaborate in the present state, to account for the fact that
the state of endpoints with a sealed type can change as the result of concurrent
threads that execute outside of the transaction.

A. Proof of Theorem 4.1 (Subject Reduction)

The two following lemmas are standard and say that typing is preserved by struc-
tural congruence and by substitutions. In the case of substitutions, subtyping may
be applied without compromising well-typedness.

Lemma A.1. Let Ẽ ;Γ ` P and P≡ Q. Then Ẽ ;Γ ` Q.

Proof. By case analysis on the derivation of P≡ Q.

Lemma A.2 (substitution). If Ẽ ;Γ ,u : t ` P and v 6∈ dom(Γ)∪ bn(P) and s 6 t,
then Ẽ ;Γ ,v : s ` P{v/u}.

Proof. For notational simplicity we prove the result when u = x and v = a. We
proceed by induction on the derivation of Ẽ ;Γ ,x : t ` P and by cases on the last
rule applied. We only prove a few interesting cases.

[T-CLOSE] In this case P = close(u).Q and Γ ,x : t = Γ ′,u : end and Ẽ ;Γ ′ ` Q.
If x ∈ dom(Γ ′), then Γ ′ = Γ ′′,x : t and Γ = Γ ′′,x : t,u : end. By induction

hypothesis we deduce Ẽ ;Γ ′′,a : s ` Q{a/x}. Since we know that a 6= u, from
rule [T-CLOSE] we conclude Ẽ ;Γ ,a : s ` close(u).Q{a/x}.
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If x = u, then Γ = Γ ′, t = s = end, and Q = Q{a/x} because x does not occur
free in Q. From rule [T-CLOSE] we conclude Ẽ ;Γ ,a : end ` close(a).Q{a/x}.
[T-SEND] In this case Γ ,x : t = Γ ′,u : {!mi(Si).Ti}i∈I,v : S′ and P = u!mk(v).Q

where k ∈ I and S′ 6 Sk and ‖S′‖< ∞ and Ẽ ;Γ ′,u : Tk ` Q.
If x ∈ dom(Γ ′), then Γ ′ = Γ ′′,x : t and Γ = Γ ′′,u : {!mi(Si).Ti}i∈I,v : S′. From

Ẽ ;Γ ′,u : Tk ` Q and by induction hypothesis we obtain Ẽ ;Γ ′′,a : s,u : Tk ` Q{a/x}.
Since a /∈ dom(Γ) we know that a /∈ {u,v} and from rule [T-SEND] we conclude
Ẽ ;Γ ,a : s ` u!mk(v).Q{a/x}.

If x = u, then Γ = Γ ′,v : S′ and t = {!mi(Si).Ti}i∈I and s = {!mi(S′i).T
′

i }i∈I∪J and
Si 6 S′i and T ′i 6 Ti for every i ∈ I. Then S′ 6 Sk 6 S′k. From Ẽ ;Γ ′,u : Tk ` Q and
the induction hypothesis we obtain Ẽ ;Γ ′,a : T ′k ` Q{a/x}. We conclude Ẽ ;Γ ′,a :
{!mi(S′i).T

′
i }i∈I∪J,v : S′ ` a!mk(v).Q{a/x} with an application of rule [T-SEND].

If x = v, then t = S′ and x /∈ dom(Γ ′)∪{u} and Q = Q{a/x}. From Proposi-
tion 4.4 we deduce ‖s‖≤‖t‖<∞. We conclude with an application of rule [T-SEND].

[T-TRY] In this case Γ ,x : t = Γ ′,{ui : {e j : Si j} j∈JJTi}i∈I and P= try({ui}i∈I) {e j :
Q j} j∈JQ and Ẽ ;{e j} j∈J; [Γ ′],{ui : Ti}i∈I ` Q and Ẽ ;Γ ′,{ui : Si j}i∈I ` Q j for every
j ∈ J.

If x ∈ dom(Γ ′), then Γ ′ = Γ ′′,x : t for some Γ ′′. From the hypothesis s 6 t we
deduce [s]6 [t]. From Ẽ ;{e j} j∈J; [Γ ′],{ui : Ti}i∈I ` Q and by induction hypothesis
we deduce Ẽ ;{e j} j∈J; [Γ ′′],a : [s],{ui : Ti}i∈I ` Q{a/x}. From Ẽ ;Γ ′,{ui : Si j}i∈I `
Q j and by induction hypothesis we deduce Ẽ ;Γ ′′,a : s,{ui : Si j}i∈I ` Q j{a/x} for
every j ∈ J. We conclude with an application of rule [T-TRY].

If x = uk for some k ∈ I, then t = {e j : Sk j} j∈JJTk and s = {e j : S′k j} j∈JJT ′k
where S′k j 6 Sk j for every j ∈ J and T ′k 6 Tk. By induction hypothesis we deduce
Ẽ ;{e j} j∈J; [Γ ′],{ui : Ti}i∈I\{k},a : T ′k ` Q{a/x} and Ẽ ;Γ ′,{ui : Si j}i∈I\{k},a : S′k j `
Q j{a/x} for every j ∈ J. We conclude with an application of rule [T-TRY].

The next lemma connects well-typed configurations to well-typed heaps and
shows the irrelevance of the first and second components Γ0 and ΓR in typing
processes.

