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Abstract. This paper is devoted to the study and implementation of real-time techniques for the estimation
of time-varying, contingently correlated quantities, and relevant uncertainty. An estimation algorithm based
on a metrological customization of the Kalman filtering technique is presented, starting from a Bayesian
approach. Moreover, a fuzzy-logic routine for real-time treatment of possible outliers is incorporated in the
overall software procedure. The system applicability is demonstrated by results of simulations performed
on dimensional measurement models.
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1 Introduction1

In the context of in-process metrology, accurate statistical2

analyses are important to optimize real-time estimation of3

measurands and related uncertainties. The, Kalman filter-4

ing (KF) technique [1] is optimal under diverse criteria [2].5

Moreover, it is widely used long since and it is successfully6

being applied in several fields (see, e.g., [2–5]).7

In [6] and [7] a novel application of KF was developed8

in the field of dimensional metrology. In [6], such cus-9

tomization is applied to coordinate measuring machines10

(CMMs). In [7], the measurands are vectorial quantities11

that can vary during time, according to some specified12

patterns. Some simulations are executed in order to dis-13

cuss the algorithm performance. Both papers consider the14

measurands as unknown parameters, modelled in term of15

mutually independent normal random variables (RVs). In16

the present paper, the model is improved by taking into17

account possible correlations among RVs, so to manage18

dependence among measurands.19

The problem is approached using the covariance ma-20

trix, which is an established technique in the KF (see,21

e.g., [8–10]). Finally, a routine is proposed to perform an22

outlier treatment based on fuzzy logics (applicability of23

fuzzy logics in uncertainty treatment is dealt with in [11]).24

Even if the KF is robust by design (against, e.g., initial25

uncertainty and round-off errors) its performance could be26

affected by occurrence of possible outliers [12]. In [13] a27

strategy, based on a fuzzy-logic approach, was proposed28

for possible outlier treatment. In the present paper, such29

a strategy is embedded in the estimation procedure.30

� Correspondence: g.derrico@inrim.it
�� Supported by an INRIM’s post-doc fellowship.

The paper is organized as follows. Section 2 is devoted 31

to the algorithm formulation. A metrological customiza- 32

tion of the KF is derived starting from the Bayes theo- 33

rem by using Gaussian multivariate distribution functions 34

(MDFs) and managing correlations (if any) via Gaussian 35

copula (Sect. 2.1). The fuzzy outlier treatment presented 36

in [13] is briefly recalled and embedded in the KF estima- 37

tion algorithm (Sect. 2.2). 38

Section 3 presents the overall software (SW) architec- 39

ture by means of a SimulinkTM diagram.1 In Section 4, 40

some application examples are shown, where the estima- 41

tion targets are two rectangular surfaces with a common 42

edge. Section 5 contains some concluding remarks. 43

2 Algorithm formulation 44

2.1 Metrological customization of KF technique 45

The standard KF is a recursive technique to estimate 46

the state vector xk = (xk(1), . . . xk(i) . . . , xk(m)) (i = 47

1, . . . , m, where m is the vector dimension, and 0 � k � L 48

the discrete time) of a linear process described by the 49

equation: 50

xk+1 = Akxk + Bkuk + ηk (1)

where xk, uk (optional control input), and ηk (white 51

noise) are vectors, and Ak, Bk are matrices which relate 52

the process state at the step k + 1 with the kth process 53

1 Identification of commercial products in this paper does
not imply recommendation or endorsement, nor does it imply
that the products identified are necessarily the best available
for the purpose.
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state and with the kth control input, respectively. The1

(indirect) measurement zk of xk is modeled as follows:2

zk = Hkxk + vk (2)

where the vector vk is introduced due to the measure-3

ment uncertainty and Hk relates the (observable) out-4

put vector zk with the (internal) state xk. In metrology5

terms, zk and xk represent the measured quantity val-6

ues and the theoretical measurand, respectively. The vec-7

tor uk is used to track the time-evolution of the theoretical8

pattern of xk+1. In these terms, the model is translated9

into the context of measurement science. The estimation10

is provided balancing the measured quantity zk with an11

a-priori estimation vector x−
k by using the Kalman gain12

matrix Kk:13

yk = x−
k + Kk(zk − Hkx−

k ), 0 � k � L) (3)

