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Rateless codes and random walks for P2P
resource discovery in Grids

Valerio Bioglio, Rossano Gaeta, Marco Grangetto, Senior Member, IEEE,Matteo Sereno

Abstract—Peer-to-peer (P2P) resource location techniques in Grid systems have been recently investigated to obtain scalability,
reliability, efficiency, fault-tolerance, security, and robustness. Query resolution for locating resources and update information on their
own resource status in these systems can be abstracted as the problem of allowing one peer to obtain a local view of global information
defined on all peers of a P2P unstructured network.
In this paper, the system is represented as a set of nodes connected to form a P2P network where each node holds a piece of
information that is required to be communicated to all the participants. Moreover, we assume that the information can dynamically
change and that each peer periodically requires to access the values of the data of all other peers. A novel approach based on a
continuous flow of control packets exchanged among the nodes using the random walk principle and rateless coding is proposed. An
innovative rateless decoding mechanism that is able to cope with asynchronous information updates is also proposed. The performance
of the proposed system is evaluated both analytically and experimentally by simulation. The analytical results show that the proposed
strategy guarantees quick diffusion of the information and scales well to large networks. Simulations show that the technique is effective
also in presence of network and information dynamics.

Index Terms—Resource discovery, Peer to Peer, Rateless codes, Random walks, GRID

✦

1 INTRODUCTION
Peer-to-peer (P2P) resource location techniques in Grid
systems have been investigated to obtain scalability,
reliability, efficiency, fault-tolerance, security, and robust-
ness. To this end, structured, unstructured, and hybrid
P2P systems have been considered and the relative mer-
its and drawbacks have been highlighted [1], [2].
Many proposals exploiting unstructured P2P systems

share a common characteristic: Grid nodes within one
administrative domain periodically query for locating
resources and update information on their own resource
status through one or more interface peers. The interface
peers (usually those with the largest capacity) play two
major roles: they are connected to other interface peers
forming a P2P unstructured network that is used to
forward (and respond to) queries on the behalf of nodes
in its administrative domain. They collect and maintain
data of all nodes in the local administrative domain.
Query resolution in these systems can be abstracted

as the problem of allowing one peer to obtain a local
view of global information defined on all peers of a
P2P unstructured network. In particular, we assume that
each peer holds a piece of information (the aggregate
resource statuses of all nodes in its administrative do-
main) and that any peer requires to access the values
of the data of all other peers periodically at rate λ
queries/sec. The goals to be achieved are threefold: first,
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one wants to guarantee that every node is likely to collect
the complete global information in a timely fashion.
Moreover, the communication overhead must be kept
as limited as possible to avoid congesting the network.
Finally, the processing power of each node must be used
parsimoniously.

Our contribution
The contribution of this paper is three-fold:

• we propose to use a practical form of network
coding based on rateless codes, that being based on
simple XOR operations are more computationally
efficient than previous attempts based on random
network coding in large Galois fields. The proposed
approach is based on a continuous flow of control
packets exchanged among the nodes using the ran-
dom walk principle. Each node is allowed to start
a limited number of control packets, thus limiting
the overall number of random walkers traveling in
the network, i.e. the communication overhead of
the proposed technique. Every node enriches any
incoming packet with its local information accord-
ing to the rateless coding principle and forwards it
randomly to one of its neighbors. As a consequence
a continuous flow of packets carrying coded infor-
mation is spread in the network and any node can
use them to recover the global data;

• using network coding in a dynamic scenario where
the information varies asynchronously is an issue,
since the information combined by each node has
to be the same to guarantee the inversion of the
linear system of equations. Usually this issue is
circumvented by constraining the nodes to change
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the information synchronously, i.e. the information
is kept static in a period of time called generation. In
this paper we present a novel decoding mechanism
coping with asynchronous information updates. In
particular a novel rateless codes decoding algorithm
taking into account the variation of the combined
information is proposed;

• we show that the efficiency of our solution grows
as the size of the data held by each node increases
in a scenario where communication among nodes is
constrained by a limit on the size of the MTU.

The performance of the proposed solution is evaluated
both analytically and experimentally by simulation. The
analysis proves that the designed strategy guarantees a
significant reduction of the time required to spread the
information among all the participants. Moreover, the
analytical model proves that our solution scales much
better with the size of the network. The simulative study
shows that the proposed solution is able to cope with
a dynamic scenario where the node alternates between
active and idle states and their information varies asyn-
chronously. We also show that alternative approaches
to allow peers to obtain a local view of global system
information are less effective and efficient.
The paper is organized as follows: Section 2 discusses

previous work related to ours, Section 3 defines the
system we consider, Section 4 describes our approach for
decoding rateless codes, Section 5 presents the analyti-
cal model we developed to evaluate the time required
to spread the information among all nodes, Section 6
discusses simulation results for the dynamic scenario,
Section 7 compare our distributed proposal with alter-
native centralized approaches and Section 8 summarized
the paper contribution and outlines possible future de-
velopments.

2 RELATED WORK

The problem of data gathering in distributed systems has
been faced with many different tools and approaches.
A first class of techniques are those based on prob-

abilistic gossiping [3], [4]. Probabilistic gossiping has
been used both to compute a function of the global
information, e.g. averages, and to actually spread local
information across a network as in our settings although
such techniques rely on a set of assumptions that are
difficult to guarantee in practice [5]. Notable attempts
to overcome some of these limitations in the area of
epidemic dissemination are [6], [7] that result in close to
optimum latency-bandwidth trade-of. In particular, [6]
uses flow control on the the maximum rate at which
a participant can submit updates without creating a
backlog and devises content reconciliation mechanisms
to reduce message redundancy. In [7], [8], [9], [10] ex-
ploitation/enforcement of topological properties of the
network are proposed to improve the performance of
the data dissemination process.

