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Numerical integration on multivariate scattered data by Lobachevsky splines

Giampietro Allasia, Roberto Cavoretto, Alessandra De Rossi

Department of Mathematics “G. Peano”, University of Turin, via Carlo Alberto 10, I–10123 Turin, Italy

Abstract

In this paper we investigate numerical integration on multivariate scattered data by a class of spline functions, called

Lobachevsky splines. Starting from their interpolation properties, we focus on the construction of new quadrature

and cubature formulas. The use of Lobachevsky splines takes advantages of their feature of being expressible in the

multivariate setting as a product of univariate functions. Numerical results using Lobachevsky splines turn out to be

interesting and promising for both accuracy and simplicity in computation. Finally, a comparison with radial basis

functions (RBFs) confirms the validity of the proposed approach.
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1. Introduction

In the last decades, the topic of numerical integration from scattered data has gained popularity in various areas of

applied mathematics and scientific computing such as multivariate interpolation, approximation theory, and computer

physics (see [7, 12, 15, 16, 18, 19]), although it has been much less developed with respect to the construction of

integration formulas on nodes with a prefixed distribution (see, e.g., [11]).

Here, we consider the problem of constructing new integration formulas for multivariate scattered data by a class of

spline functions, called Lobachevsky splines [4]. These consist in an infinite sequence of univariate spline functions

depending on a shape parameter, which are compactly supported, strictly positive definite and enjoy noteworthy

theoretical and computational properties, like the convergence of sequences of Lobachevsky splines to Gaussian

functions and the convergence of sequences of their integrals and derivatives to integrals and derivatives of Gaussians.

Starting from the interpolation results in [4], where application of Lobachevsky splines shows good perfor-

mance of stability and accuracy in univariate and multivariate scattered data interpolation, we here extend the use

of Lobachevsky splines to numerical integration. The idea of using Lobachevsky splines to construct integration

formulas on scattered data turns out to be quite natural, not only for the recent interest in meshfree or meshless nu-

merical cubature by splines and radial basis functions (RBFs), but also for effectiveness and simplicity in computation

of Lobachevsky spline integrals. In fact, Lobachevsky spline interpolation formulas take advantages of their feature of

being expressible in the multivariate setting as a product of univariate functions. This makes simple the computation

of multidimensional integrals: the integrand function is firstly approximated by a Lobachevsky spline interpolation

formula, then the integrand is evaluated as a product of univariate integrals. This feature is interesting because other

powerful and effective techniques of integration on scattered data such as RBFs, with the exception of the Gaussian,

cannot be simply integrated and efficiently evaluated in high dimensions [18]. Moreover, we remark that Lobachevsky

spline interpolation formulas are noteworthy because, besides being neither tensor product formulas (no grid/mesh is

here considered) nor radial ones, they asymptotically behave like Gaussian interpolants (see [4]). This feature to-

gether with the uniform convergence of Lobachevsky splines to Gaussians allow us to give error estimates of cubature

formulas, directly extending the results deduced in [18] for RBFs. Numerical tests point out that Lobachevsky splines
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are comparable in accuracy with Gaussians (and RBFs, in general), but they are usually much better conditioned than

Gaussians.

The paper is organized as follows. In Section 2 we recall the analytic expressions of Lobachevsky splines and some

of their properties. Section 3 refers to Lobachevsky spline interpolants. In Section 4 we construct new integration

formulas based on Lobachevsky spline interpolants, which are expressed in the multivariate setting as a product of

univariate functions. Section 5 contains an error analysis of Lobachevsky spline cubature formulas, discussing the role

of two crucial parameters, i.e. the spectral norm of the inverses of interpolation matrices and the 1–norm of the weight

vectors. In Section 6 we report several numerical results in order to show accuracy and stability of Lobachevsky spline

interpolation formulas computing integration errors and condition numbers; all these experiments are also performed

on RBFs for a comparison. Finally, Section 7 deals with conclusions and future work.

2. Lobachevsky splines

We consider a class of spline functions, called Lobachevsky splines, arising in probability theory [14, 17] and

proposed for multivariate interpolation on scattered data in [1, 4] and for landmark-based image registration in [2, 5, 6].