where yk is the estimation of xk provided by the KF and14

15

x−
0 = y−1 (4a)16

x−
k = Ak−1yk−1 + Bk−1uk−1, 1 � k � L (4b)17

where y−1 is an a-priori expert judgment of the measur-18

and vector at the initial state. The gain matrix Kk is con-19

structed using the covariance matrix of the RVs relevant20

to the components of the vector xk. Kk is obtained by21

minimizing the mean-square-error E[(yk−xk)(yk−xk)T ]22

where E[·] stands for expectation and superscript T for23

transposition.24

In [6], the KF technique has been customized for25

metrology usage, dealing with scalar time-invariant quan-26

tities. In [7], such an approach has been generalized to27

time-varying measurand vectors, whose components were28

supposed mutually independent.29

In the present paragraph, the approach is further de-30

veloped, so to take into account possible correlations31

among the measurand vector components; moreover, an32

outlier treatment incorporated in the estimation proce-33

dure is developed in Section 2.2.34

Let X and Z represent the stochastic counterparts35

of xk− and zk, respectively. The Kalman gain matrix Kk36

can be derived by using the Bayes theorem:37

f(X |Z) = f(Z|X)f(X)
[

Δ

∫
f(Z|X)f(X)dX

]−1

(5)

where f is a probability density function (PDF), f(X |Z)38

is the posterior density, f(X) is the prior density, f(Z|X)39

is the likelihood, and the integration (over the domain of40

definition Δ of X) gives rise to a normalization factor (the41

denominator).42

The following treatment will be based on the hypoth-43

esis of Gaussian RVs to model the vector measurands. In44

order to manage possible correlations, the Gaussian copula45

is a useful tool to obtain Gaussian MDFs from any vector46

of univariate cumulative distribution functions (CDFs):47

a copula is a function that couples univariate (marginal)48

cumulative distributions into a joint MDF, whose expres- 49

sion includes original correlations among marginal univari- 50

ates [14]. 51

Let N(μ, Σ) denote a Gaussian MDF, where μ is the 52

vector of mean values and Σ is the covariance matrix. 53

A Gaussian copula C is a particular family of copulas 54

such that, given n marginals h1, . . . , hn, C(h1, . . . , hn) = 55

GΣ(g−1(h1), . . . , g−1(hn)) = N(μ, Σ), where GΣ is the 56

n-variate Gaussian CDF with covariance matrix Σ and g 57

is the univariate standard Gaussian. 58

Let f(X) = N(x−
k , P k−1), f(Z|X) = N(zk, R) and 59

P−1 = Π−1, P k = (P−1
k−1 + R−1)−1, 1 � k � L (6)

with Π−1 and R symmetric covariance matrices initial- 60

ized according to prior knowledge (based on an expert 61

judgment): diagonal entries can be used for type B un- 62

certainty treatment (see guide [15]) and other non-zero 63

entries represent mutual correlation coefficients. Equa- 64

tion (5) states that f(X |Z) is proportional to N(yk, 65

P k) = N(x−
k , P k−1)N(zk, R), where 66

yk = (P−1
k−1 + R−1)−1(P k−1

−1
x−

k + R−1zk), 0 � k � L.
(7)

The final estimates are provided in terms of E(f(X |Z)) 67

together with standard uncertainty (after square roots of 68

diagonal entries from the covariance matrix) evaluated 69

at k = L (see [7, 16]). Equations (4)–(7) form the re- 70

cursive algorithm used in this paper for KF metrological 71

customization. 72

2.2 Fuzzy logic-based modeling of outlier 73

detection and treatment 74

The algorithm is enriched by a routine for real-time treat- 75

ment of possible outliers that can affect the estimation re- 76

sults. Several statistical tests have been proposed to man- 77

age this problem, such as Dixon’s test and Grubbs’ one: a 78

standard also deals with such a problem [17]. 79

However, tests of orthodox statistics kind – besides be- 80

ing prone to Bayesian criticism – are also subject to sta- 81

tistical hypotheses, mainly randomness and independence 82

of observations [18] that impose applicability limitation in 83

order to preserve consistency. 84

In [13] a fuzzy approach is proposed aiming at coping 85

with this situation, by modeling the problem of outliers in 86

terms of fuzzy sets, so to treat the processed observations 87

by means of purposely defined “outlierness” degrees. 88

The fuzzy strategy, based on a 2-input/1-output in- 89

ference scheme [13], operates component-wise on involved 90

vectors, by use of the following scalar quantities: z a mea- 91

surand observation, η an a-priori estimation of the mea- 92

surand, d(z, η) = |z − η| their relative distance, and σ the 93

a-priori estimation uncertainty. 94

In the inference scheme (Mamdani model [19, 20]), 95

one input is the fuzzyfication of the distance d(z, η) 96

and the other input is the fuzzyfication of the percent- 97

age uncertainty σ% = 100σ/η, both obtained by prop- 98

erly defined fuzzy sets and related membership functions 99
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Fig. 1. Simulink?[U+F8EA] diagram (a) and blocks: “u evaluation” (b); “P update” (c); “R update” (d); “compute esti-
mates” (e).