Algebraic Gossip, proposed in [11], is the first algo-
rithm addressing data gathering with Network Coding
(NC). In this paper a gossip algorithm based on NC is
presented, and it is proved that the spreading time of this
algorithm is O(K), where K < N is the number of nodes
having some information to spread. This algorithm is
very similar to classical NC: at every transmission op-
portunity, each node sends to another node a linear com-
bination, computed in Galois Field GF (q) with q ≥ K , of
the previously received packets. However, NC exhibits
a high computational complexity [12], due to the cost
of the coding and decoding operations performed in
high-order GF. Moreover, each packet requires a padding
of additional Klog2(q) > Klog2(K) bits. Such padding
turns to be infeasible for large networks; as an example,
if K = 1000 each packet needs more than 104 padding
bits. Finally, the authors suggest that the message size
m should scale with the size of the network, since it is
required that m >> log(q).
A different approach is to store and create packets

using rateless codes. In [13] distributed fountain codes
are proposed for networked storage. To create a new
encoded packet, each storage node asks information to
a randomly selected node of the network. The receiver
answers to the caller sending its information, that will
be used by the caller to encode a new packet. A similar
algorithm is proposed in [14], where the coded packet
formation mechanism is reversed; in this case, the nodes
that stores the information send random walkers con-
taining the information. The storage nodes store this
information and create encoded packets XORing some of
the information they already received. At the end of the
process, each storage node stores an encoded packet, and
it is possible to retrieve the initial information querying
any K + ϵ randomly chosen storage nodes.
Growth codes, proposed in [15], use a similar tech-

nique but propose a particular degree distribution for
the rateless codes to maximize the data persistence in
presence of a single data collector node.
In all the previously presented papers, the creation of

the codes is node-centric, i.e. the nodes cope with the
information gathering and the encoding operations; in
[16] this responsibility is assigned to the packets. The
aim of this work is to use particular random walkers,
named as rateless packets, for distributed storage of
information in WSN. Each node creates a certain number
of rateless packets, that are initially empty packets that
travel across the network as random walkers. The goal
in [16] is to use packets encoded in a distributed fashion
that will be stored at random locations in the network
to maximize data persistence in the WSN. Each rateless
packet is associated with a degree chosen following the
standard LT degree distribution, and τ , the mixing time
of the graph, is supposed to be known. Each rateless
packet performs a random walk across the network and
a novel information is combined only once every τ hops;
when a new information is added the packet degree
is reduced by one. When the degree becomes zero, the
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rateless packet performs τ supplementary hops to hit the
node that will store it. However, the focus of the paper
is to increase data persistence; the time required for the
distribution of the rateless packets is not studied.
It is worth pointing out that in all previous studies

based on coding, the information to be spread is as-
sumed to be static, or alternatively it is divided into
generations. The nodes are allowed to update their
information only when a new generation is initiated.
The concept of generation represents a great limitation
for practical distributed application since it requires
synchronization. Moreover, the size of the information to
be spread is not considered as an important parameter
of the system.
Finally, another class of technique adopted for spread-

ing data across a distributed system is based on the
recent results in the area of compressive sensing [17],
[18]. These approaches rely on the compressibility of the
information and does not apply in the general case when
no prior statistical knowledge of the data is available.

3 SYSTEM DESCRIPTION
In this paper we model the interface peers of a Grid
system and the connections among them as a graph
G(V,E), where V and E are the set of interface peers
and edges connecting them, respectively. Each node of
the network is uniquely identified by an identifier ID.
The ID can be assigned by a fixed rendezvous node,
e.g. a tracker, or can be represented by the IP, port
address of the node. Each node vj ∈ V owns an m-
bits information x

tj
vj , where tj is a time-stamp or an

integer that is incremented each time the information
in vj changes. To simplify the notation in the rest of
the paper we assume that vj coincides with the ID of
node; tj is usually referred to as the generation num-
ber. In our settings a node can update its information
asynchronously with respect to the rest of the network,
increasing the generation number associated with the
information.
The goal of nodes is to communicate with one another

the respective information, so as to realize a concurrent
broadcasting of all the information collected by all the
nodes in the network. This must be done indefinitely
often at an arbitrary rate λ by each node. This ob-
servation rules out any centralized solution where all
nodes report to a common monitoring node, that in turn
must propagate the collected data to all the participants.
This approach is clearly infeasible because it imposes
a huge amount of traffic to and from the monitoring
node, not to mention the issues related to the election
and vulnerability of a centralized sink (see discussion in
Section 7).
Therefore, in this paper we propose a fully distributed

solution based on random walks. Each node is allowed
to start a limited number w of packets that are the
random walkers propagating the information in the
network. The parameter w clearly allows one to con-
trol the amount of traffic injected in the network. On

Fig. 1. Packet structure.

every reception by a node, the packet is forwarded
to a random neighbor thus realizing a simple form of
probabilistic gossiping. It is well known that network
coding solutions, e.g. carrying linear combinations of
the collected information, increases the performance in
terms of throughput, robustness and persistence [11],
[16]. On the other hand, coding approaches exhibit two
main shortcomings. The first and most studied issue is
represented by the added computational complexity. A
possible solution that has already been proposed in the
literature [16] is to simplify the original random network
coding approach, that requires one to combine the data
blocks in high order Galois Field, with systems based on
simple binary combinations, e.g. XOR. Our work copes
with the complexity issue using a simple class of rateless
codes, known as Luby Transform (LT) codes [19]. The
second most relevant shortcoming of NC is represented
the impossibility for a node to update asynchronously
the information it combines without catastrophically im-
pacting on the decoding capability of all the other nodes.
Indeed, the nodes keep collecting linear combinations
of a set of unknowns until they successfully invert the
corresponding system of equations. Clearly, the system
of linear equations is meaningful if one keeps combining
the same information. On the contrary, in this paper we
propose a novel decoding approach for LT codes that is
resilient to asynchronous changes of the information. In
conclusion, we let each node propagate a fixed number
of packets carrying coded information of the nodes that
the packets have hit performing a random walk along
G(V,E). All the nodes use the received packets to solve
a system of linear equations allowing them to retrieve
the data associated with all the information collected by
the network in a timely, complete and robust way.
In the following the details of the proposed random

walk coding strategy and the design of the novel LT
decoding algorithm are presented.