Given an infinite sequence of random variables X1, X2, . . ., which are independent and uniformly distributed on

[−a, a], a ∈ R
+, Lobachevsky splines are the sequence of the density functions { f ∗n (x), n = 1, 2, . . .} of the reduced

sum of the first n random variables

S ∗n =
X1 + X2 + · · · + Xn

a

√

n

3

.

To get an explicit expression of f ∗n it is convenient referring to the density function fn of the random variable

S n = a
√

n
3
S ∗n. The functions fn and f ∗n are related by

f ∗n (x) = a

√

n

3
fn

(

a

√

n

3
x

)

.

Both f ∗n and fn have compact supports, which are on [−
√

3n,
√

3n] and [−na, na], a ∈ R
+, respectively. Now, fn is

given by the convolution product

fn(x) =

∫ +∞

−∞
f1(u) fn−1(x − u)du =

1

2a

∫ +a

−a

fn−1(x − u)du,

because by definition f1(x) = 1/(2a) for −a ≤ x ≤ +a, and f1(x) = 0 elsewhere. Setting x − u = t, we get the

recurrence formula

fn(x) =
1

2a

∫ x+a

x−a

fn−1(t)dt, n = 2, 3, . . .

Thus, reasoning by induction, we may express fn, for n = 1, 2, . . ., by the formula

fn(x) =
1

(2a)n(n − 1)!

n
∑

k=0

(−1)k
(n

k

)

[x + (n − 2k)a]n−1
+ , (1)

where the truncated power function (x)+ is defined as x for x > 0 and 0 for x ≤ 0. Sometimes it may be convenient to

consider a different form of (1), namely

fn(x) =
1

(2a)n(n − 1)!

⌊

na+x
2a

⌋

∑

k=0

(−1)k
(n

k

)

[x + (n − 2k)a]n−1, (2)

for −na ≤ x ≤ na, and fn(x) = 0 otherwise, where ⌊·⌋ means the greatest integer less than or equal to the argument.

2



The piecewise function fn is graphically represented by arcs of parabolas of degree n−1; the first n−2 derivatives

of different arcs of parabolas are equal at the knots, i.e. fn ∈ Cn−2[−na, na]. Moreover, fn is an even function with

support [−na, na] and a strictly positive definite function for even n ≥ 2.

From a computational viewpoint it is convenient to evaluate fn starting from the pieces defined on [−na, 0] and

then obtain the pieces on [0, na] by symmetry. Moreover, each piece on [−na, 0] can be obtained by the preceding one

by simply adding a term, as clearly appears from (2).

Lobachevsky splines satisfy a three-term recurrence relation for n = 2, 3, . . ., namely,

fn(x) =
1

2a(n − 1)

[

(na + x) fn−1(x + a) + (na − x) fn−1(x − a)
]

. (3)

Note that, for computational reasons, f1 in (3) must be taken in the interval [−a, a[.

From the central limit theorem in the local form (see, e.g., [14, 17]) we have that the sequence of Lobachevsky

splines { f ∗n (x), n = 1, 2, . . .} converges for n→ ∞ to the standardized normal density function, i.e.

lim
n→∞

f ∗n (x) =
1
√

2π
exp
(−x2

2

)

, (4)

and moreover the convergence is uniform for all x ∈ R.

Significant convergence properties are also satisfied by integrals and derivatives of Lobachevsky splines. From

the central limit theorem for the convergence in distribution (see, e.g., [17]) we have that the sequence of distribution

functions {Φ∗n(x), n = 1, 2, . . .} converges for n→ ∞ to the standardized normal distribution function, that is

lim
n→∞

∫ x

−∞
f ∗n (t)dt = lim

n→∞

∫ x

−∞
a

√

n

3
fn

(

a

√

n

3
t

)

dt =

∫ x

−∞

1
√

2π
exp
(−t2

2

)

dt,

whereas the explicit form of Φn(x) is

Φn(x) =
1

(2a)nn!

n
∑

k=0

(−1)k
(n

k

)

[x + (n − 2k)a]n
+,

and

Φ∗n(x) = Φn

(

a

√

n

3
x

)

.