(see [13] for details). The output is the outlierness degree1

0 � ρ(z) � 1 relative to the possible outlying observa-2

tion z, which is obtained by application of the centroid3

defuzzification method (ten composition rules are used4

after [13]). The fuzzy treatment is activated if the con-5

dition 2σ<d(z, η)<5σ is satisfied, otherwise: if d(z, η) �6

2σ, z is defined a “full inlier” (thus ρ(z). = 0); else,7

if d(z, η) � 5σ, z is defined a “full outlier” (so that8

ρ(z) = 1). After this, for estimation purpose, the outlier-9

ness degree is conveniently translated into an outlierness10

weight w(z) = 1 − ρ(z).11

In the present paper – moving from mono-dimensional12

(the case-study in [13]) to multi-dimensional measurands –13

this kind of weight is used for estimation of time-varying14

vector quantities after integration in the KF routine. In15

the KF routine described in the previous subsection, at16

the step k, the vector zk is the measurand observation,17

x−
k is the a-priori measurand estimation, and P k−1 is the18

covariance matrix elaborated to deduce the uncertainty19

related to x−
k .20

To apply the outlier fuzzy treatment to vectorial quan-21

tities, a component wise treatment can be performed. For22

every i = 1, . . . , m, let zk(i) and x−
k (i) be the ith com-23

ponent of zk and x−
k respectively, and let Pk−1(i, i) be24

the ith diagonal entry of the matrix P k−1. The outlier25

fuzzy treatment is embedded in the KF by use of z =26

zk(i), η = xk(i), σ2 = Pk−1(i, i). For the measurement27

vector zk, an outlierness weight wk(i) is associated to the28

measurement zk(i), giving rise to the outlierness weight 29

vector wk = (wk(1), . . . wk(i) . . . , wk(m)). 30

After evaluation, the weight wk must be incorpo- 31

rated in the KF routine. Equation (7) that provides 32

the estimation yk in terms of a weighted mean of x−
k 33

and zk can be rewritten yk = (P−1
k−1x

−
k +R−1zk)(P−1

k−1+ 34

R−1)−1, making clear that R−1 is the weight matrix 35

of zk(R and its inverse R−1 are diagonal matrices, i.e., 36

mutual independence of measurement vector components 37

is assumed). 38

For fuzzy treatment purpose, R−1 must be scaled in 39

terms of a diagonal matrix Q, to take into account wk as 40

follows: 41

Q(i, i) = R−1(i, i)wk(i), 1 � i � m (8)

Therefore, the measurand estimation in the KF is given by 42
43

yk = (P−1
k−1 + Q)−1(P−1

k−1x
−
k + Qzk), 0 � k � L (9)

3 Software architecture 44

The algorithm developed in Section 2 has been im- 45

plemented to simulate real-time estimation of multi- 46

dimensional time-varying measurands. The realized SW 47

architecture is illustrated in Figure 1 by means of a 48

SimulinkTM diagram. In the implemented SW procedure, 49
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Fig. 2. Rectangular surfaces S1 and S2 (measurands).