3.1 Random walk LT coding
In this section the structure of the packet spreading the
coded information using a random walk approach is
described.
The packets format is shown in Fig. 1. Each packet

is composed of a header followed by a set of equa-
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tions {eq1, . . . , eqk}. It is worth pointing out that one
packet carries multiple coded information at a time.
An equation eqi, i = 1, . . . , k, is characterized by a
degree di, a set of di pairs vj/tj , j = 1, . . . , di, and an
encoded m bits message ci. The degree di of the equation
corresponds to the number of nodes that have encoded
their information x

tj
vj in ci. The message ci corresponds

to all the information that has been progressively XORed
by the nodes hit by the packet. In fact, we have

ci =
di∑

j=1

xtj
vj ,

where the summation is performed in GF (2).
The coding strategy follows the standard LT approach

[19], where the degree of the equations is constrained
to follow the probability density function known as Ro-
bust Soliton distribution (RSD), that in turn guarantees
asymptotically optimal coding performance. In other
words, using RSD it is very likely that each node can
recover N coded information from any set of N ′ ≥ N
equations, with N ′ that is arbitrarily close to N in the
limit N → ∞. This property holds for any information
size m. RSD depends on N , that should be known by the
nodes; however, an approximation of N is sufficient to
compute RSD without a great loss for the performance
if a decoder based on Gaussian Elimination is used
[20], [21]. This approximation could be calculated by
the nodes observing the IDs of the nodes contained
in the previously received equations. To cope with the
creation of the equation according to the RSD, each
packet carries in the header part the signaling of the
degree dF that must be achieved by the equation under
formation in the packet (that in our settings is the first
equation written in the packet body form left to right).
When a node vj at generation tj receives a packet, it
checks if the degree of the first equation stored in the
packet has reached the requested degree. If dF > d1,
and hence the target degree has not been reached yet,
the node performs 3 operations: it XORs its information
to the term c1, i.e. c1 = c1 ⊕ x

tj
vj . Then the degree d1

of the equation is incremented and the corresponding
field in the packet updated. Finally, the node vj and the
information timestamp tj are appended to the equation.
On the other hand, if dF = d1, the first equation has
already achieved the requested degree, hence a new
equation is created and stored as the new first equation,
while the other equations are shifted, e.g. eqi becomes
eqi+1 for i = 1 . . . k. To create a new equation eq1 a node
draws a random degree from RSD and stores it in the dF
field of the packet header. Then d1 = 1 is set, its vj , its
actual timestamp tj and information c1 = x

tj
vj are written

in the proper fields. Every packet created or updated by
a node is then forwarded to another node, randomly
selected among the local neighbors.
The number of hops globally taken by a packet is not

limited in our system. The only limitation is represented
by the maximum packet size DIM , that is generally

imposed by the maximum transfer unit (MTU) allowed
by the underlying communication technology at the
physical layer. When a packet approaches the maximum
dimension DIM , the eldest equation carried by it is
deleted since it is very likely to carry aged or already
known information.
In case of a dynamic network, where nodes can

randomly join and leave the graph G(V,E) and/or in
presence of unreliable links that turn into packet losses,
a mechanism to acknowledge the presence of a given
packet in the network must be devised. As an example,
an acknowledgement timer (a Time-to-Live field) and
the the address of the originator can be added to the
message. As usual, The acknowledgement timer field is
initialized to a constant value upon the packet creation,
then each node decrements it on every hop. When the
acknowledgement timer reaches 0 the receiving node
acknowledges the originator that its random walker is
still alive. The receiving node also re-sets the acknowl-
edgement timer to the initial value. The originator of
the packet uses a timer to detect packet losses; when
a timer expires before the reception of the correspond-
ing acknowledgement message the node is allowed to
regenerate the packet.

4 ASYNCHRONOUS LT DECODING
The information spread by the random walkers can be
recovered by any node in the network as soon as the
number of equations required to perform an LT decoding
algorithm [19], [20], [22], [21] has been collected. Since
our goal is to reconstruct the information as quickly
as possible, all the equations carried by each packet,
including the ones that are still in progress, are buffered
by each node. If we assume that the number of nodes
|V | in the network is equal to N , the decoder task can
be formulated as the solution of the following system
of linear equations Gx = c where G is an N × N
binary1 matrix whose rows represent the N possible
independent equations collected by the node, x and c are
N×1 column vectors representing theN unknown pieces
of information and the corresponding buffered linear
combinations carried by the packets payloads. Both x

and c contain m-bit elements. The node can recover all
the information x using a progressive form of Gaussian
Elimination [22], [21] to solve the system. Clearly, this
will require all the nodes in the network to keep their
information constant to avoid perturbing the solution of
the system.
To circumvent this strong limitation we propose a

novel decoding strategy that does not assume that the
N pieces of information x are constant. To this end, the
vector x is extended to the (ν+1) ·N×1 vector x̃, where
ν represents the memory used to store the values of the
past generations of the information. The bottom part of

1. The matrix is binary since LT coding is performed in GF(2) and it
is analogous to the code generation matrix of standard forward error
correction linear block codes.
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the column vector (last N elements) refer to the most
recent version of each piece of information, whereas the
top ν · N elements are related to past generations. In
other words, vector x̃ represents a snapshot of the infor-
mation collected in the network with a sliding window
mechanism including the (ν+1) most recent generations
for the information of each node. It is worth pointing out
that the generation of different nodes is not synchronized
and proper mapping between a vector position and the
respective node ID and generation timestamp must be
stored as auxiliary data. In particular, two auxiliary vec-
tors are used; a N×1 vector a, whose i-th element is the
ID of the node associated to the information in positions
i, i+N, . . . , i+ νN of x̃, and a N × 1 vector t, containing
the time-stamps of the most recent information collected
for each node. According to the previous notation it
follows that x̃[i + jN ] = xt[i]−(ν−j)

a[i] , j = 0, . . . , ν, where
square brackets are used to index a single element of
a vector. The vector a allows each node to map the ID
of the nodes that are being progressively discovered in
the received packet to a particular set of rows of the
decoding matrix. Adopting this extended notation, the
decoding task can be formulated as G̃x̃ = c̃, where G̃

turns to be a (ν + 1)N × (ν + 1)N extended decoding
matrix specifying the linear combinations among the
(ν + 1) most recent versions of information circulated
in the network. Analogously vector c̃ collects the results
of such linear combinations. The idea is to keep the de-
coding as updated as possible aiming at reconstructing
the last N elements of x̃. Nonetheless, the equations
referring to previous versions of a given node are not
invalidated, provided that they fit in the window of
the ν past generations with respect to the most recent
timestamp observed for each information item. Indeed,
given the fact that the nodes are not synchronous, some
outdated information is usually still being propagated by
packets and can be exploited by progressive decoding as
described in the following.