The asymptotic behaviour of derivatives of Lobachevsky splines is described by the following result [8]

lim
n→∞

Dk f ∗n (x) = lim
n→∞

Dk
[

a

√

n

3
fn

(

a

√

n

3
x

)]

= Dk
[

1
√

2π
exp
(−x2

2

)

]

,

that is, k being a fixed integer, the sequence Dk f ∗n (x), n = k + 2, k + 3, . . ., of the k-th derivatives of f ∗n (x) converges to

the k-th derivative of the standardized normal density function.

Remark 2.1. It is well-known in approximation theory that using Gaussians it is convenient to introduce a shape

parameter α. This trick can be conveniently applied to Lobachevsky splines by rescaling x to αx and considering

f ∗n (αx) instead of f ∗n (x), the support being given by [−
√

3n/α,
√

3n/α]. Using the shape parameter α as a factor

has the effect that a decrease of the shape parameter produces flat basis functions, while increasing α leads to more

peaked (or localized) basis functions. The same result can be achieved considering fn(x) and acting on the parameter

a. Numerical computations show that the approximation performance obtained by f ∗n (αx) or fn(x) are practically

equivalent, if the values of the parameters α and a are conveniently chosen [10].

Remark 2.2. Since Lobachevsky splines are (univariate) strictly positive definite functions for even n ≥ 2, we may

construct multivariate strictly positive definite functions from univariate ones (see, e.g., [20]), expressing them as

products of Lobachevsky splines [4].
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3. Interpolation by Lobachevsky splines

Let us consider a continuous function g : Ω → R on a compact domain Ω ⊂ R
d, d ≥ 1, a set X = {xi =

(x1i, x2i, . . . , xdi), i = 1, 2, . . . ,N} ⊂ Ω of scattered data, and the vector g = {g(xi), i = 1, 2, . . . ,N} of the corresponding

function values. To shorten notations, we develop the argument for d = 2, since it is not restrictive.

For even n ≥ 2, we construct the Lobachevsky spline interpolant of g at the nodes (x1i, x2i)

Fn(x1, x2) =

N
∑

j=1

c jφn, j(x1, x2), (x1, x2) ∈ Ω, (5)

requiring Fn(x1i, x2i) = g(x1i, x2i), i = 1, 2, . . . ,N. The interpolant Fn is a linear combination of products of univariate

shifted and rescaled functions f ∗n

φn, j(x1, x2) ≡ φn, j(x1, x2;α) = f ∗n (α(x1 − x1 j)) f ∗n (α(x2 − x2 j)), (6)

with

f ∗n (α(xi − xi j)) =

√

n

3

1

2n(n − 1)!

n
∑

k=0

(−1)k
(n

k

)

[
√

n

3
α(xi − xi j) + (n − 2k)

]n−1

+

, (7)

and α ∈ R+ being a shape parameter. The coefficients c = {c j} are computed by solving the linear system

Ac = g, (8)

where the interpolation matrix

A = {ai, j} = {φn, j(x1i, x2i)}, i, j = 1, 2, . . . ,N, (9)

is symmetric and depends on the choice of n and α in (6). Since Lobachevsky splines are strictly positive definite for

any even n ≥ 2, the interpolation matrix A in (9) is positive definite for any set of distinct nodes.

Finally, we remark that from (4) we have

lim
n→∞

f ∗n (αx1) f ∗n (αx2) =
1

2π
exp













−α2(x2
1
+ x2

2
)

2













.

Hence, Lobachevsky splines asymptotically behave like radial functions, though they are not radial in themselves.

4. Integration by Lobachevsky splines

Now we consider the problem of computing an approximate value of the integral

I(g) =

∫

Ω

g(x) dx, x ∈ Ω ⊂ R
d.

