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A PARTIAL STRATIFICATION OF SECANT VARIETIES

OF VERONESE VARIETIES VIA CURVILINEAR

SUBSCHEMES

EDOARDO BALLICO AND ALESSANDRA BERNARDI

Abstract. We give a partial “quasi-stratification” of the secant va-
rieties of the order d Veronese variety Xm,d of Pm. It covers the set
σt(Xm,d)

† of all points lying on the linear span of curvilinear subschemes
of Xm,d, but two “quasi-strata” may overlap. For low border rank two
different “quasi-strata” are disjoint and we compute the symmetric rank
of their elements. Our tool is the Hilbert schemes of curvilinear sub-
schemes of Veronese varieties. To get a stratification we attach to each
P ∈ σt(Xm,d)

† the minimal label of a quasi-stratum containing it.

Introduction

Let νd : Pm ↪→ P(
m+d
m )−1 be the order d Veronese embedding with d ≥ 3.

We write Xm,d := νd(Pm). An element of Xm,d can be described both as
the projective class of a d-th power of a homogeneous linear form in m+ 1
variables and as the projective class of a completely decomposable symmetric
d-mode tensor. In many applications like Chemometrics (see e.g. [27]),
Signal Processing (see e.g. [23]), Data Analysis (see e.g. [5]), Neuroimaging
(see e.g. [17]), Biology (see e.g. [25]) and many others, the knowledge of
the minimal decomposition of a tensor in terms of completely decomposable
tensors turns out to be extremely useful. This kind of decomposition is
strictly related to the concept of secant varieties of varieties parameterizing
tensors (if the tensor is symmetric one has to deal with secant varieties of
Veronese varieties).
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Let Y ⊆ PN be an integral and non-degenerate variety defined over an
algebraically closed field K of characteristic zero.

For any point P ∈ PN the Y -rank rY (P ) of P is the minimal cardinality
of a finite set of points S ⊂ Y such that P ∈ ⟨S⟩, where ⟨ ⟩ denotes the
linear span:

rY (P ) := min{s ∈ N | ∃S ⊂ Y, ♯(S) = s, with P ∈ ⟨S⟩}. (1)

If Y is the Veronese variety Xm,d the Y -rank is also called the “symmetric
tensor rank”. The minimal set of points S ⊂ Xm,d that realizes the symmet-
ric tensor rank of a point P ∈ Xm,d is also said to be the set that realizes
either the “CANDECOMP/PARAFAC decomposition” or the “canonical
decomposition” of P .

Set X := Xm,d. The natural geometric object that one has to study in
order to compute the symmetric tensor rank either of a symmetric tensor
or of a homogeneous polynomial is the set that parameterizes points in PN

having X-rank smaller or equal than a fixed value t ∈ N. For each integer
t ≥ 1 let the t-th secant variety σt(X) ⊆ PN of a variety X ⊂ PN be the
Zariski closure in PN of the union of all (t− 1)-dimensional linear subspaces
spanned by t points of X ⊂ PN :

σt(X) :=
∪

P1,...,Pt∈X
⟨P1, . . . , Pt⟩ (2)

For each P ∈ PN the border rank bX(P ) of P is the minimal integer t
such that P ∈ σt(X):

bX(P ) := min{t ∈ N | P ∈ σt(X)}. (3)

We denote by σ0
t (X) the set of the elements belonging to σt(X) of fixed

X-rank t:
σ0
t (X) := {P ∈ σt(X) | rX(P ) = t} (4)

Observe that if σt−1(X) ̸= PN , then σ0
t (X) contains a non-empty open

subset of σt(X).
Some of the recent papers on algorithms that are able to compute the

symmetric tensor rank of a symmetric tensor (see [9], [7], [10]) use the idea
of giving a stratification of the t-th secant variety of the Veronese variety

via the symmetric tensor rank. In fact, since σt(X) = σ0
t (X), the elements

belonging to σt(X) \ (σ0
t (X)∪ σt−1(X)) have X-rank strictly bigger than t.

What some of the known algorithms for computing the symmetric rank of a
symmetric tensor T do is firstly to test the equations of the secant varieties
of the Veronese varieties (when known) in order to find the X-border rank
of T , and secondly to use (when available) a stratification via the symmetric
tensor rank of σt(X). For the state of the art on the computation of the
symmetric rank of a symmetric tensor see [16], [10], [22] Theorem 5.1, [9],
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§3, for the case of rational normal curves, [9] for the case t = 2, 3, [7] for
t = 4.

Moreover, the recent paper [12], has shown the importance of the study of
the smoothable 0-dimensional schemes in order to understand the structure
of the points belonging to secant varieties to Veronese varieties.

We propose here the computation of the symmetric tensor rank of a partic-
ular class of the symmetric tensors whose symmetric border rank is strictly
less than its symmetric rank. We will focus on those symmetric tensors that
belong to the linear span of a 0-dimensional curvilinear sub-scheme of the
Veronese variety. We will indicate in Notation 6 this set as σt(X)†. We use
a well-known stratification of the subset of the Hilbert scheme Hilbt(Pm)c
of curvilinear zero-dimensional subschemes of Pm with degree t. Taking the
unions of all ⟨νd(A)⟩, A ∈ Hilb(Pm)c, we get σt(X)†. From each stratum
U of Hilbt(Pm)c we get a quasi-stratum ∪A∈U ⟨A⟩ of σt(X). In this way we
do not obtain a stratification of σt(X)†, because a point of σt(X)† may be
in the intersection of the linear spans of elements of two different strata of
Hilbt(Pm)c. We may get a true stratification of σt(X)† taking a total order-
ing of the set of all strata of Hilbt(Pm)c and assigning to any P ∈ σt(X)†

only the stratum of Hilbt(Pm)c with minimal label among the strata with P
in their image. The strata of Hilbt(Pm)c have a natural partial ordering with
maximal element (1, . . . , 1) corresponding to σ0

t (X) and the next maximal
one (2, . . . , 1) (Notation 4 and Lemma 1). Hence σt(X)†\σ0

t (X) has a unique
maximal quasi-stratum and we may speak about the general element of the
unique component of maximal dimension of σt(X)†\σ0

t (X). If t ≤ (d+1)/2,
then our quasi-stratification of σt(X)† is a true stratification, because the
images of two different strata of Hilb(Pm)c are disjoint (Theorem 1). We
may give the lexicographic ordering to the labels of Hilbt(Pm)c to get a total
ordering and hence a true stratification of σt(X)†, but it is rather artificial:
there is no reason to say that the quasi-stratum (3, 1, . . . , 1) comes before
the quasi-stratum (2, 2, 1, . . . , 1).

For very low t (i.e. t ≤ ⌊(d − 1)/2⌋), we will describe the structure of
σt(X)†: we will give its dimension, its codimension in σt(X) and the dimen-
sion of each stratum (see Theorem 1). Moreover in the same theorem we
will show that for such values of t, the symmetric border rank of the pro-
jective class of a homogeneous polynomial [F ] ∈ σt(X) \ (σ0

t (X) ∪ σt−1(X))
is computed by a unique 0-dimensional subscheme WF ⊂ X and that the
generic [F ] ∈ σt(X)† is of the form F = Ld−1M + Ld

1 + · · · + Ld
t−2 with

L,L1, . . . , Lt−2,M linear forms. To compute the dimension of the 3 largest
strata of our stratification we will use Terracini’s lemma (see Propositions
1, 2 and 3).
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We will also prove several results on the symmetric ranks of points P ∈ PN

whose border rank is computed by a scheme related to our stratification (see
Proposition 5 and Theorem 2). In all cases that we will be able to compute,
we will have bX(P ) + rX(P ) ≤ 3d − 2, but we will need also additional
conditions on the scheme computing bX(P ) when bX(P ) + rX(P ) ≥ 2d+ 2.