Lemma A.3. Let Ẽ ;Γ0;ΓR;Γ ` µ # P. Then:

(1) Γ0;ΓR,Γ  µ;

(2) Γ ′0;Γ ′R,Γ  µ ′ implies Ẽ ;Γ ′0;Γ ′R;Γ ` µ ′ # P.
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Proof. By induction on the derivation of Γ0;ΓR;Γ ` µ # P and by cases on the
last rule applied. The only interesting case is [T-RUNNING TRANSACTION], from
which we deduce:

• P = 〈{ai}i∈I,B,{e j : R j} j∈JQ〉;

• Γ = Γ1,{ai : {e j : Si j} j∈JTi}i∈I,Γ2;

• µ-balanced({ai : Si j}i∈I) for every j ∈ J;

• Ẽ {e j} j∈J;Γ0;ΓR; [Γ1],{ai : Ti}i∈I,Γ2 ` µ # Q.

Regarding (1), from Ẽ {e j} j∈J;Γ0;ΓR; [Γ1],{ai : Ti}i∈I,Γ2 ` µ # Q by induction
hypothesis we obtain Γ0;ΓR, [Γ1],{ai : Ti}i∈I,Γ2  µ and then from the definition of
function tail and µ-balanced({ai : Si j}i∈I) for j ∈ J we conclude Γ0;ΓR,Γ  µ .

Regarding (2), from Γ ′0;Γ ′R,Γ  µ ′ and the definition of function tail we deduce
Γ ′0;Γ ′R, [Γ1],{ai : Ti}i∈I,Γ2  µ ′ and then from Ẽ {e j} j∈J;Γ0;ΓR; [Γ1],{ai : Ti}i∈I,Γ2 `
µ # Q by induction hypothesis we obtain Ẽ {e j} j∈J;Γ ′0;Γ ′R; [Γ1],{ai : Ti}i∈I,Γ2 `
µ ′ # Q. We conclude with an application of rule [T-RUNNING TRANSACTION].

The next lemma shows that the rule [T-RUNNING PARALLEL] for configurations
subsumes the rule [T-PARALLEL] for processes. It is used for simplifying some
cases in the proof of subject reduction (Theorem 4.1).

Lemma A.4. If Ẽ ;Γ0;ΓR;Γ ` µ # P1 | P2 is derivable using [T-PARALLEL] and
[T-RUNNING PROCESS], then it is also derivable using [T-RUNNING PROCESS] and
[T-RUNNING PARALLEL].

Proof. From Ẽ ;Γ0;ΓR;Γ ` µ # P1 |P2 and rule [T-RUNNING PROCESS] we obtain
(H.1) Ẽ ;Γ ` P1 |P2 and (H.2) Γ0;ΓR,Γ  µ . From (H.1) and rule [T-PARALLEL] we
obtain (T.1) Γ = Γ1,Γ2 and (P.i) Ẽ ;Γi ` Pi for i ∈ {1,2}. From (H.2), (T.1), (P.i)
and rule [T-RUNNING PROCESS] we obtain Ẽ ;Γ0;ΓR,Γ3−i;Γi ` µ # Pi for i ∈ {1,2}.
We conclude with an application of rule [T-RUNNING PARALLEL].

When a new channel is allocated in the heap, it always comes as a pair of peer
endpoints. This easy property is formalized thus:

Proposition A.1. If µ # P→ µ ′ # P′ then µ ′-balanced(dom(µ ′)\dom(µ)).

Proof. Simple induction on the reduction that occurs.
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The next result is the complete version of subject reduction proving that reduc-
tions preserve well typedness and showing the relationship between the contexts
used for typing the two configurations involved. In particular, item (1) below says
that reductions preserve well typedness; item (2) says that the rank of the type
of endpoints are preserved by reductions, and that (de)allocated endpoints have
a type with null rank; finally, item (3) formally expresses the concept of process
isolation, saying that any portion of the heap that is not reachable by the process
being reduced is not affected by the reduction. In this theorem and in its proof, we
write unsealed(Γ) if all types in the range of Γ are unsealed. We also write

⊔
i∈I Γi

for the disjoint union of the contexts Γi.

Theorem 4.1. Let Ẽ ;Γ0;ΓR; [ΓS],Γ ` µ # P where unsealed(Γ) and µ # P→ µ ′ # P′.
Then there exist Γ ′0 and Γ ′ such that:

(1) Ẽ ;Γ ′0;ΓR; [ΓS],Γ
′ ` µ ′ # P′, and

(2) unsealed(Γ ′) and for every a ∈ dom(Γ)∩ dom(Γ ′) we have rank(Γ(a)) =
rank(Γ ′(a)) and for every a ∈ dom(Γ) \ dom(Γ ′) we have rank(Γ(a)) = 0
and for every a ∈ dom(Γ ′)\dom(Γ) we have rank(Γ ′(a)) = 0, and

(3) for every ΓI ⊆ ΓR, [ΓS] such that µ-balanced(µ-reach(dom(ΓI,Γ))) we have

µ-reach(dom(ΓR,ΓS)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS)\dom(ΓI)).

Proof. By induction on the derivation of µ # P→ µ ′ # P′ and by cases on the last
rule applied. We omit trivial and symmetric cases.

[R-OPEN] Then P = open(a,b).P′ and µ ′ = µ,a 7→ [b,ε],b 7→ [a,ε]. From
rule [T-RUNNING PROCESS] we obtain:

• (H.1) Ẽ ; [ΓS],Γ ` open(a,b).P′;

• (H.2) Γ0;ΓR, [ΓS],Γ  µ .

From (H.1) and rule [T-OPEN] we obtain:

• ` T : 0;

• (C.1) Ẽ ; [ΓS],Γ ,a : T,b : T ` P′.
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Let Γ ′0 = Γ0 and Γ ′ = Γ ,a : T,b : T . The proof of (C.2) Γ ′0;ΓR, [ΓS],Γ
′  µ ′ is

trivial. From (C.1), (C.2) and [T-RUNNING PROCESS] we obtain (1). We conclude
by noting that items (2) and (3) hold trivially.