A way to solve this problem consists in integrating a formula of type (5), which interpolates the given data, that is,

I(g) ≈ I(Fn) =

∫

Ω

N
∑

j=1

c jφn, j(x)dx =

N
∑

j=1

c j

∫

Ω

φn, j(x)dx =

N
∑

j=1

c jI(φn, j). (10)

For simplicity we limit us to consider numerical cubature on the unit square Ω = [0, 1]2 ⊂ R
2, but it would be

possible to work on hypercubes Ω ⊂ R
d, d ≥ 3, as well. Hence, on [0, 1]2 we have

I(φn, j) =

∫ 1

0

∫ 1

0

φn, j(x1, x2) dx1dx2 =

∫ 1

0

f ∗n (α(x1 − x1 j)) dx1

∫ 1

0

f ∗n (α(x2 − x2 j)) dx2.
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Thus, the problem is reduced to the evaluation of the two integrals

∫ 1

0

f ∗n (α(x1 − x1 j)) dx1 and

∫ 1

0

f ∗n (α(x2 − x2 j)) dx2.

Considering the i-th integral, we obtain by (7)

∫ 1

0

f ∗n (α(xi − xi j)) dxi =

√

n

3

1

2n(n − 1)!

n
∑

k=0

(−1)k
(n

k

)

∫ 1

0

[
√

n

3
α(xi − xi j) + (n − 2k)

]n−1

+

dxi. (11)

Thus we have to compute integrals of the form

∫ 1

0

[
√

n

3
α(xi − xi j) + (n − 2k)

]n−1

+

dxi, j = 1, 2, . . . ,N. (12)

Since

[
√

n

3
α(xi − xi j) + (n − 2k)

]n−1

+

=































[
√

n

3
α(xi − xi j) + (n − 2k)

]n−1

, if xi > xi j −
√

3

n
(n − 2k)/α,

0, otherwise,

(13)

we have to consider three cases:

i) xi j −
√

3

n
(n − 2k)/α ≥ 1,

ii) xi j −
√

3

n
(n − 2k)/α ≤ 0,

iii) 0 < xi j −
√

3

n
(n − 2k)/α < 1.

(14)

Hence, according to which condition in (14) is satisfied, the integrals in (12) assume different values as follows:

• If the values of the parameters n, k, α are such that i) is satisfied, the function in (13) is identically equal to zero

in [0, 1]. Hence, integral (12) is zero.

• If n, k, α are such that ii) is satisfied, the integration domain [0, 1] is completely contained in the support of the

function to be integrated and so integral (12) gives

∫ 1

0

[
√

n

3
α(xi − xi j) + (n − 2k)

]n−1

dxi =

[
√

n

3
α(1 − xi j) + (n − 2k)

]n

√

n

3
αn

−

[
√

n

3
α(−xi j) + (n − 2k)

]n

√

n

3
αn

.

• If n, k, α are such that iii) is satisfied, only a part of the integration domain [0, 1] is contained in the support of

the function to be integrated and therefore integral (12) is

∫ 1

xi j−
√

3
n

(n−2k)/α

[
√

n

3
α(xi − xi j) + (n − 2k)

]n−1

dxi =

[
√

n

3
α(1 − xi j) + (n − 2k)

]n

√

n

3
αn

.
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Thus, we may approximate a double integral by evaluating two simple integrals, whose integrands are given by

polynomial functions of degree n − 1.

An alternative way to evaluate integral (11) of Lobachevsky splines is given by the relation

∫ 1

0

f ∗n (α(xi − xi j)) dxi =
1

α

[

Φ∗n(α(1 − xi j) − Φ∗n(α(−xi j))
]

. (15)

It can be easily shown that the formulation in (15) is numerically equivalent to (11) including the three cases in

(14), but it is computationally more efficient.

5. Error analysis

In this section we develop an error analysis of the Lobachevsky spline integration formulas, which is firstly based

on the uniform convergence of Lobachevsky splines to the Gaussian. Then, to get a more refined analysis, we discuss

the role of some critical quantities.