We thank the referee for nice remarks.

1. The quasi-stratification

For any scheme T let Tred denote its reduction. We begin this section
by recalling the well known stratification of the curvilinear 0-dimensional
subschemes of any smooth connected projective variety Y ⊂ Pr. Expert
readers can skip this section and refer to it only for Notation.

Notation 1. For any integral projective variety Y ⊂ Pr let β(Y ) be the
maximal positive integer such that every 0-dimensional scheme Z ⊂ Y with
deg(Z) ≤ β(Y ) is linearly independent, i.e. dim(⟨Z⟩) = deg(Z)−1 (see [13],
Lemma 2.1.5, or [7], Remark 1, for the Veronese varieties).

Remark 1. Let Z ⊂ Pm be any 0-dimensional scheme. If deg(Z) ≤ d + 1,
then h1(Pm, IZ(d)) = 0. If Z is the union of d + 2 collinear points, then
h1(Pm, IZ(d)) = 1. Therefore β(Xm,d) = d+ 1.

Notation 2. Fix an integer t ≥ 1. Let A(t) (resp. A′(t)) be the set of all
non-increasing sequences t1 ≥ t2 ≥ · · · ≥ ts ≥ 0 (resp. t1 ≥ · · · ≥ ts > 0)
such that

∑s
i=1 ti = t.

For each t = (t1, . . . , ts) ∈ A(t) let l(t) be the number of the non zero ti’s,
for i = 1, . . . , s.
Set B(t) := A(t) \ {(1, . . . , 1)} in which the string (1, . . . , 1) has t entries.
Set B′(t) = B(t) ∩A′(t).

A(t) is the set of all partitions of the integer t. The integer l(t) is the
length of the partition t.

Definition 1. Let Y ⊂ Pr be a smooth and connected projective variety of
dimension m. For every positive integer t let Hilbt(Y ) denote the Hilbert
scheme of all degree t 0-dimensional subschemes of Y .

If m ≤ 2, then Hilbt(Y ) is smooth and irreducible ([19], Propositions 2.3
and 2.4, [20], page 4).

We now introduce some subsets of Hilbt(Y ) that will give the claimed
stratification.

Notation and Remark 1. Let Y ⊂ Pr be a smooth connected projective
variety of dimension m.
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• For every positive integer t let Hilbt(Y )0 be the set of all disjoint
unions of t distinct points of Y .
Observe that Hilbt(Y )0 is a smooth and irreducible quasi-projecti-
ve variety of dimension mt. If m ≤ 2, then Hilbt(Y )0 is dense in
Hilbt(Y ) (see [19], [20], page 4). For arbitrary m = dim(Y ) the
irreducible scheme Hilbt(Y )0 is always open in Hilbt(Y ).

• Let Hilbt(Y )+ be the closure of Hilbt(Y )0 in reduction Hilbt(Y )red
of the scheme Hilbt(Y ). The elements of Hilbt(Y )+ are called the
smoothable degree t subschemes of Y .
If t ≫ m ≥ 3, then there are non-smoothable degree t subschemes
of Y ([21], [20], page 6).

• An element Z ∈ Hilbt(Y ) is called curvilinear if at each point P ∈
Zred the Zariski tangent space of Z has dimension ≤ 1 (equivalently,
Z is contained in a smooth subcurve of Y ). Let Hilbt(Y )c denote
the set of all degree t curvilinear subschemes of Y . Hilbt(Y )c is a
smooth open subscheme of Hilbt(Y )+ ([26], bottom of page 86). It
contains Hilbt(Y )0.

Fix now O ∈ Y with Y ⊂ Pr being a smooth connected projective variety
of dimension m. Following [20], page 3, we state the corresponding result
for the punctual Hilbert scheme of OY,O, i.e. the scheme parametrizing
all degree t zero-dimensional schemes Z ⊂ Y such that Zred = {O} (here
instead of “ curvilinear ” several references use the word “ collinear ”) .

Remark 2. For each integer t > 0 the subset of the punctual Hilbert
scheme parametrizing the degree t curvilinear subschemes of Y with P as
its reduction is smooth, connected and of dimension (t− 1)(m− 1).

Notation 3. Fix an integer s > 0 and a non-increasing sequence of inte-
gers t1 ≥ · · · ≥ ts > 0 such that t1 + · · · + ts = t and t = (t1, . . . , ts).
Let Hilbt(Y )c[t1, . . . , ts] denote the subset of Hilbt(Y )c parametrizing all
elements of Hilbt(Y )c with s connected components of degree t1, . . . , ts re-
spectively. We also write it as Hilbt(Y )c[t].

Remark 3. Since the support of each component Hilbt(Y )c[t] varies in
the m-dimensional variety Y ⊂ Pr, the theorem on the punctual Hilbert
scheme quoted in Remark 2 says that Hilbt(Y )c[t1, . . . , ts] is an irreducible
algebraic set of dimension ms +

∑s
i=1(ti − 1)(m − 1) = mt + s − t, i.e. of

codimension t − s in Hilbt(Y )c. Each stratum Hilbt(Y )c[t] is non-empty,
irreducible and different elements of A′(t) give disjoint strata, because any
curvilinear subscheme has a unique type t.

Hence if t ≥ 2 we have:

Hilbt(Y )c = ⊔t∈A′(t)Hilb
t(Y )c[t] = Hilbt(Y )0

⊔
⊔t∈B′(t)Hilbt(Y )c[t].
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Different strata may have the same codimension, but there is a unique
stratum of codimension 1: it is the stratum with label (2, 1, . . . , 1). This
stratum parametrizes the disjoint unions of a tangent vector to Y and t− 2
disjoint points of Y .

Notation 4. Take now a partial ordering ≼ on A(t) writing (a1, . . . , ax) ≼
(b1, . . . , by) if and only if

∑i
j=1 aj ≤

∑i
j=1 bj for all integers i ≥ 1, in which

we use the convention aj := 0 for all j > x and bj = 0 for all j > y. In the
theory of partitions the partial ordering ≼ is called the dominance partial
ordering .

The next lemma is certainly well-known, but we were unable to find a
reference.

Lemma 1. Fix (t1, . . . , ts) ∈ B(t).

(a) The stratum Hilbt(Y )c[t1, . . . , ts] is in the closure of the stratum
Hilbt(Y )c[2, 1, . . . , 1].

(b) If t1 ≥ 3, then the stratum Hilbt(Y )c[t1, . . . , ts] is in the closure of
the stratum Hilbt(Y )c[3, 1, . . . , 1].

(c) if t2 ≥ 2, then the stratum Hilbt(Y )c[t1, . . . , ts] is in the closure of
the stratum Hilbt(Y )c[2, 2, 1, . . . , 1].

Proof. We only check part (c), because the proofs of parts (a) and (b) are
similar. Fix Z ∈ Hilbt(Y )c[t1, . . . , ts]. Take a smooth curve C ⊆ Y con-
taining Z and write Z =

∑s
i=1 tiPi as a divisor of C, with Pi ̸= Pj for all

i ̸= j. Since t1 ≥ 2, the effective divisor t1P1 is a flat degeneration of a
family of divisors {Zλ} of C in which each Zλ is the disjoint union of a
connected degree 2 divisor and t1 − 2 distinct points. Similarly, the divisor
t2P2 is a flat degeneration of a family of divisors {Z ′

λ} of C in which each
Z ′
λ is the disjoint union of a connected degree 2 divisor and t2 − 2 distinct

points. Obviously for each i ≥ 3 the divisor tiPi is smoothable inside C,
i.e. it is a flat degeneration of flat family of ti distinct points. The prod-
uct of these parameter spaces is a parameter space for a deformation of Z
to a flat family of elements of Hilbt(C)c[2, 2, 1, . . . , 1]. Since C ⊆ Y , we
have Hilbt(C)c[2, 2, 1, . . . , 1] ⊆ Hilbt(Y )c[2, 2, 1, . . . , 1] and the inclusion is a
morphism. Hence (c) is true. �

We recall the following lemma ([13], Lemma 2.1.5, [9], Proposition 11, [6],
Remark 1).