The objective of the proposed decoder is twofold. First,
given all the equations extracted from the packet we
want to decode, the maximum number of information
items x

tj
vj . Moreover, this should be done incremen-

tally while processing the incoming packets. Second, we
propose a strategy to manage the extended decoding
matrix G̃ so as to make the decoding process robust to
asynchronous updates of the information.

At startup G̃, x̃, c̃, a and t are initialized as empty
vectors. At a high level the decoder operates as shown in
Algorithm 1: every received packet RW is processed by
function Decode(RW ) that extracts all the transported
equation/linear combination pairs (eqi, ci). Then the al-
gorithm maps each pair using the extended notation,
and finally runs an incremental version of the Gaussian
Elimination algorithm to insert the new equation in the
linear system.

The function ẽq =Extend_Equation (eq), reported
as Algorithm 2, is designed to progressively update the

Algorithm 1 Decode(RW )

for All (eqi, ci) ∈ RW do
ẽqi = Extend_Equation (eqi)
Insert_Equation(ẽqi, ci)

end for

extended notation, according to the node identities and
information timestamps observed in RW. Each collected
equation eqi is remapped as ẽqi using the actual ex-
tended notation, i.e. the incoming eqi, that is represented
as a list of IDs and timestamps, is formatted as binary
vector with 1 in each position corresponding to the
information XORed in ci and 0 otherwise. Clearly ẽqi
represents a potential row of G̃. Every time a new
identity is observed, the data structures G̃ and c̃ are
extended and the information in vector a, t updated
accordingly. The collected equations referring to obso-
lete information, i.e. elder than ν past generations, are
discarded. On the contrary as soon as a generation
update is observed, i.e. if tj > t[l] (using pseudo code
notation), the Update_Decoder function described in
the following is invoked to re-synchronize the decoding
matrix.

Algorithm 2 ẽq = Extend_Equation (eq)

Initialize ẽq as a vector of (ν + 1)N zeros.
for (vj , tj) ∈ eq do
if !l : a[l] = vj then
{New node is observed for the first time}
N = N + 1
Extend G̃, c̃, Update a, t

else
if t[l]− ν ≤ tj ≤ t[l] then

{Information in managed generation window}
ẽq[l+ (ν − (t[l]− tj))N ] = 1

else if tj > t[l] then
{Update generation}
Update_Decoder(l, tj − t[l])
t[l] = tj
ẽq[l+ (ν − (t[l]− tj))N ] = 1

else
{Obsolete information}
Discard eq

end if
end if

end for

The core of the decoding task is represented
by Algorithm 3, that shows the details of the
Insert_Equation(ẽq, c) function used to populate the
rows of G̃. The goal of function Insert_Equation is
to insert each extended equation ẽq guaranteeing that G̃
remains in upper triangular matrix and that the maxi-
mum number of x

tj
vj are decoded. This latter constraint

is achieved by guaranteeing that the decoding matrix
is filled with linear independent combinations of the
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information and performing partial back substitution on
each row insertion. To this end, the algorithms proposed
in [22], [21] have been extended to operate in the case
of non synchronous information updates. At startup,
matrix G̃ is empty and the incoming equation is simply
inserted as the row corresponding to the position of the
leftmost 1 in the equation, thus guaranteeing that an
upper triangular matrix is formed. The next equations
may find the corresponding row is already taken. In
such a case, the leftmost 1s are progressively canceled by
XOR operations with the matrix rows. At the end of this
process whether the equation hits a still empty row, or all
its 1s are canceled out (the equation is linearly dependent
on the collected rows of G̃ and can be discarded). The
described process guarantees the creation of an upper
triangular G̃. The last part of the algorithm, referred
to as partial back-substitution, aims at progressively
decoding the maximum amount of information items.
This is achieved by combining the equation inserted as
the l-th row of G̃ with all the upper rows that have 1
in column l. As soon as a row with a single 1 on the
diagonal is formed, the corresponding information item
is known. This process has been demonstrated to yield
optimal partial decoding performance in [21].

Algorithm 3 Insert_Equation (ẽq, c)

{Clean all possible 1s from ẽq}
for i from 1 to k(ν + 1) do
if ẽq[i] = 1 and G̃[i][i] = 1 then
ẽq = XOR(ẽq,G̃[i][·])
c = XOR(c,c̃[i])

end if
end for
{Row insertion}
Find position l of leftmost 1 in ẽq
if l ≤ k(ν + 1) then
G̃[l][·] = ẽq {Insert ẽq as l-th row}
c̃[l] = c
{Partial back-substitution}
for i from 1 to l − 1 do
if G̃[i][l] = 1 then
G̃[i][·] = XOR(G̃[i][·],G̃[i][l])
c̃[i] = XOR(c̃[i],c̃[l])

end if
end for

else
delete ẽq, c

end if

Finally, the decoder requires the already mentioned
Update_Decoder(l,∆t) procedure that is used to incre-
ment by ∆t the generation of the node stored in the l-th
row of the decoding matrix. The details of this procedure
are described using pseudo code in Appendix A.