By Hölder inequality, we have for Ω ⊂ R
d

|I(g) − I(Fn)| ≤ ‖g − Fn‖L1(Ω) ≤
√

meas(Ω) ‖g − Fn‖L2(Ω) ≤ meas(Ω) ‖g − Fn‖∞ . (16)

From the uniform convergence of the Lobachevsky splines to the Gaussian G (the standardized normal density func-

tion) we have for any ǫ ∈ R+

|G − Fn| < ǫ/2,

provided n is sufficiently large. Similarly, from the uniform convergence of Gaussian interpolant (see, e.g., [20]) it

follows

|g −G| < ǫ/2,

if the so-called fill distance of the interpolation nodes (the radius of the largest inner empty disc)

h = sup
x∈Ω

min
xi∈X
‖x − xi‖2

is sufficiently small. Thus, by (16) I(Fn) converges to I(g) under the mentioned conditions on n and h. The conver-

gence rate depends on the regularity degree of both the chosen Lobachevsky spline and the function g; in particular,

for sufficiently regular g, |I(g) − I(Fn)| may decrease exponentially as h → 0 (see, e.g., [13]). Moreover, the conver-

gence rate may depend on the form of the domain Ω, which is generally required to satisfy an interior cone condition

(see, e.g., [9]).

Though the convergence result turns out to be interesting, in order to have more useful information for the imple-

mentation, we make a detailed analysis of the error of the integration formula (10), writing it by (8) in the form

I(g) ≈ I(Fn) = 〈c, I〉 =
〈

A−1g, I
〉

= 〈g,w〉 =
N
∑

j=1

w jg j, (17)

with

Aw = I, (18)

where 〈·, ·〉 denotes the scalar product in R
d, and I = {I(φn, j)}1≤ j≤N is the vector of integrals of Lobachevsky splines.

In particular, we note that the quantity
∑

j

∣

∣

∣w j

∣

∣

∣ plays a central role both in the study of the integration error and in

the effect of perturbations in the data values [18]. Moreover, from the computational viewpoint the common trouble of

Gaussian ill-conditioning is significantly reduced for Lobachevsky splines, and the errors obtained by approximating

the integral I = {I(φn, j)}1≤ j≤N are not so much influenced as for Gaussians by the computed weights via the numerical
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solution of the linear system (8). In fact, for small values of n Lobachevsky splines are much better conditioned than

Gaussians [4].

Now, referring to integration formulas in (17) and (18), we must take into account the presence of errors in the

evaluation of the integrals of Lobachevsky splines, i.e.

{Ĩ(φn, j)} = Ĩ ≈ I,

which generates a vector w̃ of approximate weights and, starting from (17), a perturbed integration formula

Ĩ(Fn) = 〈c, Ĩ〉 = 〈g, w̃〉 =
N
∑

j=1

w̃ jg j,

where w̃ = A−1Ĩ.

In error investigation it must be considered the parameter ‖A−1‖2, which measures the sensitivity to perturbations

of the interpolation processes based on the Gaussian or Lobachevsky splines. Now, in the literature lower bounds for

the smallest eigenvalue of the interpolation matrix A of the Gaussian have been extensively studied (see, e.g., [20]),

providing upper bounds for ‖A−1‖2 in terms of the so-called separation distance of the nodes

q =
1

2
min
i, j

∥

∥

∥xi − x j

∥

∥

∥

2
.

When q tends to zero, it happens that ‖A−1‖2 diverges exponentially and A tends to become singular due to collapsing

of two rows. Fortunately, the theoretical upper bounds for ‖A−1‖2 are strongly conservative in the Gaussian interpo-

lation and the use of the Gaussian for numerical cubature is not compromised, as it is clearly shown by numerical

experiments. Considering the convergence property of Lobachevsky splines to the Gaussian, we can reasonably ex-

pect that the upper bounds for ‖A−1‖2 relating to Lobachevsky splines are closed to Gaussian ones; in fact, numerical

test show that in the case of Lobachevsky splines the values assumed by ‖A−1‖2 are quite acceptable and, generally,

considerably smaller than those of the Gaussian.

Hence, an error estimate of the Lobachevsky spline integration formula (17) may be expressed as follows

|I(g) − 〈w̃, g〉| ≤ |I(g) − 〈w, g〉| + |〈w − w̃, g〉| = |I(g) − I(Fn)| + |A−1〈I − Ĩ, g〉|
≤ ‖g − Fn‖L1(Ω) + ‖A−1(I − Ĩ)‖2‖g‖2 ≤ meas(Ω) ‖g − Fn‖∞ + ‖A−1‖2‖I − Ĩ‖2‖g‖2.