[R-CLOSE] In this case P = close(a).P′ and µ = µ ′,a 7→ [b,Q]. From rule
[T-RUNNING PROCESS] we obtain:

• (H.1) Ẽ ; [ΓS],Γ ` close(a).P′;

• (H.2) Γ0;ΓR, [ΓS],Γ  µ ′,a 7→ [b,Q].

From the hypothesis (H.1) and rule [T-CLOSE] we obtain:

• (L.1) Γ = Γ ′,a : end;

• (C.1) Ẽ ; [ΓS],Γ
′ ` P′.

Let Γ ′0 = Γ0. We only have to show that (C.2) Γ ′0;ΓR, [ΓS],Γ
′ µ ′ and the only in-

teresting case in Definition 4.4 is item 3. The relation dom(µ ′)= dom(Γ ′0,ΓR, [ΓS],Γ
′)

is obvious. We need to prove dom(Γ ′0,ΓR, [ΓS],Γ
′) = µ ′-reach(dom(Γ ′R, [ΓS],Γ

′)).
First we show that Q is empty. Suppose by contradiction that this is not the case.
Then the endpoint type associated with a before the reduction occurs must begin
with an external choice or running transaction, which contradicts (L.1). So we
obtain

µ ′-reach(dom(ΓR, [ΓS],Γ
′)) = µ-reach(dom(ΓR, [ΓS],Γ))\{a}

= dom(Γ0,ΓR, [ΓS],Γ)\{a} (H.2)
= dom(Γ ′0,ΓR,Γ

′)

From (C.1), (C.2) and [T-RUNNING PROCESS] we conclude (1). Item (2) is ob-
vious while item (3) holds because µ-reach(dom(ΓR,ΓS))= µ ′-reach(dom(ΓR,ΓS)).

[R-PARALLEL] In this case P = P1 | P2 and µ # P1 → µ ′ # P′1 and P′ = P′1 | P2.
By Lemma A.4 we can assume that Ẽ ;Γ0;ΓR, [ΓS],Γ ` µ # P was derived by an
application of rule [T-RUNNING PARALLEL]. Then:

• Γ = Γ1,Γ2 and ΓS = ΓS1,ΓS2;

• (P.i) Ẽ ;Γ0;ΓR, [ΓS3−i],Γ3−i; [ΓSi],Γi ` µ # Pi for i ∈ {1,2}.

From (P.1) by induction hypothesis we deduce that there exist Γ ′0 and Γ ′1 such
that:
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(1’) Ẽ ;Γ ′0;ΓR, [ΓS2],Γ2; [ΓS1],Γ
′
1 ` µ ′ # P′1, and

(2’) unsealed(Γ ′1) and for every a ∈ dom(Γ1)∩ dom(Γ ′1) we have rank(Γ1(a)) =
rank(Γ ′1(a)) and for every a ∈ dom(Γ1)\dom(Γ ′1) we have rank(Γ1(a)) = 0
and for every a ∈ dom(Γ ′1)\dom(Γ1) we have rank(Γ ′1(a)) = 0, and

(3’) for every ΓI ⊆ ΓR, [ΓS],Γ2 such that µ-balanced(µ-reach(dom(ΓI,Γ1))) we
have

µ-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI)).

Let Γ ′ = Γ ′1,Γ2. From (1’) and Lemma A.3(1) we obtain (N.1) Γ ′0;ΓR, [ΓS],Γ
′  µ ′.

From (P.2), (N.1), and Lemma A.3(2) we deduce (P.2’) Ẽ ;Γ ′0;ΓR, [ΓS1],Γ
′
1; [ΓS2],Γ2 `

µ ′ # P2. From (1’), (P.2’), and rule [T-RUNNING PARALLEL] we conclude (1).
Regarding (2), just notice that unsealed(Γ ′). Regarding (3), let ΓJ ⊆ ΓR, [ΓS] be
such that µ-balanced(µ-reach(dom(ΓJ,Γ))). Take ΓI = ΓJ,Γ2 and observe that
ΓI ⊆ ΓR, [ΓS],Γ2 and µ-balanced(µ-reach(dom(ΓI,Γ1))). From (3’) we are able to
deduce µ-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI)) = µ ′-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI))
and we conclude (3) by observing that dom(ΓR,ΓS)\dom(ΓJ) = dom(ΓR,ΓS,Γ2)\
dom(ΓI).

[R-SEND] In this case P = a!m(c).P′ and µ = µ ′′,a 7→ [b,Q],b 7→ [a,Q′] and
µ ′ = µ ′′,a 7→ [b,Q],b 7→ [a,Q′ :: m(c)]. From [T-RUNNING PROCESS] we obtain:

• (H.1) Ẽ ; [ΓS],Γ ` a!m(c).P′;

• (H.2) Γ0;ΓR, [ΓS],Γ  µ ′′,a 7→ [b,Q],b 7→ [a,Q′].

From (H.1) and rule [T-SEND] we deduce:

• (L.1) Γ = Γ ′′,a : {!mi(Si).Ti}i∈I,c : S;

• m= mk for some k ∈ I;

• S6 Sk and ‖S‖< ∞;

• (C.1) Ẽ ; [ΓS],Γ
′′,a : Tk ` P′.

Let Γ ′0 = Γ0,c : Sk and Γ ′ = Γ ′′,a : Tk. We show (C.2) Γ ′0;ΓR, [ΓS],Γ
′  µ ′ by proving

the items of Definition 4.4 in order.
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1. We only need to show that Q is empty. Suppose by contradiction that this is
not the case. Then the endpoint type associated with a before the reduction
must begin with an external choice or running transaction, which contradicts
(L.1).