5 RECOVERY TIME MODEL
In this section we provide an analysis of the time re-
quired to spread all the local information to all the
participants in the network, that in the following is
defined as recovery time. In particular, we are interested
in modeling the recovery time as a function of the
size of the local information m, the number of random
walkers generated per node w and number of nodes in
the network N , given the constraint on the maximum
size of the random walk packets DIM . Moreover, the
proposed analytical model permits to compare the coded
approach versus an analogous system without coding,
i.e. when the information is gossiped explicitly. In fact,
the proposed approach degenerates into an uncoded
system if one uses a constant equation degree equal to
one; the packet format of Fig. 1 can hence be changed
removing the di and dF fields, that turn to be useless.

Given the size DIM (in bits) of the transmission
packet, we can suppose that a packet is divided into
two parts: the header and the free space, of size h and
f = DIM −h respectively. From now on, we refer to the
memory occupation, in bits, of an object as its size. In
every equation, we call g the size of the pair (vl, tl) and
m the size of the combined message ci. Following the
packet specification in Fig. 1, we have that the size of a
single equation turns to be eC = di ·g+m, where di is the
degree of the equation. In the following derivation we
perform a mean value approximation assuming that all
equations have the same degree di = d, where d = 2 lnN
[19] is the average degree of LT codes. In the previous
approximation we also considered as negligible the cost
of signaling the value of d. Analogously, the size of
the message gossiped by an uncoded system is simply
eU = g + m, i.e. on every hop a new identity along
with the corresponding local information is added to
the payload of the packet. If we call nU and nC the
maximum number of equations storable in an uncoded
and encoded packet respectively, we have that

nU =

⌊
f

eU

⌋

=

⌊
f

g +m

⌋

, nC =

⌊
f

eC

⌋

=

⌊
f

d · g +m

⌋

.

If we assume to set g = 2 log2 N , i.e. twice the number of
bits required to map N unique identifiers both nU and
nC turn out to be functions of m and N .

In Appendix B we show that is possible to predict
analytically the number of hops TC required to distribute
a certain number of equations RC using the coded
approach. Analogously, the number of hops TU needed
by the uncoded counterpart as a function of the number
of equations RU is derived. The result is as follows:

TU =

{ √

2RU

w if RU < nU (nU−1)
2

RU

wnU
+ nU−1

2 otherwise

TC =

{ √

2dRC

w if RC < dnC(nC−1)
2

RC

wnC
+ dnC−1

2 otherwise

(1)

Our objective is to estimate the number of hops (i.e. the
time) needed by any node to retrieve all the information
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present in the network. Equations (1) can be used to
calculate such a recovery time. In a network of N
nodes, for the encoded case it is theoretically sufficient to
receive RC = N equations in order to enable successful
decoding. On the contrary, for the uncoded case the
number of equations turns to be higher; in fact, this can
be recognized as an instance of the coupon collector’s
problem. In the case of equally distributed coupons,
every node needs about RU = N ·(lnN+ 1

2 ) equations to
collect all the information. However, in our system the
probability of receiving a certain equation is not uniform
and depends on the length and the number of the paths
that connect the nodes; in Sect. 6 we will show that the
coupon collector’s approximation is a lower bound for
the actual performance of the uncoded system. Substi-
tuting RC and RU in (1) one gets the recovery time as a
function of w, DIM , N and nC (or nU ); we shall recall
that in turn nC and nU depend on m and N . In Fig. 2(a)
the recovery time evaluated according to (1) is reported
as a function of m in the case DIM = 1500 bytes, i.e.
a typical value of the maximum size of a UDP packet,
and for a network with N = 1000 nodes. It turns out that
the proposed approach is able to spread the information
much faster than the uncoded counterpart and that the
gap increases for larger information sizes. In Fig. 2(b)
the recovery time is shown when m is fixed to 128 bytes
and the network size is increased. These results point
out that the coded approach scales much better with the
network size, making our solution very attractive for
large distributed systems. Additional analytical results
are reported in Appendix B for conciseness.

6 SIMULATION RESULTS
In this section we present the results obtained through
a simulative study of the proposed approach and the
corresponding uncoded counterpart. The simulator cre-
ates a random network of N nodes; each node is ini-
tially connected to a fixed number Nneigh of neighbors,
randomly sampled among all the participants, i.e., we
create a random regular graph. This amounts to assume
that a common rendez-vous point (e.g., a tracker node)
is available to obtain information on the initial list of
nodes to contact. The information xti=1

vi of each node
is initialized to a random value that can be updated
asynchronously incrementing the corresponding times-
tamp ti. Each node runs the asynchronous LT decoder
described in Sect. 4 with memory parameter ν = 1.
Experiments will show that even such a low memory
parameter permits to outperform the uncoded system.
The simulation time is slotted; at startup each node

initiates w new random walkers, sending w packets to a
set of randomly chosen neighbors. In each time slot T the
packets received by any node at time T − 1 are updated
with a local piece of information and forwarded ran-
domly. The maximum packet size is fixed to 1500 bytes
in all our simulations. As predicted by the analytical
model of Section 5, the parameter w has the only effect

to change the time scale of the results. For conciseness,
in the following we perform all the simulations in the
case w = 1.
The overlay network is managed borrowing ideas

from [23]. The first kind of overlay network we consider
is static meaning that nodes do not churn; nevertheless
we let their neighborhood change with time. In par-
ticular, we start with a random regular graph with N
nodes where each node has Nneigh neighbors. For the
first 3000 time slots, at each time slot 30 random nodes
shuffle their neighborhood by exchanging one random
neighbor. At that point we use the resulting graph to
start the simulation for data delivery and once every
two time slots 30 randomly chosen nodes shuffle their
neighborhood.
We also consider the case of a dynamic network where

the nodes can randomly join and leave. In addition to
the overlay management described for the static network
case (i.e., network initialization and periodical neighbor-
hood change) when a node joins it connects to a random
set of Nneigh nodes. When a node leaves its neighbors
replace it through the described shuffling mechanism.
Moreover, a node that turns off in time slot T does

not forward any packet eventually received at time
T − 1. To keep constant the overall number of packets
in the network ideal signaling is assumed, so as that the
originators of the lost packets can restart new random
walkers at time T + 1. It is clear that the acknowledge-
ment mechanism would be implemented according to a
practical distributed protocol, adding some delay with
respect to the ideal behavior of our simulator. Nonethe-
less, the goal of our analysis being a relative comparison
between the performance of the coded and uncoded
system, we are not interested to add the sub-optimality
of an actual implementation that would equally affect
both approaches.
The system performance is measured in terms of the

amount of information that can be gathered by the
nodes and the time required to achieve the result. In
particular, for each node vl we calculate the percentage
of information retrieved by that node as a function of
time T :

pl(T ) =

N
∑

j=1

⎛

⎝

tj(T )
∑

i=1

decl(i, j)