Lemma 2. Let Y ⊂ Pr be a smooth and connected subvariety. Fix an integer
k such that k ≤ β(Y ), where β(Y ) is defined in Notation 1, and P ∈ Pr.
Then P ∈ σk(Y ) if and only if there exists a smoothable 0-dimensional
scheme Z ⊂ Y such that deg(Z) = k and P ∈ ⟨Z⟩.
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The following lemma shows a very special property of the curvilinear
subschemes.

Lemma 3. Let Y ⊂ Pr be a smooth and connected subvariety. Let W ⊂ Y be
a linearly independent curvilinear subscheme of Y . Fix a general P ∈ ⟨W ⟩.
Then P /∈ ⟨W ′⟩ for any W ′ ( W .

Proof. A curvilinear subscheme of a smooth variety is locally a complete
intersection. Hence it is Gorenstein. Hence the lemma is a particular case
of [13], Lemma 2.4.4. It may be also proved in the following elementary
way, which in addition gives a description of ⟨W ⟩ \ (∪W ′(W ⟨W ′⟩). Fix
any W ′ ( W . Since deg(W ′) < deg(W ) ≤ β(Y ), we have dim(⟨W ′⟩) =
deg(W ′) − 1 < deg(W ) − 1 = dim(⟨W ⟩). Hence it is sufficient to show
that W has only finitely many proper subschemes. Take a smooth quasi-
projective curve C ⊃ W . W is an effective Cartier divisor

∑s
i=1 biPi with

Pi ∈ C, bi > 0 for all i and
∑s

i=1 bi = deg(W ). Any W ′ ⊆ W is of the form∑s
i=1 aiPi for some integers ai such that 0 ≤ ai ≤ bi for all i. �
We introduce the following Notation.

Notation 5. For each integral variety Y ⊂ Pr and each Q ∈ Yreg let [2Q,Y ]
denote the first infinitesimal neighborhood of Q in Y , i.e. the closed sub-
scheme of Y with (IQ,Y )

2 as its ideal sheaf. We call any [2Q,Y ], with
Q ∈ Yreg, a double point of Y .

Remark 4. Observe that [2Q,Y ]red = {Q} and deg([2Q,Y ]) = dim(Y )+1.

The following observation shows that Lemma 3 fails for some non-curvi-
linear subscheme.

Remark 5. Fix an integral variety Y ⊂ Pr and a smooth point Q of Y .
The linear space ⟨[2Q,Y ]⟩ has dimension dim(Y ) (it is usually called the
Zariski tangent space or embedded Zariski tangent space of Y at Q). Fix
any P ∈ ⟨[2Q,Y ]⟩ \ {Q}. The line R := ⟨{P,Q}⟩ is spanned by the degree
2 effective divisor [2P,R]. Since P ∈ ⟨[2Q,Y ]⟩, we have [2P,R] ⊂ Y .

Notation 6. For any integer t > 0 let σt(X)† denote the set of all P ∈
σt(X)\(σ0

t (X)∪σt−1(X)) such that there is a curvilinear degree t subscheme
Z ⊂ Xreg such that P ∈ ⟨Z⟩.

Remark 6. Let X ⊂ PN be the Veronese variety Xm,d with N =
(
n+d
d

)
−1.

Fix integer t > 0, s > 0 and t1 ≥ · · · ≥ ts > 0 such that t1 + · · · + ts = t.
Let σt(X)c[t1, . . . , ts] denote the set of all P ∈ σt(X)c such that P ∈ ⟨Z⟩ for
some curvilinear scheme Z with s connected components of degree t1, . . . , ts.
If P ∈ σt(X)†, then P ∈ σt(X)c[t1, . . . , ts] for some s, t1, . . . , ts with t1 ≥ 2.
The point P ∈ σt(X)† may be contained in different sets σt(X)c[t1, . . . , ts],
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σt(X)c[w1, . . . , wk], except under very restrictive conditions (see e.g. Theo-
rem 1 for a sufficient condition). To get a stratification one could attach to
each P ∈ σt(Xm,d)

† the minimal label of a quasi-stratum containing it.

We recall the following definition ([1]).

Definition 2. Let X1, . . . , Xt ⊂ Pr be integral and non-degenerate subvari-
eties (repetitions are allowed). The join J(X1, . . . , Xt) of X1, . . . , Xt is the
closure in Pr of the union of all (t − 1)-dimensional vector spaces spanned
by t linearly independent points P1, . . . , Pt with Pi ∈ Xi for all i.

From Definition 2 we obviously get that σt(X1) = J(X1, . . . , X1︸ ︷︷ ︸
t

).

Definition 3. Let S(X1, . . . , Xt) ⊂ X1 × · · · ×Xt × Pr be the closure of the
set of all (P1, P2, . . . , Pt, P ) such that P ∈ ⟨{P1, . . . , Pt}⟩ and Pi ∈ Xi for
all i. We call S(X1, . . . , Xt) the abstract join of the subvarieties X1, . . . , Xt

of Pr.

The abstract join S(X1, . . . , Xt) is an integral projective variety and we

have dim(S(X1, . . . , Xt)) = t−1+
∑t

i=1 dim(Xi). The projection ofX1×· · ·×
Xt × Pr → Pr induces a proper morphism uX1,...,Xt : S(X1, . . . , Xt) → Pr

such that uX1,...,Xt(S(X1, . . . , Xt)) = J(X1, . . . , Xt). The embedded join

J(X1, . . . , Xt) has the expected dimension t− 1+
∑t

i=1 dim(Xi) if and only
if uX1,...,Xt is generically finite.

2. Curvilinear subschemes and tangential varieties to
Veronese varieties

From now on in this paper we fix integers m ≥ 2, d ≥ 3 and take N :=(
m+d
m

)
− 1 and X := Xm,d the Veronese embedding of Pm into PN .

Definition 4. Let τ(X) ⊆ PN be the tangent developable of X, i.e. the
closure in PN of the union of all embedded tangent spaces TPX, P ∈ Xreg:

τ(X) :=
∪
P∈X

TPX

Remark 7. Obviously τ(X) ⊆ σ2(X) and τ(X) is integral. Since d ≥ 3,
the variety τ(X) is a divisor of σ2(X).

Definition 5. For each integer t ≥ 3 let τ(X, t) ⊆ PN be the join of τ(X)
and σt−2(X):

τ(X, t) := J(τ(X), σt−2(X)).

We recall that min{N, t(m+1)− 2} is the expected dimension of τ(X, t).
Here we fix integers d, t with t ≥ 2, d not too small and look at τ(X, t)

from many points of view.
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Remark 8. The set τ(X, t) is nothing else than the closure inside σt(X)
of the largest stratum of our stratification, i.e. is the stratum given by
Hilbt(X)c[2, 1, · · · , 1] (Lemma 1).

For any integral projective scheme W , any effective Cartier divisor D of
W and any closed subscheme Z of W the residual scheme ResD(Z) of Z
with respect to D is the closed subscheme of W with IZ : ID as its ideal
sheaf. For every L ∈ Pic(W ) we have the exact sequence

0 → IResD(Z) ⊗ L(−D) → IZ ⊗ L → IZ∩D,D ⊗ (L|D) → 0 (5)

The long cohomology exact sequence of (5) gives the following well-known
result, often called Castelnuovo’s lemma.