2. Let Q′= m1(c1) :: · · · :: mp(cp). From hypothesis (H.2) we deduce Γ0,ΓR, [ΓS],Γ `
b : Tb and Γ0,ΓR, [ΓS],Γ ` ci : S′i for 1≤ i≤ p where

tail(Tb,m1(S′1) · · ·mp(S′p)) = {!mi(Si).Ti}i∈I = {?mi(Si).Ti}i∈I

and from S6 Sk we conclude Tk = tail(Tb,m1(S′1) · · ·mp(S′p)m(S)).

3. From hypothesis (H.2) we have dom(µ) = dom(Γ0,ΓR,Γ) and for every
a′ ∈ dom(µ) there exists b′ ∈ dom(ΓR,ΓS,Γ) such that a′ 4µ b′. Clearly
dom(µ ′)= dom(Γ ′0,ΓR,ΓS,Γ

′) since dom(µ ′)= dom(µ) and dom(Γ ′0)∪dom(Γ ′)=
dom(Γ0)∪dom(Γ). Let b4µ b0 and ΓR,ΓS,Γ ` b0 : T0. We have c≺µ ′ b4µ ′

b0, namely c4µ ′ b0. Now

‖S‖ ≤ ‖Sk‖< ‖tail(Tb,m1(S′1) · · ·mp(S′p))‖ ≤ ‖Tb‖ ≤ ‖T0‖

and ‖S‖< ∞, therefore c 6= b0. We conclude b0 ∈ dom(ΓR,ΓS,Γ
′).

4. Immediate from hypothesis (H.2).

Item (2) holds trivially. Regarding item (3), let ΓI ⊆ ΓR, [ΓS] be such that
µ-balanced(µ-reach(dom(ΓI,Γ))). From a ∈ dom(Γ) we are able to deduce that
b∈ µ-reach(dom(ΓI,Γ)) and c4µ ′ b, therefore µ-reach(dom(ΓR,ΓS)\dom(ΓI)) =
µ ′-reach(dom(ΓR,ΓS)\dom(ΓI)).

[R-RECEIVE] In this case P = ∑i∈I a?mi(xi).Pi and µ = µ ′′,a 7→ [b,m(c) :: Q]
where Q= m1(c1) :: · · · :: mp(cp) and m= mk for some k ∈ I and P′ = Pk{c/xk} and
µ ′ = µ ′′,a 7→ [b,Q]. From rule [T-RUNNING PROCESS] we obtain:

• (H.1) Ẽ ; [ΓS],Γ ` ∑i∈I a?mi(xi).Pi;

• (H.2) Γ0;ΓR, [ΓS],Γ  µ .

From (H.1) and rule [T-RECEIVE] we obtain:

• Γ = Γ ′′,a : {?mi(Si).Ti}i∈J with J ⊆ I;

• (N.1) Ẽ ; [ΓS],Γ
′′,a : Tk,xk : Sk ` Pk.
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From (H.2) we deduce Γ0 = Γ ′0,c : S where S 6 Sk and k ∈ J. Let Γ ′ = Γ ′′,a :
Tk,c : S. From (N.1) and Lemma A.2 we deduce (C.1) Ẽ ; [ΓS],Γ

′ ` Pk{c/xk}. Now
we only have to show (C.2) Γ ′0;ΓR, [ΓS],Γ

′  µ ′ and we do it by proving the items
of Definition 4.4 in order.

1. Since the queue associated with a is not empty in µ , the queue associated
with its peer endpoint b must be empty. The reduction does not change the
queue associated with b, therefore condition (1) of Definition 4.4 is satisfied.

2. From (H.2) we deduce Γ0,ΓR, [ΓS],Γ ` b : Tb and

Tb = tail({?mi(Si).Ti}i∈J,m(S)m1(S′1) · · ·mp(S′p)) = tail(Tk,m1(S′1) · · ·mp(S′p))

where Γ0,ΓR, [ΓS],Γ ` ci : S′i for 1≤ i≤ p.

3. Straightforward by definition of Γ ′0 and Γ ′.

4. Immediate from (H.2).

Therefore, from (C.1), (C.2), and rule [T-RUNNING PROCESS] we conclude
Ẽ ;Γ ′0;ΓR, [ΓS],Γ

′ ` µ ′ # P′. Regarding (2), observe from (H.2) and condition (2)
of Definition 4.4 that rank(Sk) = 0. Regarding (3), it suffices to observe that
the only region of the heap that changes is the queue associated with a and that
a 6∈ dom(ΓR,ΓS).

[R-START TRANSACTION] In this case P = ∏i∈I try(Ai) {e j : Qi j} j∈JPi where
µ-balanced(

⋃
i∈I Ai) and P′ = 〈

⋃
i∈I Ai, /0,{e j : ∏i∈I Qi j} j∈J ∏i∈I Pi〉 and µ ′ = µ .

According to Lemma A.4 we can assume that Ẽ ;Γ0;ΓR; [ΓS],Γ ` µ # P was derived
by rule [T-RUNNING PARALLEL]. Then:

• (L.1) ΓS =
⊔

i∈I ΓSi and Γ =
⊔

i∈I Γi;

• (P.i) Ẽ ;Γ0;ΓR,
⊔

j∈I\{i}[ΓS j],
⊔

j∈I\{i} Γ j; [ΓSi],Γi ` µ # try(Ai) {e j : Qi j} j∈JPi
for every i ∈ I.