⎞

⎠

N
∑

i=1

ti(T )

, (2)

where ∀j, tj(T ) is the timestamp achieved by node vj at
time T , and decl(i, j) is a logic variable identifying the
pieces of information currently decoded by node vl. In
particular, decl(i, j) = 1 if vl has recovered the generation
i ≤ tj(T ) of node vj , i.e. if x

tj=i
vj is known by vl at

time T , and equals 0 otherwise. Since
∑N

i=1 ti(T ) sums
to the overall number of data items disseminated in the
network from the beginning of the simulation, the metric
in (2) represents the percentage of overall information
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Fig. 2. Recovery time as a function of m in bits (a) and N (b).
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Fig. 3. Experimental recovery time and analytical model for the coded and un-coded systems as a function of m
(stable network with constant information).

collected by vl at a given time instant. As an index of
the performance of the whole network we use

P (T ) =

∑

l∈A(T )

pl(T )

|A(T )|
, (3)

that is the average value of the previous index computed
on the set of nodes A(T ) that are active, i.e. in the on
state, at time T . In the case of a stable network with
constant information, P (T ) can be used to calculate the
recovery time defined in Section 5; indeed, the recovery
time can be computed as {min(T )|P (T ) = 1}, i.e. the
first time instant when all the nodes of the network
know the overall information. Finally, we recall that all
the numerical results based on the previous definitions
have been averaged over 30 independent trials so as to
compute the confidence interval and guarantee statisti-
cally meaningful values. Every trial uses a different seed
for random generators, thus resulting into statistically

independent outcomes for both the network topology
and nodes behavior.

We start comparing the coded (C) and uncoded (U)
approaches in the simplest configuration, characterized
by a stable network of N = 1000 nodes with Nneigh = 50
and constant information. In this case every node has to
collect N −1 pieces of information owned by the others.
This particular case allows us to validate the analytical
model presented in Section 5. In Fig. 3 we compare
the experimental average recovery time for 5 values of
information size m = 100, 500, 1000, 2000, 3000 bits and
compare them with the analytical model of equation
(1). The experimental results are shown as error bars
reporting the 95% confidence interval whereas the full
and dash lines represent the exact and approximated
version of equation (1), respectively. First of all, it can
be observed that the analytical model is quite accurate
in the C case (right graph), with the exception for the
smallest values of m. As anticipated, the analytical re-
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sults represent a lower bound for the performance of the
U system (left graph). This is due to the coupon collector
approximation adopted for the U model, that assumes
that all data xtl

vl can be gathered by a certain node with
the equal probability. This assumption is clearly violated
for large value of m, since a piece of information is soon
shifted out of the packet body to make room for the new
ones. In other words, every piece of information takes
very few hops in these case. Under this circumstances,
node vl is not able to sample the pieces of information
randomly and the coupon collector approximation does
not hold any more. Another way to explain this phe-
nomenon is that the number of hops performed by a
given piece of information is less than the mixing time of
the graph. In conclusion, this first set of experimental re-
sults from one hand validates our analytical model, from
the other hand confirms the significant advantage of the
coded approach in terms of recovery time. As already
noted, the gap between the 2 approaches increases for
larger information m, or equivalently when decreasing
the maximum transfer unit (DIM ). As an example, for
m = 2000 bits the U solution exhibits a recovery time
of 1739± 420 hops whereas the C solution achieves the
same result in 243± 31 hops.

For the same scenario, in Fig. 4 the value of P (T ),
i.e. the average percentage of collected information, is
shown for various values of m. Looking at this index, it
is possible to observe how the information propagates
into the network as a function of time. The U system
initially collects a great number of innovative pieces of
information, but takes a long time to find the last infor-
mation. On the contrary, the C system, that is initially
penalized by the observation of encoded messages that
do not allow to know the actual information, is able to
recover the whole information much earlier.

More simulation results obtained in scenarios with dy-
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Fig. 4. P (T ) as a function of time for some values of m
(stable network with constant information).

namic network topology and asynchronous information
updates are reported in Appendix C.

7 OTHER APPROACHES
In the following we argue that alternative approaches to
allow nodes of a distributed application to obtain a local
view of some global system property are less effective
and efficient.
The simplest solution to this problem is to have nodes

report their local data to a well-known central repository
node. Access to the global system property defined on
all local data is obtained by sending queries to the
repository that provides the requester node with one
or more responses. This solution is neither scalable nor
resilient: the aggregate request load is equal to λ · N
and if we view the repository node as a server whose
service capacity is equal to µ response/sec we obtain a
load factor ρ = λ·N

µ that quickly becomes greater than
1 leading to queries loss and unbounded delays [24]. A
similar reasoning must be done for the load generated
by asynchronous data updates: the load factor for this
service is ρc =

λc·N
µ where λc is the rate of data update

for a node.
Decentralized solutions might work better. Each node

may spread its local updated information by means of
flooding or gossiping. In flooding each node sends up-
date messages to its neighbors containing the local data
and the current generation number. These neighbors
propagate the update messages to their neighbors up to
a maximum number of hops (the message Time-to-Live).
In gossiping activity is organized in rounds: each node
stores a maximum number of update messages, each
message is forwarded a maximum number of times, and
each time a node forwards a message it randomly selects
a subset of recipient nodes (the number of selected recip-
ients is called fanout). To spread the current generation
version of the local data a node starts a gossiping round.
It is proved that atomic reliable broadcasting, i.e., all
nodes receive the data disseminated by a round initiator,
is achieved with high probability if the fanout is on
average O(logN) taking O(logN) rounds to complete [3].
As a consequence, flooding and gossiping are char-

acterized by high redundancy, i.e., the same update
message can be received several times by the same node,
especially by those with a high number of incoming
connections. This translates into the possibility of nodes
saturating their processing and communication capac-
ities. Indeed, it is easy to show that in the best case
the load factor at each peer is ρc = λc·N