Lemma 4. Let Y ⊆ Pr be any integral projective variety and D an effective
Cartier divisor of Y . Fix any L ∈ Pic(Y ). Then

hi(Y, IZ ⊗ L) ≤ hi(Y, IResD(Z) ⊗ L(−D)) + hi(D, IZ∩D,D ⊗ (L|D))

for every i ∈ N.

Notation 7. For any Q ∈ Pm and any integer k ≥ 2 let kQ denote the
(k − 1)-infinitesimal neighborhood of Q in Pm, i.e. the closed subscheme of
Pm with (IQ)k as its ideal sheaf. The scheme kQ will be called a k-point of
Pm.

We give here the definition of a (2, 3)-point as it is in [14], p. 977.

Definition 6. Fix a line L ⊂ Pm and a point Q ∈ L. The (2, 3) point
of Pm associated with (Q,L) is the closed subscheme Z(Q,L) ⊂ Pm with
(IQ)3 + (IL)2 as its ideal sheaf.

Notice that 2Q ⊂ Z(Q,L) ⊂ 3Q.
In [8], Lemma 3.5, by using the theory of inverse systems, the authors

introduced a zero-dimensional subscheme of 4Q and used it to compute the
dimension of the secant varieties to the second osculating variety of Xm,d.
Hence our computations with 4Q that will be done in Lemma 7 may be
useful for joins of the second osculating variety of a Veronese and several
copies of the Veronese.

Remark 9. Fix Q ∈ Pm and a zero-dimensional scheme Z1 ⊂ Pm \ {Q}.
Since Z(Q,L) ⊂ 3Q, if h1(Pm, I3Q∪Z1(d)) = 0, then h1(Pm, IZ(Q,L)∪Z1

(d)) =
0.

Lemma 5. Fix an integer t such that (m+1)(t−2)+2m < N =
(
m+d
d

)
−1,

general P0, . . . , Pt−2 ∈ Pm and a general line L ⊂ Pm such that P0 ∈ L. Set

Z := Z(P0, L)
∪

(∪t−2
i=12Pi), Z ′ := 3P0

∪
(∪t−2

i=12Pi).
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(i) If h1(Pm, IZ(d)) = 0, then dim(τ(X, t)) = t(m+ 1)− 2.
(ii) If h1(Pm, IZ′(d)) = 0, then dim(τ(X, t)) = t(m+ 1)− 2.

Proof. If t = 2, then τ(X, t) = τ(X) and the part (i) for this case is proved
in [14]. The case t ≥ 3 of part (i) follows from the case t = 2 and Terracini’s
lemma([1], part (2) of Corollary 1.11), because τ(X, t) is the join of τ(X)
and t− 2 copies of X. Part (ii) follows from part (i) and Remark 9. �
Remark 10. Let A ⊂ Pm, m ≥ 2, be a connected curvilinear subscheme
of degree 3. Up to a projective transformation there are two classes of
such schemes: the collinear ones (i.e. A is contained in a line, i.e. νd(A)
is contained in a degree d rational normal curve) and the non-collinear
ones, i.e. the ones that are contained in a smooth conic of Pm. We have
h1(Pm, IA(1)) > 0 if and only if A is contained in a line. Thus the semiconti-
nuity theorem for cohomology gives that the set of all A’s not contained in a
line forms a non-empty open subset of the corresponding stratum (3, 0, . . . , 0)
and, in this case, we will say that A is not collinear. The family of all degree
3 connected and non-collinear schemes A covers an integral variety of dimen-
sion 3m−2. If d ≥ 5 any non-collinear connected curvilinear scheme appears
as the scheme computing the border rank of a point of σ3(X) \ σ2(X) with
symmetric rank 2d− 1, while the collinear ones give points with symmetric
rank d− 1 ([9], Theorem 34).

Lemma 6. Fix integers m ≥ 2 and d ≥ 5. If m ≤ 4, then assume d ≥ 6.
Set α := ⌊

(
m+d−1

m

)
/(m+ 1)⌋. Let Zi ⊂ Pm, i = 1, 2, be a general union of i

triple points and α− i double points. Then h1(IZi(d)) = 0.

Proof. Fix a hyperplane H of Pm and call Ei, i ∈ {1, 2}, the union of i
triple points of Pm with support on H. Hence Ei ∩ H is a disjoint union
of i triple points of H. Since d ≥ 5, we have h1(H, IH∩Ei(d)) = 0. Let
Wi ⊂ Pm be a general union of α− i double points. Since Wi is general, we
have Wi ∩H = ∅.
If we prove that h1(IEi∪Wi(d)) = 0, then, by semicontinuity, we also get
that h1(IZ(d)) = 0 for i ∈ {1, 2}.
By Lemma 4 it is sufficient to prove h1(IResH(Wi∪Ei)

(d− 1)) = 0.

Since Wi ∩ H = ∅, we have ResH(Wi) = Wi and ResH(Wi ∪ Ei) = Wi ⊔
ResH(Ei). Hence ResH(Wi ∪Ei) is a general union of α double points, with
the only restriction that the reductions of two of these double points are
contained in the hyperplane H. Any two points of Pm, m ≥ 2, are contained
in some hyperplane. The group Aut(Pm) acts transitively on the set of
all hyperplanes of Pm. The cohomology groups of projectively equivalent
subschemes of Pm have the same dimension. Hence we may consider Wi ⊔
ResH(Ei) as a general union of α double points of Pm. Since (m + 1)α ≤
⌊
(
m+d−1

m

)
/(m + 1)⌋, d − 1 ≥ 4 and d − 1 ≥ 5 if m ≤ 4, a famous theorem
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of Alexander and Hirschowitz on the dimensions of all secant varieties to
Veronese varieties gives h1(IResH(Wi∪Ei)

(d − 1)) = 0 (see [2], [3], [4], [15],

[11]). �

Lemma 7. Fix integers m ≥ 2 and d ≥ 6. If m ≤ 4, then assume d ≥ 7. Set
β := ⌊

(
m+d−2

m

)
/(m + 1)⌋. Let Z ⊂ Pm be a general union of one quadruple

point and β − 1 double points. Then h1(IZ(d)) = 0.

Proof. Fix a hyperplane H and call E a quadruple point of Pm with support
on H. Hence E ∩ H is a quadruple point of H. Since d ≥ 2, we have
h1(H, IH∩E(d)) = 0. Let W ⊂ Pm be a general union of β − 1 double
points. Since W is general, we have W ∩H = ∅.
If we prove that h1(IE∪W (d)) = 0 then, by semicontinuity, we also get that
h1(IZ(d)) = 0. By Lemma 4 it is sufficient to prove h1(IResH(W∪E)(d−1)) =

0.
SinceW∩H = ∅, we have ResH(W ) = W and ResH(W∪E) = W⊔ResH(E).
Hence ResH(W ∪ E) is a general union of β − 1 double points and one
triple point with support on H. Since Aut(Pm) acts transitively, the scheme
ResH(W ∪E) may be seen as a general disjoint union of β−1 double points
and one triple point. Now it is sufficient to apply the case i = 1 of Lemma
6 for the integer d′ := d− 1. �

Each set σt(X)c[t1, . . . , ts] is constructible and its closure σt(X)c[t1, . . . , ts]
inside σt(X) is a projective variety, perhaps a union of several irreducible
components.