the measurands are time-varying quantities, which are1

supposed to evolve according to patterns specified through2

the input “Pattern tag” in the diagram.3

The possible patterns so far available are linear, saw-4

tooth, triangular wave, square wave, and sine wave, ex-5

ponential and parabolic shapes [7]. The inputs y−1, P−1,6

and R must be pre-set by an expert operator to initialize7

the routine.8

At each step k the routine operates as depicted in Fig-9

ure 1a. The routine is fed by a measurement zk. The10

vector x−
k is evaluated putting in equation (4) Ak−1 =11

Bk−1 = I(I identity matrix); uk−1 is built in the “u eval-12

uation” block according to the selected pattern: in Fig-13

ure 1b, an example (for the exponential shape) is shown.14

In the “P update” block (Fig. 1c), the matrix P k−1 is eval-15

uated according to equation (6); P k is then used to com-16

pute the standard deviations, square roots of Pk−1(i, i).17

The matrix R is transformed into Q (“R update” block18

in Fig. 1d), see equation (8); wk is evaluated in the19

block “weight evaluation (fuzzy outlier treatment)” (see20

Sect. 2.2). Finally, equation (9) is implemented in the21

“compute estimates” (Fig. 1e) block whose output pro-22

vides the measurand estimation yk.23

4 Simulation: a case-study24

The algorithm behavior is presented and discussed25

with application to some simulations performed in26

MATLABTM. The SW system performance is tested on a27

case-study where measurands are the areas of two rectan-28

gular surfaces S1 and S2 with a common edge x3 (Fig. 2):29

use of x3 to calculate both areas introduces correlations30

between the components of the measurand vector (S1, S2).31

Since S1 = S2x1/x2, a linear correlation (Pearson coeffi-32

cient) can properly describe such a model. However, tak-33

ing into account randomness, the routine is able to process34

also different correlations (Spearman and Kendall coeffi-35

cients), which can be entered in the non-diagonal entries36

of P−1 by an expert operator.37

Table 1. Measured (z), theoretical (x), and estimated (y)
vectors of. Figure 3.

y− = (2.97, 6.21)

k zk xk yk

0 (2.70, 4.42) (2.99, 5.81) (2.66, 5.43)

1 (4.50, 4.80) (5.02, 5.81) (4.69, 5.22)

2 (5.16, 5.43) (5.18, 5.81) (4.94, 5.28)

3 (3.57, 6.74) (3.33, 5.81) (3.11, 5.56)

4 (1.46, 6.92) (1.17, 5.81) (0.92, 5.78)

5 (1.24, 4.83) (0.69, 4.87) (0.50, 4.62)

6 (2.76, 4.57) (2.32, 4.87) (2.31, 4.62)

7 (4.88, 5.60) (4.57, 4.87) (4.74, 4.72)

8 (5.43, 4.92) (5.37, 4.87) (5.58, 4.74)

9 (4.14, 5.36) (3.98, 4.87) (4.10, 4.79)

Table 2. Measured (z), theoretical (x), and estimated (y)
vectors of Figure 4.

y−1 = (1.35, 4.56)

k zk xk yk

0 (4.83, 3.51) (2.49, 3.09) (3.62, 4.05)

1 (1.30, 1.36) (2.45, 3.10) (2.55, 2.87)

2 (1.02, 3.92) (2.41, 3.12) (2.10, 3.18)

3 (1.02, 2.40) (2.37, 3.15) (1.81, 3.02)

4 (1.46, 3.49) (2.33, 3.19) (1.71, 3.15)

5 (3.50, 2.38) (2.29, 3.25) (1.94, 3.10)

6 (1.46, 1.63) (2.25, 3.32) (1.82, 2.97)

7 (1.17, 3.43) (2.21, 3.40) (1.70, 3.12)

8 (2.44, 3.04) (2.17, 3.50) (1.74, 3.22)

9 (4.18, 2.51) (2.13, 3.60) (1.92, 3.28)

Measurements of x1, x2, x3 are modeled by indepen- 38

dent RVs and the measurement vector zk is (indirectly) 39

obtained by S1 = x1x3 and S2 = x2x3. While x3 is sup- 40

posed a non-varying quantity for the seek of simplicity, 41

x1 and x2 are supposed time-varying quantities due to, 42

e.g., temperature fluctuations: S1 and S2 follow the same 43

patterns of x1 and x2, respectively. 44

Figures 3 and 4 (whose simulation data are contained 45

in Tables 1 and 2, respectively) show the algorithm behav- 46

ior without outlier treatment. Figures 3a and 4a represent 47

the first component of the measurand vector (surface S1) 48

time-varying with sine and linear pattern, respectively. 49

Figures 3b and 4b represent the second component (sur- 50

face S2), which follows a square wave and an exponential 51

shape pattern, respectively. 52

For simulation purpose, measurements of x1, x2, 53

and x3 are obtained at each step by random genera- 54

tors, as follows: in Figure 3, x1, x2, and x3 are sam- 55

pled from normal marginal distributions and Pearson co- 56

efficient has been used; in Figure 4 (with Kendall coef- 57

ficient), x1 and x2 are obtained from uniform marginal 58

distributions, for x3 a gamma marginal distribution has 59

been used. The entries of 2 × 2 matrices P−1 and R 60

are: as regards Figure 3: P−1(1, 1) = P−1(2, 2) = 0.40, 61
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Fig. 3. Cyclic patterns for S1 (left) and S2 (right): simulation results.