µ , the same
of the centralized solution. Furthermore, this and other
issues in gossiping were discussed in [5] where the
authors explicit numerous hidden assumptions that are
necessary to ensure robustness of gossip-based protocols
and that thus make gossiping not a viable option in the
context we consider in this paper.
In our solution the load factor at each peer is not

dependent on λc and N . To show this we note that
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the probability that a random walk starting at any peer
is at peer v in the long run (the so called mixing time
of the random walk) is equal to |Nneigh(v)|

|E| [25] where
Nneigh(v) denotes the number of neighbors of node v.
This probability is equal to 1

N for random regular graphs,
i.e., when all nodes have the same number of neighbors;
this can be considered a good approximation when the
variance of the number of neighbors is small, e.g., for
classical Erdos-Renyi random graphs. Since the total
number of random walkers is equal to wN it follows
that the average number of walkers at each node in each
time slot is equal to w. This represents a constant and
tunable communication load that can be designed not to
overload peers.

8 CONCLUSION
In this paper we have shown that the recent advances in
rateless coding and decoding can be profitably exploited
to achieve a robust and timely P2P resource location
technique in Grid systems. The major novelty of the
proposed approach lies in the use of network coding
principles in a scenario where local data can be updated
asynchronously. Moreover, as opposed to some forms
of distributed storage proposed in the literature, our
proposal realizes a continuous update of the global
information across the whole distributed system, while
keeping the amount of traffic under control.
From the algorithmic point of view, the major contri-

bution is represented by the design of a novel decoder
for rateless codes that is robust to asynchronous updates
of the information. Another interesting result that we
achieved is the development of a simple analytical model
for the estimation of the time required to spread the
information as a function of the network and information
sizes, given a constraint on the MTU allowed by the
available transmission protocol. Such a model can be
exploited for the estimation of the performance and for
the selection of some important parameters of the sys-
tem. The analytical results show that the proposed coded
approach reduces the time required to communicate all
the information with respect to an analogous system
without coding. Furthermore we prove that such gain
increases with the size of the information to be spread,
or analogously when the MTU shall be very limited.
Another paramount result is that the encoded system
scales better than the uncoded one when the number of
nodes in the distributed system increases.
Finally, the designed simulator shows that the system

is very efficient in many different scenarios characterized
by network dynamics and information updates that
cannot be analyzed with the analytical approach.
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APPENDIX A

In this section we describe the Update_Decoder(l,∆t)
procedure, shown using pseudo code in Algorithm 4.
This function is invoked when a generation update of
the node corresponding to the rows l, l+N, . . . , l+νN of
G̃ is observed. The parameter ∆t ≤ ν represents the gap
between the last two observed generations and typically
equals to 1. The procedure is used to implement a sliding
window mechanism on the decoder data structures. In
particular, the top ∆t rows congruent modulo l are
cleaned up while the remaining rows congruent modulo
l are moved to the upper part of G̃ so as to make room
for the new ∆t versions of the information. The same
process is used to update the vector c̃.

Algorithm 4 Update_Decoder(l,∆t)

for i = l, l+N, . . . , l + (∆t − 1)N do
G̃[i][·] = 0

c̃[i] = 0
end for
for i = l + (∆t)N, l + (∆t + 1)N, . . . , l + νN do

if G̃[i][i] = 1 then
G̃[i−∆tN ][·] = G̃[i][·]
G̃[i][·] = 0

c̃[i −∆tN ] = c̃[i]
c̃[i] = 0

end if
end for

APPENDIX B

In this section we present an analytical approach for
modeling the effectiveness of the proposed approach in
disseminating the information collected by the progres-
sively coded equations. We are interested in finding the
cumulative number of equations distributed by every
packet, as a function of the number of hops T , termed
as NU (T ) and NC(T ) for the uncoded and the encoded
case, respectively. Both the functions depend also on the
number of equations stored in the packet; in fact, the
number of collected equations saturates to the maximum
number that in turn depend on the maximum packet size
DIM . When this limit is reached, the packet is full and
the number of equations remains constant (on average
for the encoded case).

In our proposal, each node is allowed to insert in a
packet only its information. This is due to the risk to
spread not updated information; the only information
that is surely updated is the the one owned by the node.
For an uncoded packet, NU (T ) = 1+2+ · · ·+T = T (T+1)

2
if T < nU , i.e. until the packet is not full; this happens
because at every hop a new piece of information is added
at the packet until the packet is full. When the packet is

full,

NU = 1 + 2 + · · ·+ nU − 1 + nU + · · ·+ nU
︸ ︷︷ ︸

T−(nU−1)

=

= nU (nU−1)
2 + (T − (nU − 1)) · nU =

= nU · (T · nU−1
2 ).

Previous derivation is less trivial in the case of an en-
coded packet: in fact, an equation is completed only once
every d hops on average. Hence the packet is full after
T = (nC−1)·d hops. By setting h = ⌈T/d⌉ and taking into
account that in our proposal partially formed equations
are collected by the nodes, when T < (nC − 1) · d we
have:

NR = 1 + · · ·+ 1
︸ ︷︷ ︸

d

+ · · ·+ (h− 1) + · · ·+ (h− 1)
︸ ︷︷ ︸

d

+

+ h+ · · ·+ h
︸ ︷︷ ︸

T−d(h−1)

=

= dh(h−1)
2 + h(T − d(h− 1)) =

= d ⌈T/d⌉⌊T/d⌋
2 + ⌈T/d⌉(T − d⌊T/d⌋) =

= ⌈T/d⌉
(

T − T⌊T/d⌋
2

)

,

The coded packet is full when T = (nC − 1) · d; in this
case we have,

NR = 1 + · · ·+ 1
︸ ︷︷ ︸

d

+ · · ·+ (nC − 1) + · · ·+ (nC − 1)
︸ ︷︷ ︸

d

+

+nC + · · ·+ nC
︸ ︷︷ ︸

T−(nC−1)·d

=

= d · nC(nC−1)
2 + (T − (nC − 1) · d) · nC =

= nC · (T − d · nC−1
2 ).