From (L.1), (P.i) and rule [T-RUNNING PROCESS] we obtain:

• (H.1) Ẽ ; [ΓSi],Γi ` try(Ai) {e j : Qi j} j∈JPi where unsealed(Γi) for every i∈ I;

• (H.2) Γ0;ΓR, [ΓS],Γ  µ .

From (H.1) and rule [T-TRY] we obtain, for every i ∈ I:
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• (L.2) Γi = Γ ′i ,{a : {e j : Sa j} j∈JJTa}a∈Ai;

• Ẽ {e j} j∈J; [[ΓSi],Γ
′
i ],{a : Ta}a∈Ai ` Pi;

• Ẽ ; [ΓSi],Γ
′
i ,{a : Sa j}a∈Ai ` Qi j for every j ∈ J.

By rule [T-PARALLEL] we derive:

• (P.1) Ẽ {e j} j∈J; [[ΓS],
⊔

i∈I Γ
′
i ],{a : Ta}i∈I,a∈Ai ` ∏i∈I Pi;

• (P.2) Ẽ ; [ΓS],
⊔

i∈I Γ
′
i ,{a : Sa j}i∈I,a∈Ai ` ∏i∈I Qi j for every j ∈ J.

From (L.2) and the definition of tail it is easy to see that the queue associated
with a is empty for every i ∈ I and a ∈ Ai. Hence, from (H.2), (L.1), and (L.2) and
the fact that µ-balanced(

⋃
i∈I Ai) we have µ-balanced({a : Sa j}i∈I,a∈Ai) for every

j ∈ J and
⋃

i∈I Ai = µ-reach(
⋃

i∈I Ai). Also, from (H.2) we have

• (H.2’) Γ0;ΓR, [[ΓS],
⊔

i∈I Γ
′
i ],{a : Ta}i∈I,a∈Ai  µ .

From (H.2’), (P.1), and rule [T-RUNNING PROCESS] we obtain:

• (T.1) Ẽ {e j} j∈J;Γ0;ΓR; [[ΓS],
⊔

i∈I Γ
′
i ],{a : Ta}i∈I,a∈Ai ` µ # ∏i∈I Pi.

We conclude (1) with an application of rule [T-RUNNING TRANSACTION], (T.1),
(P.2), and the facts proven above by taking Γ ′0 = Γ0 and Γ ′ =

⊔
i∈I Γ

′
i ,{a : {e j :

Sa j} j∈JTa}i∈I,a∈Ai . Item (2) is trivial and (3) holds since µ ′ = µ .

[R-END TRANSACTION] Then P = 〈A,B,{e j : Q j} j∈J ∏i∈I commit(Ai).Pi〉 and
P′ = ∏i∈I Pi and µ ′ = µ . From rule [T-RUNNING TRANSACTION] we obtain:

• Γ = Γ1,{a : {e j : Sa j} j∈JTa}a∈A,Γ2;

• (T.1) Ẽ {e j} j∈J;Γ0;ΓR; [[ΓS],Γ1],{a : Ta}a∈A,Γ2 ` µ # ∏i∈I commit(Ai).Pi;

• µ-balanced({a : Sa j}a∈A) for every j ∈ J;

• µ-balanced(B);

• local(Γ2);

• A∪B = µ-reach(A∪dom(Γ2)).

From (T.1), [T-RUNNING PARALLEL], and [T-RUNNING PROCESS] we deduce:
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• ΓS =
⊔

i∈I ΓSi and Γ1 =
⊔

i∈I Γ1i and {a : Ta}a∈A =
⊔

i∈I{a : Ta}a∈Bi and Γ2 =⊔
i∈I Γ2i where rank(Γ2i) = 0 for every i ∈ I;

• Ẽ {e j} j∈J; [[ΓSi],Γ1i],{a : Ta}a∈Bi,Γ2i ` commit(Ai).Pi for every i ∈ I.

From rule [T-COMMIT] we deduce:

• Bi = Ai;

• Ta = KT ′a for every i ∈ I and a ∈ Ai;

• Ẽ ; [ΓSi],Γ1i,{a : T ′a}a∈Ai,Γ2i ` Pi for every i ∈ I.

From rule [T-PARALLEL] we deduce (H.1) Ẽ ; [ΓS],Γ1,{a : T ′a}i∈I,a∈Ai,Γ2 ` P′.
Let Γ ′0 = Γ0 and Γ ′ = Γ1,{a : T ′a}a∈A,Γ2. From Ẽ ;Γ0;ΓR; [ΓS],Γ ` µ # P and Lemma
A.3(1) we obtain (H.2) Γ0;ΓR, [ΓS],Γ  µ . From (2) we deduce that the queues as-
sociated with the pointers a∈A are empty, because Γ includes {a : {e j : Sa j} j∈JKT ′a}a∈A.
Hence we deduce Γ0;ΓR, [ΓS],Γ

′  µ ′. From (H.1) and rule [T-RUNNING PROCESS]
we conclude (1). We observe that (2) holds since rank({e j : Sa j} j∈JTa) = rank(T ′a)
for a ∈ A and (3) holds trivially since the heap has not changed.

[R-RUN TRANSACTION] In this case: P= 〈A,B,{e j : R j} j∈JQ〉 and P′= 〈A,B′,{e j :
R j} j∈JQ′〉 where B′ = track(B,dom(µ),dom(µ ′)) and µ # Q→ µ ′ # Q′. Let A =
{ai}i∈I . From rule [T-RUNNING TRANSACTION] we deduce:

• Γ = Γ1,{ai : {e j : Si j} j∈JTi}i∈I,Γ2;

• (T.1) Ẽ {e j} j∈J;Γ0;ΓR; [[ΓS],Γ1],{ai : Ti}i∈I,Γ2 ` µ # Q;

• (T.2) Ẽ ;Γ1,{ai : Si j}i∈I ` R j for every j ∈ J;

• (T.3) µ-balanced({ai : Si j}i∈I);

• (T.4) µ-balanced(B);

• (T.5) local(Γ2);

• (T.6) {ai}i∈I ∪B = µ-reach({ai}i∈I ∪dom(Γ2)).