Definition 7. Set Γ1 := σt(X)c[2, 1, . . . , 1] and Γ2 := σt(X)c[2, 2, 1, . . . , 1].
Let Γ3 be the set of all P ∈ σt(X)c[3, 1, . . . , 1] such that P ∈ ⟨Z⟩ with Z

a union of t − 3 simple points and a connected and non-collinear degree 3
curvilinear scheme.

Remark 11. For every P ∈ Γ1 there is a scheme ZP ⊂ X such that P ∈
⟨ZP ⟩ and ZP has one connected component of degree 2 and t − 2 simple
points.

For every P ∈ Γ2 there is a scheme ZP ⊂ X such that P ∈ ⟨ZP ⟩ and ZP

has two connected components of degree 2 and t− 4 simple points.
For every P ∈ Γ3 there is a scheme ZP ⊂ X such that P ∈ ⟨ZP ⟩ and ZP

has t − 3 simple points and one connected component which is curvilinear,
of degree 3 and non-collinear.

Proposition 1. Set α := ⌊
(
m+d−1

m

)
/(m + 1)⌋. Fix an integer t ≥ 3 such

that t ≤ α− 1. Then Γ1 ̸= ∅, Γ1 is irreducible and Γ1 has pure codimension
1 in σt(X).
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Proof. Lemma 6 and Terracini’s lemma ([1], part (2) of Corollary 1.11) give
that the join τ(X, t) (see Definition 5) has the expected dimension. This is
equivalent to say that the set of all points P ∈ ⟨Z1 ∪ {P1, . . . , Pt−2}⟩ with
Z1 a tangent vector of X has the expected dimension, i.e. codimension 1 in
σt(X). Obviously τ(X, t) ̸= ∅ and Γ1 ̸= ∅. The set Γ1 is irreducible, because
it is an open subset of a join of irreducible subvarieties. �

The proof of Proposition 1 can be analogously repeated for the following
two propositions.

Proposition 2. Set α := ⌊
(
m+d−1

m

)
/(m + 1)⌋. Fix an integer t ≥ 3 such

that t ≤ α− 2. Then Γ2 ̸= ∅, Γ2 is irreducible and Γ2 has pure codimension
2 in σt(X).

Proof. This proposition can be proved in the same way of Proposition 1 just
quoting the case i = 2 of Lemma 6 instead of the case i = 1 of the same
lemma. �
Proposition 3. Set β := ⌊

(
m+d−2

m

)
/(m+1)⌋. Fix an integer t ≥ 3 such that

t ≤ β − 1. Then Γ3 ̸= ∅, Γ3 is irreducible, Γ3 is dense in σt(X)c[3, 1, . . . , 1]
and Γ3 has pure codimension 2 in σt(X).

Proof. This proposition can be proved in the same way of Proposition 1 just
quoting Lemma 7 instead of Lemma 6 and using Remark 10. �
Remark 12. Observe that if we interpret the Veronese variety Xm,d as the
variety that parameterizes the projective classes of homogeneous polynomi-
als of degree d in m+1 variables that can be written as d-th powers of linear
forms then:

• The elements F ∈ Γ1 can all be written in the following two ways:

F = Ld−1M + Ld
1 + · · ·+ Ld

t−2,

F = Md
1 + · · ·+Md

d + Ld
1 + · · ·+ Ld

t−2.

• The elements F ∈ Γ2 can all be written in the following two ways:

F = Ld−1M + L′d−1M ′ + Ld
1 + · · ·+ Ld

t−4;

F = Md
1 + · · ·+Md

d +M
′d
1 + · · ·+M

′d
d + Ld

1 + · · ·+ Ld
t−4.

• The elements F ∈ Γ3 can be written either in one of the following
two ways:

F = Ld−2Q+ Ld
1 + · · ·+ Ld

t−3;

F = Nd
1 + · · ·+Nd

2d−1 + Ld
1 + · · ·+ Ld

t−3;

or in one of the following two ways:

F = Ld−1M + Ld
1 + · · ·+ Ld

t−3,
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F = Md
1 + · · ·+Md

d + Ld
1 + · · ·+ Ld

t−3.

where L, L′M, M ′L1, . . . , Lt−2, M1, . . . ,Md, M
′
1, . . . ,M

′
d, N1, . . . , N2d−1 are

linear forms andQ is a quadratic form. ActuallyM1, . . . ,Md andM ′
1, . . . ,M

′
d

are binary forms (see [9], Theorem 32 and Theorem 34).

3. The ranks and border ranks of points of Γi

Here we compute the rank rX(P ) for certain points P ∈ τ(X, t) when t
is not too big with respect to d. The cases t = 2, 3 are contained in [9],
Theorems 32 and 34. The case t = 4 is contained in [6], Theorem 1.

We first handle the border rank.

Theorem 1. Fix an integer t such that 2 ≤ t ≤ ⌊(d − 1)/2⌋. For each
P ∈ σt(X) \ (σ0

t (X) ∪ σt−1(X)) there is a unique WP ∈ Hilbt(X) such that
P ∈ ⟨WP ⟩.

(a) The constructible set σt(X)† is non-empty, irreducible and of di-
mension (m + 1)t − 2. For a general P ∈ σt(X)† the associated W ⊂ X
computing bX(P ) has a connected component of degree 2 (i.e. a tangent
vector) and t− 2 reduced connected components.

(b) We have a set-theoretic partition σt(X)† = ⊔t∈B′(t)σ(t), where B
′(t)

are defined in Notation 2, in which each set σ(t) is an irreducible and non-
empty constructible subset of dimension (m+1)t−1−t+l(t), where l(t) is de-
fined in Notation 2. The strata σ(2, 1, . . . , 1) is the only stratum with dimen-
sion t(m+1)− 2 and all the other strata are in the closure of σ(2, 1, . . . , 1).

(c) σ(2, 2, . . . , 1) and σ(3, 1, . . . , 1) are the only strata of codimension 1
of σt(X)†.

(d) If t1 ≥ 3 (resp. t2 ≥ 3), then the stratum σ(t1, . . . , ts) is in the
closure of σ(3, 1, . . . , 1) (resp. σ(2, 2, . . . , 1)).

(e) The complement of σt(X)† inside σt(X) \ (σ0
t (X) ∪ σt−1(X)) has

codimension at least 3 if t ≥ 3, or it is empty if t = 2.

Proof. Fix P ∈ σt(X)\σt−1(X). Remark 1 gives β(X) = d+1 ≥ t. Therefore
Lemma 2 gives the existence of some W ⊂ X such that deg(W ) = t, P ∈
⟨W ⟩ and W is smoothable. Since 2t ≤ d + 1, we can use [6], Lemma 1,
to say that W is unique. Moreover, if A ⊂ X is a degree t smoothable
subscheme, Q ∈ ⟨A⟩ and Q /∈ ⟨A′⟩ for any A′ ( A, then Lemma 2 gives Q ∈
σt(X) \σt−1(X). If A is curvilinear, then it is smoothable and ∪A′(A⟨A′⟩ (
⟨A⟩. Hence each degree t curvilinear subscheme W of X contributes a non-
empty open subset UW of the (t− 1)-dimensional projective space ⟨W ⟩ and
UW1 ∩ UW2 = ∅ for all curvilinear W1,W2 such that W1 ̸= W2. Hence

σt(X)† = ⊔t∈A′(t)(⊔W∈Hilbt
(X)[t]

UW ).
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Each algebraic constructible set σ(t) := ⊔
W∈Hilbt

(X)[t]
UW is irreducible and

of dimension t− 1 + tm+ l(t)− t. This partition of σt(X)† into non-empty
irreducible constructible subsets is the partition claimed in part (b).