Finally, we take into account the effect of perturbations on the data values, that is, we consider the perturbed data

{g̃(x j)} = g̃ ≈ g.

Hence, we may estimate the error of the perturbed Lobachevsky spline integration formula 〈w̃, g̃〉 as follows

|I(g) − 〈w̃, g̃〉| ≤ |I(g) − 〈w, g〉| + |〈w, g〉 − 〈w̃, g̃〉| ≤ |I(g) − 〈w, g〉| + |〈w, g − g̃〉| + |〈w − w̃, g̃〉| , (19)

where

a) since Lobachevsky integration formula is exact for every function z(x) in the Lobachevsky spline space asso-

ciated to X = {x j, j = 1, 2, . . . ,N}, namely I(z) = 〈w, z〉, z ∈ span{φn, j}1≤ j≤N , z = {z(x j), j = 1, 2, . . . ,N}, we

have

|I(g) − 〈w, g〉| ≤ |I(g) − 〈w, z〉| + |〈w, z〉 − 〈w, g〉| = |I(g) − I(z)| + |〈w, z − g〉| , (20)

b)

|〈w, g − g̃〉| =

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

w j(g j − g̃ j)

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

max
1≤ j≤N

{g j − g̃ j}
N
∑

j=1

w j

∣

∣

∣

∣

∣

∣

∣

∣

≤ max
1≤ j≤N

|g j − g̃ j|
N
∑

j=1

∣

∣

∣w j

∣

∣

∣ = ‖g − g̃‖∞‖w‖1, (21)
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being ‖w‖1 =
∑N

j=1

∣

∣

∣w j

∣

∣

∣.

c)

|〈w − w̃, g̃〉| = |〈A−1I − A−1Ĩ, g̃〉| = |〈A−1(I − Ĩ), g̃〉| ≤ ‖A−1‖2‖I − Ĩ‖2‖g̃‖2. (22)

Thus, using (20), (21), and (22), the error estimate (19) is

|I(g) − 〈w̃, g̃〉| ≤ |I(g) − I(z)| + |〈w, z − g〉| + ‖g − g̃‖∞‖w‖1 + ‖A−1‖2‖I − Ĩ‖2‖g̃‖2
≤ meas(Ω) ‖g − z‖∞ + ‖z − g‖∞‖w‖1 + ‖g − g̃‖∞‖w‖1 + ‖A−1‖2‖I − Ĩ‖2‖g̃‖2
≤ (meas(Ω) + ‖w‖1) ‖g − z‖∞ + ‖g − g̃‖∞‖w‖1 + ‖A−1‖2‖I − Ĩ‖2‖g̃‖2
≤ (meas(Ω) + ‖w‖1)EX,φn

(g) + ‖g − g̃‖∞‖w‖1 + ‖A−1‖2‖I − Ĩ‖2‖g̃‖2,

where EX,φn
(g) = infz∈span(φn, j) ‖g − z‖∞.

It must be remarked once more that the above considered error estimates are theoretically interesting, but poorly

significant for a particular integral evaluation being very conservative. Hence, a large number of numerical experi-

ments offers a more precise picture of the performance of the proposed integration formulas.

6. Numerical results

In this section we report the results of an extensive and detailed investigation on testing and verifying accuracy

and effectiveness of Lobachevsky spline integration formulas on various sets X of scattered data, which are given by

Halton points [13] of dimension N = (2k + 1)d, k = 3, 4, contained in Ω = [0, 1]d ⊂ R
d, for d = 1, 2. In particular,

we consider integration formulas obtained by Lobachevsky spline interpolants for n = 2, 4, 6, 8, 10 (denoted by L2,

L4, L6, L8, and L10, respectively). Moreover, to have an efficient evaluation of the integrals, we conveniently exploit

some features of Lobachevsky spline functions such as (univariate) radial symmetry and separation of variables.