Table 3. Measured (z), theoretical (x), and weight (w) vectors of Figure 5; estimated vectors (y) of Figures 5a and 5b;
estimated vectors (y∗) of Figures 5c and 5d.

y−1 =(4.33, 6.95)

k zk xk yk y∗k wk

0 (3.61, 6.28) (4.23, 6.60) (4.39, 6.84) (4.39, 6.84) (1.00, 1.00)

1 (2.72, 5.46) (4.22, 6.41) (3.84, 6.45) (4.12, 6.55) (0.50, 0.50)

2 (8.37, 6.90) (4.21, 6.22) (4.66, 6.32) (4.18, 6.44) (0.00, 1.00)

3 (3.34, 7.83) (4.20, 6.13) (4.32, 6.37) (3.40, 6.44) (1.00, 0.50)

4 (4.10, 4.66) (4.19, 6.32) (4.31, 6.45) (4.02, 6.60) (1.00, 0.22)

5 (6.63, 0.05) (4.18, 6.51) (4.56, 6.25) (4.11, 6.74) (0.20, 0.00)

6 (2.70, 1.16) (4.17, 6.50) (4.32, 5.94) (4.01, 6.70) (0.50, 0.00)

7 (2.37, 5.74) (4.16, 6.31) (4.14, 5.74) (3.90, 6.47) (0.50, 1.00)

8 (1.06, 3.82) (4.14, 6.12) (3.84, 5.42) (3.90, 6.25) (0.00, 0.00)

9 (6.33, 4.35) (4.13, 6.23) (4.11, 5.50) (3.91, 6.32) (0.22, 0.22)

P−1(1, 2) = P−1(2, 1) = 0.43; R(1, 1) = R(2, 2) = 0.5,1

R(1, 2) = R(2, 1) = 0; as regards Figure 4: P−1(1, 1) =2

0.84, P−1(2, 2) = 0.75, P−1(1, 2) = P−1(2, 1) = 0.39;3

R(1, 1) = R(2, 2) = 0.35, R(1, 2) = R(2, 1) = 0.4

Uncertainties relative to prior estimate and measure-5

ments are close to each other in the case of Figure 3, while6

in Figure 4, measurements uncertainty is less than that of7

prior estimate. Activation of the fuzzy outlier treatment8

is recommended when measurement uncertainty is signif-9

icantly greater than prior estimate uncertainty: for this10

reason it is not activated in the simulations reported in11

Figures 3 and 4.12

In these simulations, the algorithm is convergent and13

efficient, so that most estimated values are closer than14

measured ones and prior knowledge to the theoretical mea-15

surand pattern.16

In Figure 5 (see Tab. 3 for data), measurements un-17

certainty is as large as required to activate the fuzzy out-18

lier treatment in the KF routine. The criterion for outlier19

detection is based on matching zk against x−
k : thus a ma-20

jority of outlying values may result during a simulation,21

as in Figures. 5c and 5d. Measurements are obtained by22

use of normal random functions and the Spearman coef-23

ficient describes correlations between S1 and S2; the en-24

tries of 2 × 2 matrices P−1 and R are: P−1(1, 1) = 30,25

P−1(2, 2) = 0.20, P−1(1, 2) = P−1(2, 1) = 0.94; R(1, 1) = 26

0.9, R(2, 2) = 1, R(1, 2) = R(2, 1) = 0. 27

A comparison between the algorithm performance with 28

and without outlier treatment is shown in the panels of 29

Figure 5. Figure 5a (surface S1, linear pattern) and Fig- 30

ure 5b (surface S2, triangular wave) display the algo- 31

rithm trend when the treatment is off. In Figure 5c (sur- 32

face S1, linear pattern) and Figure 5d (surface S2, trian- 33

gular wave), the treatment is on. Comparing Figures 5a 34

and 5c, it can be noted that at k = 1, k = 2, k = 5, 35

and k = 8 the effect of outlierness weights is to main- 36

tain the estimates in Figure 5c closer to the theoretical 37

measurand. Similarly, by contrasting Figures 5b and 5d 38

at k = 8 and k = 9, a better performance can be noted 39

in Figure 5d. 40

5 Conclusion 41

An integrated software system for real-time estimation 42

and candidate outlier treatment has been developed with 43

application to time-varying multi-dimensional measur- 44

ands. 45

– The estimation strategy implements a metrological 46

customization of the KF technique, taking into account 47
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Fig. 4. Acyclic patterns for S1 (left) and S2 (right): simulation results.

Fig. 5. Comparison between KF routine with fuzzy outlier treatment off (top panels) or on (bottom.

possible statistical correlation of measurands and re-1

lated uncertainty evaluation.2

– Occurrence of suspected outliers in dynamic measure-3

ments is modeled in fuzzy-logic terms for real-time de-4

tection and processing.5

– The overall SW performance is tested by means of6

simulation results based on dimensional measurement7

data: the system’s efficiency and convergence are8

demonstrated.9
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