Parts (b), (c) and (d) follows from Lemma 1.
Now we prove part (e). Every element of Hilb2(X) is either a tangent

vector or the disjoint union of two points. Hence Hilb2(X) = Hilb2(X)c.
Hence we may assume t ≥ 3. Fix P ∈ σt(X) \ (σ0

t (X) ∪ σt−1(X)) such
that P /∈ σt(X)†. By Lemma 2 there is a smoothable W ⊂ X such that
deg(W ) = t and P ∈ ⟨W ⟩. Since 2t ≤ β(X), such a scheme is unique.
Hence it is sufficient to prove that the set Bt of all 0-dimensional smoothable
schemes with degree t and not curvilinear have dimension at most mt− 3.
Call Bt(s) the set of all W ∈ Bt with exactly s connected components.
First we assume that W is connected. Set {Q} := Wred. Since in the local
Hilbert scheme of OX,Q the smoothable colength t ideals are parametrized
by an integral variety of dimension (m− 1)(t− 1) and a dense open subset
of it is formed by the ideals associated to curvilinear subschemes, we have
dim(Bt(1)) ≤ m+ (m− 1)(t− 1)− 1 = mt− t = dim(Hilbt(X)c)− t.
Now we assume s ≥ 2. Let W1, . . . ,Ws be the connected components of W ,
with at least one of them, say Ws, not curvilinear. Set ti = deg(Wi). We
have t1 + · · ·+ ts = t. Since Ws is not curvilinear, we have ts ≥ 3 and hence
t−s ≥ 2. Each Wi is smoothable. Hence each Wi, i < s, depends on at most
m+ (m− 1)(ti − 1) = mti +1− ti parameters. We saw that Bts(1) depends
on at most mts − ts parameters. Hence dim(Bt(s)) ≤ mt+ s− 1− t. �

Proposition 4. Assume m ≥ 2. Fix integers d, t such that 2 ≤ t ≤ d. Fix
a curvilinear scheme A ⊂ Pm such that deg(A) = t and deg(A ∩ L) ≤ 2 for
every line L ⊂ Pm. Set Z := νd(A). Fix P ∈ ⟨Z⟩ such that P /∈ ⟨Z ′⟩ for
any Z ′ ( Z. Then bX(P ) = t and Z is the only 0-dimensional scheme W
such that deg(W ) ≤ t and P ∈ ⟨W ⟩.

Proof. Since t ≤ d + 1, Z is linearly independent. Since Z is curvilinear,
Lemma 3 gives the existence of many points P ′ ∈ ⟨Z⟩ such that P ′ /∈ ⟨Z ′⟩
for any Z ′ ( Z. Let W ⊂ X be a minimal degree subscheme such that
P ∈ ⟨W ⟩. Set w := deg(W ). The minimality of w gives w ≤ t. If w = t,
then we assume W ̸= Z. Now it is sufficient to show that these conditions
give a contradiction. Write Z := νd(A) and W = νd(B) with A and B
subschemes of Pm, deg(A) = t and deg(B) = w. We have P ∈ ⟨W ⟩ ∩ ⟨Z⟩,
then, sinceW ̸= Z, by [6], Lemma 1, the schemeW∪Z is linearly dependent.
We have deg(B ∪ A) ≤ t + w ≤ 2d. Since W ∪ Z is linearly dependent, we
have h1(IB∪A(d)) > 0. Hence, by [9], Lemma 34, there is a line R ⊂ Pm

such that deg(R∩ (B∪A)) ≥ d+2. By assumption we have deg(R∩A) ≤ 2.
Hence deg(B ∩ R) ≥ d. In our set-up we get w = d and B ⊂ R. Since
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P ∈ ⟨W ⟩, we get P ∈ ⟨νd(R)⟩. That means that P belongs to the linear
span of a rational normal curve. Therefore the border rank of P is computed
by a curvilinear scheme which has length ≤ ⌊(d+ 1)/2⌋ (apply Lemma 2 to
[16] or [22], Theorem 4.1, or [9], Theorem 23), a contradiction. �
Proposition 5. Fix a line L ⊂ Pm and set D := νd(L). Fix positive
integers t1, s1, a 0-dimensional scheme Z1 ⊂ D such that deg(Z1) = t1 and
S1 ⊂ X \D such that ♯(S1) = s1. Assume 2 ≤ t1 ≤ d/2, 0 ≤ s1 ≤ d/2, that
Z1 is not reduced and dim(⟨D ∪ S1⟩) = d+ s1. Fix P ∈ ⟨Z1 ∪ S1⟩ such that
P /∈ ⟨W ⟩ for any W ( Z1 ∪ S1. We have ♯(⟨Z1⟩ ∩ ⟨{P} ∪ S1⟩) = 1. Set
{Q} := ⟨Z1⟩ ∩ ⟨{P} ∪ S1⟩. Then bX(P ) = t1 + s1, rX(P ) = d+ 2 + s1 − t1,
Z1 ∪S1 is the only subscheme of X computing bX(P ) and every subset of X
computing rX(P ) contains S1. If 2s1 < d, then every subset of X computing
rX(P ) is of the form A∪S1 with A ⊂ D, ♯(A) = d+2−s1 and A computing
rD(Q).

Proof. Obviously bX(P ) ≤ t1+s1. Since P ∈ ⟨Z1∪S1⟩ ⊂ ⟨D∪S1⟩, P /∈ ⟨S1⟩
and ⟨D⟩ has codimension s1 in ⟨D∪S1⟩, the linear subspace ⟨Z1⟩∩⟨{P}∪S1⟩
is a unique point, {Q}. Since deg(Z1) ≤ d + 1 = β(X) = β(D) (Remark
1), the scheme Z1 is linearly independent. Since P /∈ ⟨W ⟩ for any W (
Z1 ∪ S1, we have ⟨Z1⟩ ∩ ⟨{P} ∪ S1⟩ ̸= ∅. Since ⟨Z1⟩ ⊂ ⟨D⟩, we get {Q} =
⟨Z1⟩ ∩ ⟨{P} ∪ S1⟩. Hence Z1 compute bD(Q) (Lemma 2). By Lemma 2 we
also have bX(Q) = bD(Q) = t1. Since Z1 is not reduced, we have rD(Q) =
d+2−t1 ([16] or [22], theorem 4.1, or [9], §3). We have rX(Q) = rD(Q) ([24],
Proposition 3.1, or [22], subsection 3.2). Write Z1 = νd(A1) and S1 = νd(B1)
with A1, B1 ⊂ Pm. Lemma 2 gives bX(P ) ≤ t1 + s1. Assume bX(P ) ≤
t1+s1−1 and take W = νd(E) computing bX(Q) for a certain 0-dimensional
scheme E ⊂ Pm. Hence deg(W ) ≤ 2t1+2s1− 1. Since P ∈ ⟨W ⟩∩ ⟨Z1∪S1⟩,
by the already quoted [6], Lemma 1, we get h1(Pm, IE∪A1∪B1(d)) > 0. Hence
there is a line R ⊂ Pm such that deg(R ∩ (E ∪ Z1 ∪ S1)) ≥ d+ 2.

First assume R = L. Hence L ∩ (A1 ∪ B1) = A1. Hence deg(E ∩ L) ≥
d+2− t1. Set E

′ := E ∩L, E′′ := E \E′, W ′ := νd(E
′) and W ′′ := νd(E

′′).
Since P ∈ ⟨W ′ ∪W ′′⟩, there is O ∈ ⟨W ′⟩ such that P ∈ ⟨{O} ∪W ′′⟩. Hence
bX(P ) ≤ bX(O) + deg(W ′′). Since O ∈ ⟨D⟩, we have rX(O) ≤ rD(O) ≤
⌊(d + 2)/2⌋ < d + 2 − t1 ≤ deg(W ′), contradicting the assumption that W
computes bX(P ).