Let Γ3 = {ai : Ti}i∈I,Γ2. From (T.1) and unsealed(Γ) by induction hypothesis
we obtain that there exist Γ ′0 and Γ ′3 such that:

(1’) Ẽ ;Γ ′0;ΓR; [[ΓS],Γ1],Γ
′
3 ` µ ′ # Q′, and
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(2’) unsealed(Γ ′3) and for every a ∈ dom(Γ3)∩ dom(Γ ′3) we have rank(Γ3(a)) =
rank(Γ ′3(a)) and for every a ∈ dom(Γ3)\dom(Γ ′3) we have rank(Γ3(a)) = 0
and for every a ∈ dom(Γ ′3)\dom(Γ3) we have rank(Γ ′3(a)) = 0, and

(3’) for every ΓI ⊆ ΓR, [[ΓS],Γ1] such that µ-balanced(µ-reach(dom(ΓI,Γ3))) we
have

µ-reach(dom(ΓR,ΓS,Γ1)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS,Γ1)\dom(ΓI)).

Since rank(Ti) > 0 for all i ∈ I, from (2’) we deduce that all the ai’s are still
in the environment for Q′ therefore we have Γ ′3 = {a : T ′i }i∈I,Γ

′
2. Let Γ ′ = Γ1,{ai :

{e j : Si j} j∈JT ′i }i∈I,Γ
′
2.

Regarding (1), from (T.4) and Proposition A.1 we obtain (T.4’) µ ′-balanced(B′).
From (2’) we deduce (T.5’) local(Γ ′2). In order to prove (T.6’) {ai}i∈I ∪ B′ =
µ ′-reach({ai}i∈I ∪dom(Γ ′2)) observe that:

(*) dom(µ ′)
= (dom(µ)∪ (B′ \B))\ (B\B′) by definition of B′

= (µ-reach(dom(ΓR, [ΓS],Γ1,Γ2)∪{ai}i∈I)∪ (B′ \B))\ (B\B′)
by item (3) of Definition 4.4

= (µ-reach(dom(ΓR, [ΓS],Γ1))
]µ-reach(dom(Γ2)∪{ai}i∈I)∪ (B′ \B))\ (B\B′)

by item (4) of Definition 4.4
= (µ-reach(dom(ΓR, [ΓS],Γ1))∪{ai}i∈I ∪B∪ (B′ \B))\ (B\B′) by (T.6)
= µ-reach(dom(ΓR, [ΓS],Γ1))∪{ai}i∈I ∪B′ by set theory

where ] denotes disjoint union. In addition, from (1’) and Lemma A.3(1) we
obtain Γ ′0;ΓR; [[ΓS],Γ1],Γ

′
3  µ ′, so we have:

(**) dom(µ ′) = µ ′-reach(dom(ΓR, [ΓS],Γ1,Γ
′
2)∪{ai}i∈I)

= µ ′-reach(dom(ΓR, [ΓS],Γ1))]µ ′-reach(dom(Γ ′2)∪{ai}i∈I)

where the two equalities are respectively justified by items (3) and (4) of Defi-
nition 4.4. From (T.3), (T.4) we obtain µ-balanced({ai}i∈I ∪B), and then from
(T.6) we get µ-balanced(µ-reach({ai}i∈I ∪dom(Γ2))). Therefore, by taking ΓI =
/0 in (3’) we obtain µ-reach(dom(ΓR, [ΓS],Γ1)) = µ ′-reach(dom(ΓR, [ΓS],Γ1)) and
then from (*) and (**) we obtain (T.6’). We conclude this part of the proof with an
application of rule [T-RUNNING TRANSACTION] to (1’), (T.2), (T.3), (T.4’), (T.5’)
and (T.6’).
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Regarding (2), we conclude from (2’) and rule [WF-RUN] of Table 7. Regard-
ing (3), let ΓJ ⊆ ΓR, [ΓS] be such that µ-balanced(µ-reach(dom(ΓJ,Γ))). Now take
ΓI = ΓJ, [Γ1] and observe that µ-balanced(µ-reach(dom(ΓI,Γ3))). From (3’) we
conclude

µ-reach(dom(ΓR,ΓS,Γ1)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS,Γ1)\dom(ΓI))

which is (3) because dom(ΓR,ΓS,Γ1)\dom(ΓI) = dom(ΓR,ΓS)\dom(ΓJ).

[R-CATCH EXCEPTION] In this case P= 〈{ai}i∈I,dom(µ2),{e j : Q j} j∈Jthrow ek |
P′′〉 and µ = µ1,{ai 7→ [bi,Qi]}i∈I,µ2 where k ∈ J and P′=Qk and µ ′= µ1,{ai 7→
[bi,ε]}i∈I . From rule [T-RUNNING TRANSACTION] we deduce:

• (L.1) Γ = Γ1,{ai : {e j : Si j} j∈JTi}i∈I,Γ2;

• (H.1) Ẽ ; [ΓS],Γ1,{ai : Sik}i∈I ` P′;

• (T.1) µ-balanced({ai : Sik}i∈I);

• (T.2) local(Γ2);

• (T.3) {ai}i∈I ∪dom(µ2) = µ-reach({ai}i∈I ∪dom(Γ2)).