We can summarize the obtained results as follows:

NU =

{
T (T+1)

2 if T < nU

nU

(

T − nU−1
2

)

otherwise

NC =

{

⌈T/d⌉(T − d⌊T/d⌋
2 ) if T < (nC − 1)d

nC

(

T − dnC−1
2

)

otherwise

(4)

Taking into account that every node creates w packets,
it turns that the global number of equations spread in a
network of N nodes after T hops is on average w · N ·
NC(T ) (w ·N ·NU (T ) in the uncoded case). If the G(V,E)
is regular, i.e. the distribution of the edges is peaked
around its average, the equations hit any node with the
same probability and therefore each node receives on
average RC = w·N ·NC(T )

N = w · NC(T ) equations (RU =
w ·NU (T ) in the uncoded case). Summarizing we get

RU =

{

wT (T+1)
2 ≃ wT 2

2 if T < nU

wnU

(

T − nU−1
2

)

otherwise

RC =

{

w⌈T/d⌉(T − d⌊T/d⌋
2 ) ≃ wT 2

2d if T < (nC − 1)d
wnC

(

T − dnC−1
2

)

otherwise
(5)

where we introduce some linear approximations to sim-
plify the following analysis. Using such approximations,
it is possible to reverse the functions obtaining the
number of hops needed to distribute a certain number of
equations, i.e. T as a function of RU and RC , obtaining
the result in Equation (1).
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(a) WU (b) WC

Fig. 5. WU and WC as a function of T and m.

The recovery time model can be used to fix the value
of the parameter w (the number of packets created per
node). Reversing (5) it is indeed possible to calculate the
minimum value of w that probabilistically guarantees to
retrieve all the information within a time interval T . Such
minimum values turn to be:

WU =

{
2RU

T (T+1) if T < nU
2RU

nU (2T−nU+1) otherwise

WC =

{
2RC

⌈T/d⌉(2T−d⌊T/d⌋) if T < (nC − 1)d
2RC

nC(2T−d(nC−1)) otherwise

(6)

for the uncoded and encoded approaches respectively.
Equations 6 are shown in Fig. 5 as a function of m and
T under the hypothesis of N = 1000 and DIM = 1500
bytes. Again, for large values of m the advantage of the
encoded system is apparent, i.e. the same performance
in terms of recovery time requires much less network
traffic.

APPENDIX C
In the following we extend the simulative investigation
to configurations characterized by a dynamic network
topology and asynchronous information updates. In this
case it is not possible to define the full recovery time.
As a consequence, our analysis will be based on the
simulative results, and in particular on the behavior of
the index P (T ).
The first case that we are interested in is that of a stable

network where the nodes can change their information.
In this scenario, we suppose that every tc time slots
nc randomly chosen nodes update their information.
The system performance clearly depends on the rate
of the information update rc = tc

nc
: if the information
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C, rc=1/1
U, rc=1/1
C, rc=1/2
U, rc=1/2

Fig. 6. P (T ) for different rc, with N = 1000 nodes,
Nneigh = 50 and m = 1000 (stable network and dynamic
information).

changes very frequently it is not possible to retrieve all
the information on time unless we increase the network
traffic, i.e. the value of w. In Fig. 6 P (T ) is shown for
various values of the rate rc, in a network of N = 1000
nodes, Nneigh = 50 and m = 1000. It can be noted that
the C system is more robust to the information update
that the U one for all the investigated rates rc. As an
example in the case rc = 2/1, i.e. every 2 time slots a
node change the information, the C system approaches
a 100% recovery of the information in about 200 time
slots; on the contrary, the U counterpart not only takes
almost double of the time to saturate to its maximum
performance, but the achieved recovery is limited to
slightly more than 90%.
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(a) rl =
25
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(b) rl =
50

20

Fig. 7. P (T ) for various values of m and rl with N = 1000, Nneigh = 50 (dynamic network and constant information)
.

Let us now investigate the effect of network dynamics.
In this case we create a G(V,E) with N = 1000 nodes
willing to broadcast their local information. A randomly
chosen set of il nodes is started in the off state; every
tl time slots nl nodes pass from off to on state, i.e.
join the overlay, and the same number of nodes do the
opposite, thus keeping constant the number of active
nodes |A(T )| = N − il. In all the following simulations
we let the rate of network dynamics, defined as rl =

tl
nl
,

vary and we fix il = 5nl.
In Fig. 7 P (T ) is reported, showing that the proposed

system is robust also to network dynamics. It can be
noted that when rl = 25/20 and m = 2000 the recovery
times for C and U are about 500 and 1000 hops, whereas
increasing the network dynamic to rl = 50/20 we get
750 and 1250 hops, respectively. As in all other scenarios,
the advantage of the C approach is more significant for
larger m.
Finally, in Figs. 8 and 9 network dynamics and asyn-

chronous information updates are considered jointly. In
Fig. 8 P (T ) is shown for the case of m = 2000 for
various ratios rl and fixing the information change rate
to rc = 50

20 . As expected, the more the information in
the network changes the more the system has difficulty
in retrieving the complete information. However, the C
system consistently outperforms the U system. In Fig. 9,
rc = 50

20 and rl = 1
1 are fixed, and we let m vary. As

already noted, the gain of C over U increase for larger
values of m.
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Fig. 8. P (T ) in the case m = 2000, rc = 50
20 for various

values of rl (dynamic network and information).
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Fig. 9. P (T ) in the case rl = 1
1 and rc = 50

20 for various
values of m (dynamic network and information).