Now assume R ̸= L. Since the scheme L ∩ R has degree 1, while the
scheme A1 ∩ L has degree t1, we get deg(R ∩ E) ≥ d + 2 − s1 > (d + 2)/2.
As above we get a contradiction.

Now assume bX(P ) = t1+s1, but that W ̸= Z1∪S1 computes bX(P ). As
above we get a line R such that deg((W ∪Z1∪S1)∩R) ≥ d+2. As above we
get R = L. Since P ∈ ⟨Z1∪S1⟩, there is U ∈ ⟨D⟩ such that Z1 computes the
border D-rank of U and P ∈ ⟨U ∪ S1⟩. Take A ⊂ D computing rD(U). By
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[16] or [22], Theorem 4.1, or [9] we have ♯(A) = d+2−t1. Since P ∈ ⟨A∪S1⟩
and A ∩ S1 = ∅, we have rX(P ) ≤ d+ 2 + s1 − t1. Assume the existence of
some S ⊂ X computing rX(P ) and such that ♯(S) ≤ d+ 1+ s1 − t1. Hence
deg(S ∪ S1 ∪Z1) ≤ d+ 1+ 2s1 ≤ 2d+ 1. Write S = νd(B). We proved that
Z1 ∪ S1 computes bX(P ). By [6], Theorem 1, we have B = B1 ⊔ S1 with
B1 = L∩B. Hence ♯(B1) ≤ d+1−t1. Since P ∈ ⟨B1∪S1⟩, there is V ∈ ⟨B1⟩
such that P ∈ ⟨V ∪ S1⟩. Hence rX(P ) ≤ rX(V ) + s1. Since B computes
rX(P ) and V ∈ ⟨B1⟩, we get rX(V ) = ♯(B1) and that B1 computes rX(V ).
Since νd(B1) ⊂ D, we have V = Q. Recall that bX(Q) = bD(Q) and that Z1

is the only subscheme of X computing rX(Q). We have rX(Q) = rD(Q) =
d+ 2− t1. Hence ♯(B1) ≥ d+ 2− t1, a contradiction.

If 2s1 < d, then the same proof works even if ♯(B) = d+ 2 + s1 − t1 and
prove that any set computing rX(P ) contains S1. �

Lemma 8. Fix a hyperplane M ⊂ Pm and 0-dimensional schemes A,B such
that B is reduced, A ̸= B, h1(IA(d))=h1(IB(d))=0 and h1(Pm, IResM (A∪B)

(d − 1)) = 0. Set Z := νd(A), S := νd(B). Then h1(Pm, IA∪B(d)) =
h1(M, I(A∪B)∩M (d)) and Z and S are linearly independent. Assume the
existence of a point P ∈ ⟨Z⟩ ∩ ⟨S⟩ such that P /∈ ⟨Z ′⟩ for any Z ′ ( Z and
P /∈ ⟨S′⟩ for any S′ ( S. Set F := (B\(B∩M))∩A. Then B = (B∩M)⊔F
and A = (A ∩M) ⊔ F .

Proof. Since h1(IA(d)) = h1(IB(d)) = 0, both Z and S are linearly inde-
pendent. Since h2(IA∪B(d− 1)) = 0, the residual sequence

0 → IResM (A∪B)(d− 1) → IA∪B(d) → I(A∪B)∩M (d) → 0.

gives h1(Pm, IA∪B(d)) = h1(M, I(A∪B)∩M (d)). Assume the existence of P
as in the statement. Set B1 := (B ∩M) ∪ F .

(a) Here we prove that B = (B ∩ M) ∪ F , i.e. B = B1. Since
P /∈ ⟨S′⟩ for any S′ ( S, it is sufficient to prove P ∈ ⟨νd(B1)⟩. Since Z and
S are linearly independent, Grassmann’s formula gives dim(⟨Z⟩ ∩ ⟨S⟩) =
deg(Z ∩ S) − 1 + h1(Pm, IA∪B(d)). Since ResM (A ∪ B1) ⊆ ResM (A ∪ B)
and h1(Pm, IResM (A∪B)(d − 1)) = 0, we have that h1(Pm, IA∪B1(d)) =

h1(M, I(A∪B1)∩M (d)). SinceM∩(A∪B1) = M∩(A∪B), we get h1(Pm, IA∪B1

(d)) = h1(Pm, IA∪B(d)). Since both schemes Z and νd(B) are linearly inde-
pendent, Grassmann’s formula gives dim(⟨Z⟩∩ ⟨νd(B)⟩) = deg(A∩B)−1+
h1(Pm, IA∪B(d)). Since both schemes Z and νd(B1) are linearly indepen-
dent, Grassmann’s formula gives dim(⟨Z⟩ ∩ ⟨νd(B1)⟩) = deg(A ∩ B1)− 1 +
h1(Pm, IA∪B(d)). Since A∩B1 = A∩B, we get dim(⟨Z⟩∩⟨S⟩) = dim(⟨Z⟩∩
⟨νd(B1)⟩. Since ⟨Z⟩∩⟨νd(B1)⟩ ⊆ ⟨Z⟩∩⟨S⟩, we get ⟨Z⟩∩⟨νd(B1)⟩ = ⟨Z⟩∩⟨S⟩.
Hence P ∈ ⟨νd(B1)⟩.
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(b) In a very similar way we get A = (A ∩M) ⊔ F (see steps (b), (c)
and (d) of the proof of Theorem 1 in [6]). �
Theorem 2. Assume m ≥ 3. Fix integers d ≥ 5 and 3 ≤ t ≤ d. Fix a
line L ⊂ Pm, a degree 2 connected subscheme A1 ⊂ L and a reduced set
A2 ⊂ Pm \ L, such that ♯(A2) = t − 2. Set A := A1 ∪ A2, Zi := νd(Ai),
i = 1, 2, and Z := Z1 ∪ Z2. Assume that A is in linearly general position
in Pm. Set Z := {P ∈ ⟨Z⟩ : P /∈ ⟨Z ′⟩ for any Z ′ ( Z}. Then Z is the
complement in ⟨Z⟩ ∼= Pt−1 of t − 1 hyperplanes. For any P ∈ Z we have
bX(P ) = t and rX(P ) = d+ t− 2.

Proof. Since deg(A) ≤ d+1, we have h1(Pm, IA(d)) = 0. Hence the scheme
Z is linearly independent. Hence Z is the complement in ⟨Z⟩ ∼= Pt−1 of
t− 1 hyperplanes. Fix any P ∈ Z. Proposition 4 gives bX(P ) = t. Fix a set
B ⊂ Pm such that S := νd(B) computes rX(P ). Assume rX(P ) < d+ t− 2,
i.e. ♯(S) ≤ d+ t− 3. Since t ≤ d, we have rX(P ) + t ≤ 3d− 3.