Let Γ ′0 = Γ0 \ dom(µ2) and Γ ′ = Γ1,{ai : Sik}i∈I . We only have to show that
(H.2) Γ ′0;ΓR, [ΓS],Γ

′  µ ′ and we prove the items of Definition 4.4. Items (1),
(2), and (4) are trivial because µ ′ has no more pointers than µ , some queues
in µ have been emptied in µ ′, and duality of endpoint types associated with
peer endpoints is preserved by (T.1). Regarding item (3), we have to show that
dom(µ ′) = dom(Γ ′0,ΓR, [ΓS],Γ

′) = µ ′-reach(dom(ΓR, [ΓS],Γ
′)). The first equality is

easy. Regarding the second equality, we derive:

dom(µ)
= µ-reach({ai}i∈I ]dom(ΓR,Γ1,Γ2)) by item (3) of Definition 4.4
= µ-reach(dom(ΓR,Γ1))]µ-reach({ai}i∈I ∪dom(Γ2))

by item (4) of Definition 4.4
= µ-reach(dom(ΓR,Γ1))]{ai}i∈I ]dom(µ2) by (T.3)
= dom(µ1)]{ai}i∈I ]dom(µ2) by definition of µ

where we write ] for disjoint union. From the last equality we deduce

(*) dom(µ1) = µ-reach(dom(ΓR, [ΓS],Γ1)) = µ1-reach(dom(ΓR, [ΓS],Γ1))
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and now we have

dom(µ ′) = dom(µ1)]{ai}i∈I by definition of µ ′

= µ1-reach(dom(ΓR, [ΓS],Γ1))∪{ai}i∈I from (*)
= µ ′-reach(dom(ΓR, [ΓS],Γ

′)) by definition of Γ ′ and µ ′

We conclude (1) from (H.1), (H.2) and rule [T-RUNNING PROCESS]. Regarding (2),
from (L.1) we know that ranks of all pointers ai are preserved and from (T.2) that
that the rank of all pointers that are no more in the environment is 0. Regarding
(3), it holds trivially.

[R-PROPAGATE EXCEPTION] Then P = 〈{ai}i∈I,dom(µ2),{e j : Q j} j∈Jthrow e |
P′′〉 and µ = µ1,{ai 7→ [bi,Qi]}i∈I,µ2 and (E.1) e j 6= e for every j ∈ J and P′ =
throw e and µ ′ = µ1,{ai 7→ [bi,ε]}i∈I . From rule [T-RUNNING TRANSACTION] we
deduce:

• (L.1) Γ = Γ1,{ai : {e j : Si j} j∈JTi}i∈I,Γ2;

• (T.1) Ẽ {e j} j∈J;Γ0;ΓR; [[ΓS],Γ1],{ai : Ti}i∈I,Γ2 ` µ # throw e |P′′

• (T.2) µ-balanced({ai : Si j}i∈I);

• (T.3) local(Γ2);

• (T.4) {ai}i∈I ∪dom(µ2) = µ-reach({ai}i∈I ∪dom(Γ2)).

From (T.1), [T-RUNNING PARALLEL], [T-RUNNING PROCESS], and [T-THROW]
we deduce e ∈ Ẽ . Let Γ ′0 = Γ0 \ dom(µ2) and Γ ′ = Γ1,{ai : Sik}i∈I for some ar-
bitrary k ∈ J. By rule [T-THROW] we derive Ẽ ; [ΓS],Γ

′ ` throw e. The proof
that Γ ′0;ΓR, [ΓS],Γ

′  µ ′ and that items (2) and (3) hold is the same as for the case
[R-CATCH EXCEPTION].

B. Proof of Theorem 4.2 (Type Soundness)

The next two lemmas show the relationship between the free names of a process
and the names occurring in the context used for typing it.

Lemma B.1. If /̃0;Γ ` P, then dom(Γ)⊆ fn(P).

Proof. By induction on the derivation of /̃0;Γ ` P and by cases on the last rule
applied. Most cases are trivial or follow by a simple induction. Case [T-THROW]
is impossible because the exception environment consists of a sequence of empty
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sets of exceptions, hence all the exceptions thrown in P are caught. The only
interesting case is [T-TRY], when P = try({ui}i∈I) {e j : R j} j∈JQ, Γ = Γ ′,{ui :
{e j : Si j} j∈JJTi}i∈I , /̃0{e j} j∈J; [Γ ′],{ui : Ti}i∈I ` Q, and /̃0;Γ ′,{ui : Si j}i∈I ` R j for
all j ∈ J. We distinguish two subcases, according to whether J is empty or not. If
J = /0, then by induction hypothesis we obtain dom([Γ ′],{ui : Ti}i∈I)⊆ fn(Q) and
then we conclude dom(Γ) = dom(Γ ′)∪{ui}i∈I ⊆ fn(Q) = fn(P). If J 6= /0, then by
induction hypothesis we obtain dom(Γ ′,{ui : Si j}i∈I)⊆ fn(R j) for every j ∈ J. We
conclude dom(Γ) = dom(Γ ′)∪{ui}i∈I ⊆

⋃
j∈J fn(R j)⊆ fn(P).

Lemma B.2. If /̃0;Γ0;ΓR;Γ ` µ # P, then dom(Γ)⊆ fn(P).