(a) Until step (g) we assume m = 3. We have h1(Pm, IA∪B(d)) > 0 ([6],
Lemma 1). Hence A∪B is not in linearly general position (see [18], Theorem
3.2). Hence there is a plane M ⊂ P3 such that deg(M ∩ (A ∪ B)) ≥ 4.
Among all such planes we take one, say M1, such that the integer x1 :=
deg(M1 ∩ (A ∪ B)) is maximal. Set E1 := A ∪ B and E2 := ResM1(E1).
Notice that deg(E2) = deg(E1)−x1. Define inductively the planes Mi ⊂ P3,
i ≥ 2, the schemes Ei+1, i ≥ 2, and the integers xi, i ≥ 2, by the condition
that Mi is one of the planes such that the integer xi := deg(Mi ∩ Ei) is
maximal and then set Ei+1 := ResMi(Ei). We have Ei+1 ⊆ Ei (with strict
inclusion if Ei ̸= ∅) for all i ≥ 1 and Ei = ∅ for all i ≫ 0. For all integers t
and i ≥ 1 there is the residual exact sequence

0 → IEi+1(t− 1) → IEi(t) → IEi∩Mi,Mi(t) → 0. (6)

Let u be the minimal positive integer i such that and h1(Mi, IMi∩Ei(d+1−
i)) > 0. Use at most rX(P ) + t times the exact sequences (6) to prove the
existence of such an integer u. Any degree 3 subscheme of P3 is contained
in a plane. Hence for any i ≥ 1 either xi ≥ 3 or xi+1 = 0. Hence xi ≥ 3 for
all i ≤ u− 1. Since rX(P ) + t ≤ 3d, we get u ≤ d.

(b) Here we assume u = 1. Since A is in linearly general position,
we have deg(M1 ∩ A) ≤ 3. First assume x1 ≥ 2d + 2. Hence ♯(B) ≥
♯(B ∩M1) ≥ 2d− 1 > d+ t− 3, a contradiction. Hence x1 ≤ 2d+ 1. Since
h1(M1, IM1∩E1(d)) > 0, there is a line T ⊂ M1 such that deg(T ∩E1) ≥ d+2
([9], Lemma 34). Since A is in linearly general position, we have deg(A∩T ) ≤
2. Hence deg(T ∩ B) ≥ d. Assume for the moment h1(P3, IE2(d − 1)) > 0.
Hence x2 ≥ d + 1. Since by hypothesis d ≥ 4, x2 ≤ x1 and x1 + x2 ≤
3d + 1, we have x2 ≤ 2d − 1. Hence [9], Lemma 34, applied to the integer
d − 1 gives the existence of a line R ⊂ P3 such that deg(E2 ∩ R) ≥ d + 1.
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Since A is in linearly general position, we also get deg(R ∩ E2) ≤ 2 and
hence deg(R ∩ B ∩ E2) ≥ d − 1. Hence ♯(S) ≥ 2d − 1, a contradiction.
Now assume h1(P3, IE2(d − 1)) = 0. Lemma 8 gives the existence of a set
F ⊂ P3 \M1 such that A = (A ∩M1) ⊔ F and B = (B ∩M1) ⊔ F . Hence
♯(F ) = deg(A)− deg(A ∩M1) ≥ t− 1. Since ♯(B ∩M1) ≥ d, we obtained a
contradiction.

(c) Here and in steps (d), (e), and (f) we assume m = 3 and u ≥ 2. We
first look at the possibilities for the integer u. Since every degree 3 closed
subscheme of P3 is contained in a plane, either xi ≥ 3 or xi+1 = 0. Since
rX(P ) + t ≤ 3d − 3, we get xi = 0 for all i > d. Hence u ≤ d. We have
xu ≥ d + 3 − u (e.g. by [9], Lemma 34). Since the sequence xi, i ≥ 1, is
non-increasing, we get rX(P ) + 2 + t− 2 ≤ u(d+ 3− u). Since the function
s 7→ s(d+ 3− s) is concave in the interval [2, d+ 1], we get u ∈ {2, 3, d}.

(d) Here we assume u = 2. Since 3d + 1 ≥ x1 + x2 ≥ 2x2, we get
x2 ≤ 2(d−1)+1. Hence there is a line R ⊂ P3 such that deg(E2∩R) ≥ d+1.
We claim that x1 ≥ d+1. Indeed, since A∪B * R, there is a plane M ⊂ R
such that deg(M ∩ (A ∪ B)) > deg((A ∪ B) ∩ R) ≥ d+ 1. The maximality
property of x1 gives x1 ≥ d + 2. Since A is in linearly general position, we
have deg(A∩R) ≤ 2 and deg(A∩M1) ≤ 3. Hence deg(B ∩E2 ∩R) ≥ d− 1
and rX(P ) ≥ (x1 − 3) + d− 1 ≥ 2d− 2 ≥ d+ t− 2, a contradiction.

(e) Here we assume u = 3. Since h1(M3, IM3∩E3(d − 2)) > 0, there
is a line R ⊂ M3 such that deg(E3 ∩ T ) ≥ d. This is absurd, because
x1 ≥ x2 ≥ x3 ≥ d and x1 + x2 + x3 ≤ rX(P ) + t ≤ d+ 2t− 3 ≤ 3d− 3.

(f) Here we assume u = d. The condition “ h1(IMd∩Ed
(1)) > 0 ” says

that either Md ∩ Ed contains a scheme of length ≥ 3 contained in a line R
or xd ≥ 4. Since xd ≥ 3, we have rX(P ) + t ≥ x1 + · · · + xd ≥ 3d. Since
t ≤ d and rX(P ) ≤ d+ t− 3, this is absurd.

(g) Here we assume m > 3. We make a similar proof, taking as Mi,
i ≥ 1, hyperplanes of Pm. Any 0-dimensional scheme of degree at most m
of Pm is contained in a hyperplane. Hence either xi ≥ m or xi+1 = 0. With
these modification we repeat the proof of the case m = 3. �

Corollary 1. Assume m ≥ 3. Fix integers d ≥ 5 and 3 ≤ t ≤ d. There is a
dense open subset U of σt(X)† \ σt(X)0 such that bX(P ) = t and rX(P ) =
d+ t− 2 for all P ∈ U .

Proof. The irreducible constructible set σ(2, 1, . . . , 1) is dense in σt(X)† \
σt(X)0. Any degree 2 subscheme of Pm is contained in a line. Hence there
is a dense open subset U of σt(X)† \σt(X)0 such that for every P ∈ U there
is Z ⊂ X such that deg(Z) = t, P ∈ ⟨Z⟩, P /∈ ⟨Z ′⟩ for any Z ′ ( Z, and
Z = νd(A∪S) with A ⊂ Pm degree 2 and connected, S ⊂ Pm\L, ♯(S) = t−2
and A ∪ S in linearly general position. Apply Theorem 2. �
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The following example is the transposition of [7], Example 2, to our set-
up.

Example 1. Fix a smooth plane conic C ⊂ Pm, m ≥ 2, and positive
integers d ≥ 5, x, y, ai, 1 ≤ i ≤ x, and bj , 1 ≤ j ≤ y, such that

∑x
i=1 ai +∑y

j=1 bj = 2d+2. Fix x+ y distinct points P1, . . . , Px, Q1, . . . , Qy of C. Let

A ⊂ C be the effective degree
∑x

i=1 ai divisor of C in which each Pi appears

with multiplicity ai. Let B ⊂ C be the effective degree
∑j

j=1 bj divisor of
C in which each Qj appears with multiplicity bj . Since C is projectively
normal, h0(C,OC(d)) = 2d+ 1 and h1(C, IE(d)) = 0 for every divisor E of
C with degree at most 2d + 1, the set ⟨νd(A)⟩ ∩ ⟨νd(B)⟩ is a unique point,
P , P /∈ ⟨νd(A′)⟩ for any A′ ( A and P /∈ ⟨νd(B′)⟩ for any B′ ( B. Since
h1(C, IE(d)) = 0 for every divisor E of C with degree at most 2d + 1, it
is easy to check that bX(P ) = min{deg(A),deg(B)}. Thus P is contained
in two different quasi-strata of σt(Xm,d)

† for t ≥ max{deg(A),deg(B)}. If

deg(A) = deg(B) = d+1, then P ∈ σd+1(Xm,d)
† \σd(Xm,d) and both A and

B compute the border rank of P .
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