Proof. By induction on the derivation of /̃0;Γ0;ΓR;Γ ` µ # P and by cases on the
last rule applied. Cases [T-RUNNING PROCESS] and [T-RUNNING PARALLEL] are
easily solved by Lemma B.1 and the induction hypothesis, respectively. Regard-
ing [T-RUNNING TRANSACTION], we have:

• P = 〈{ai}i∈I,B,{e j : R j} j∈JQ〉;

• Γ = Γ1,{ai : {e j : Si j} j∈JTi}i∈I,Γ2;

• (*) {ai}i∈I ∪B = µ-reach({ai}i∈I ∪dom(Γ2));

• /̃0{e j} j∈J;Γ0;ΓR; [Γ1],{ai : Ti}i∈I,Γ2 ` µ # Q;

• /̃0;Γ1,{ai : Si j}i∈I ` R j for all j ∈ J.

We distinguish two cases, according to whether J is empty or not. If J =
/0, then by induction hypothesis we obtain dom([Γ1],{ai : Ti}i∈I,Γ2) ⊆ fn(Q) and
we conclude dom(Γ) ⊆ fn(Q) ⊆ fn(P). If J 6= /0, then by induction hypothesis
we obtain dom(Γ1,{ai : Si j}i∈I) ⊆ fn(R j) for every j ∈ J. From (*) we deduce
dom(Γ2) ⊆ {ai}i∈I ∪B. We conclude dom(Γ) = dom(Γ1)∪{ai}i∈I ∪dom(Γ2) ⊆⋃

j∈J fn(R j)∪{ai}i∈I ∪B⊆ fn(P).

We conclude with the soundness proof of the type system.

Theorem 4.2. Let ` P. Then P is well behaved.

Proof. From the hypothesis ` P we deduce /̃0; /0; /0; /0 ` /0 # P. Consider an arbitrary
derivation /0 # P⇒ µ # Q. From Theorem 4.1 we deduce that there exist Γ0 and Γ

such that /̃0;Γ0; /0;Γ ` µ # Q and, from Lemma A.3, we obtain Γ0;Γ  µ .
Regarding condition (1) of Definition 3.5, from Γ0;Γ  µ and Definition 4.4

we know dom(µ) = µ-reach(dom(Γ)). By Lemma B.2 we have dom(Γ)⊆ fn(Q).
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We conclude dom(µ) = µ-reach(dom(Γ)) ⊆ µ-reach(fn(Q)) because µ-reach(·)
is monotone.

Regarding condition (2) of Definition 3.5, suppose that Q ≡ Q1 |Q2 and µ #
Q1 X→ and Q1 6≡ throw e |Q′1 (the last hypothesis being granted by the fact that Q
is well typed in the /̃0 exception environment). We prove µ # Q1 ↓ by induction on
Q1.

• (Q1 = done) We conclude with an application of rule [ST-INACTIVE].

• (Q1 = open(a,b).R) Because we have assumed that there are infinitely many
pointers and structural congruence includes alpha renaming, we may as-
sume a,b 6∈ dom(µ). Then µ # Q1 →, which contradicts the hypothesis,
therefore this case is impossible.

• (Q1 = close(a).R) From [T-RUNNING PARALLEL], [T-RUNNING PROCESS],
[T-CLOSE] and item (3) of Definition 4.4 we obtain a∈ dom(Γ)⊆ dom(Γ0,Γ)=
dom(µ), and now µ # Q1→ which contradicts the hypothesis, therefore this
case is impossible.

• (Q1 = R1⊕R2) This case is impossible because µ # R1⊕R2 always reduces.

• (Q1 = a!m(c).R) From rules [T-RUNNING PROCESS], [T-RUNNING PARALLEL]
and [T-SEND] we obtain Γ ` a : T where T is an internal choice and then
from item (3) of Definition 4.4 we have a∈ dom(µ). From item (2) of Defi-
nition 4.4 we deduce that the queue associated with a is empty and also that
the peer of a, say b, is still allocated in µ for otherwise T would have to be
end. Then µ # Q1→ which contradicts the hypothesis, therefore this case
is impossible.

• (Q1 = ∑i∈I a?mi(xi).Ri) Then a 7→ [b,Q] ∈ µ and the messages and argu-
ments in Q are consistent with the type of endpoint a. The only case when
µ # ∑i∈I a?mi(xi).Ri does not reduce is when Q = ε , therefore we conclude
µ # Q1 ↓ by an application of rule [ST-INPUT].

• (Q1 = R1 |R2) From the hypothesis µ # Q1 X→ we deduce µ # Ri X→ for i ∈
{1,2}. From the hypothesis Q1 6≡ throw e |Q′1 we deduce Ri 6≡ throw e |R′i
for i ∈ {1,2}. By induction hypothesis we obtain µ # Ri ↓ for i ∈ {1,2}. We
conclude with an application of rule [ST-PARALLEL].

• (Q1 = try(A) {e j : R j} j∈JR′) From the hypothesis µ # Q1 X→ we deduce
¬µ-balanced(A). We conclude with an application of rule [ST-TRY].
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• (Q1 = throw e) This case is impossible by hypothesis.

• (Q1 = commit(A).R) We conclude immediately with an application of rule
[ST-COMMIT].

• (Q1 = X〈ã〉) From rule [T-INVOKE] we deduce X(ũ) def
= R is a definition and

ã and ũ have the same length. Then µ # X〈ã〉 → which contradicts the
hypothesis, therefore this case is impossible.

• (Q1 = 〈A,B,{e j : R j} j∈JR′〉) From the hypothesis µ # Q1 X→ we deduce µ #
R′ X→ and R′ 6≡∏i∈I commit(Ai).Ri and R′ 6≡ throw e |R′′ since these are the
cases when µ # Q1 does reduce. By induction hypothesis we deduce µ # R′ ↓
and we conclude with an application of rule [ST-RUNNING TRANSACTION].
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