Here, as an example, we only report the results obtained by taking the well-known Franke’s test function (see,

e.g., [3])

g(x1, x2) =
3

4
exp

[

− (9x1 − 2)2 + (9x2 − 2)2

4

]

+
3

4
exp

[

− (9x1 + 1)2

49
− 9x2 + 1

10

]

+
1

2
exp

[

− (9x1 − 7)2 + (9x2 − 3)2

4

]

− 1

5
exp
[

−(9x1 − 4)2 − (9x2 − 7)2
]

,

which, in the univariate case, is restricted setting x2 = 0.5. However, we remark that several numerical experiments

(not reported here for brevity) have been carried out using other test functions and the results show a uniform behavior.

First, in Tables 1 and 4 we point out integration errors obtained by varying the value of the shape parameter

α ∈ [2, 10], whose variation influences the quality of approximation. Nevertheless, numerical tests show a good level

of accuracy for any value of α also when we use Lobachevsky splines of low degree and smoothness, such as L2, L4

and L6. This highlights reliability and robustness of Lobachevsky spline integration formulas.

Then, using the norm function of MATLAB, we compute the values of two important parameters of Lobachevsky

spline integration, i.e. the spectral norm ‖A−1‖2, which measures the absolute conditioning of the interpolation and

integration equations (see Tables 2 and 5), and the 1–norm ‖w̃‖1, which leads to an approximation analysis and

measures the conditioning of the integration formula (see Tables 3 and 6). In particular, for each of the Lobachevsky

splines we observe that increasing the shape parameter produces peaked or localized basis functions with the effect of

better conditioning, but losing accuracy (and vice versa). Note that, the values of quantities ‖A−1‖2 and ‖w̃‖1 strongly

depend on the distribution of nodes, whereas they are independent of function values.

For a comparison we have also made several tests by considering some of the most known RBFs, that is,

exp(−α2r2/2), Gaussian (G)

(1 + α2r2/2)−1/2, Inverse MultiQuadric (IMQ)

(1 + α2r2/2)1/2, MultiQuadric (MQ)

(1 − δr)4
+(4δr + 1), Wendland C2 compactly supported (W2)

r2 log r, Thin Plate Spline (TPS)
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where α, δ ∈ R+ are shape parameters, and r = ||x − xi||2. We recall that G, IMQ and W2 are strictly positive definite

functions, while MQ and TPS are conditionally strictly positive definite ones. Thus, in the latter cases the addition of

a polynomial term of degree zero to MQ, and of degree one to TPS, is required to guarantee existence and uniqueness

of the interpolant. Note that TPS is shape parameter free, since its use does not produce a significant change in results

(see [13]). For details on the integration of RBFs we refer to the interesting paper [18], which explores potentialities

and drawbacks of this approach. At our knowledge, this paper seems to be the first which gives a sistematic discussion

on the topic.

Thus, in Table 7 we report errors obtained by using RBFs, while Tables 8 and 9 contain information on the

conditioning of RBF interpolant and cubature formulas, respectively.

Analyzing Tables 4–9 we see that Lobachevsky splines are comparable in accuracy with Gaussians (and other

RBFs in general), even if they are usually much better conditioned than Gaussians. Here, however, it is appropriate

to remark that our numerical tests by varying the shape parameters α and δ are purely indicative, since only for

Lobachevsky splines and Gaussians we may have a direct correspondence between their shape parameters. Moreover,

as regards to compactly supported Wendland functions of smoothness 2 a comparison with Lobachevsky splines

should be carried out taking the L4, which has the same degree of regularity. In such a case, without expecting to be

too precise for the reasons described above, we may note comparable results for accuracy and stability, because both

errors and conditioning have the same orders of magnitudine.

Finally, several experiments show that CPU times of Lobachevsky spline cubature formulas are in general much

lower than those of RBF cubature formulas, with the exception of the Gaussian case. In fact, Lobachevsky spline (and

Gaussian) integrals take advantages of being evaluated as products of univariate integrals.

N α L2 L4 L6 L8 L10

2 3.2588E − 03 2.6771E − 03 2.3348E − 04 5.4080E − 03 6.8696E − 03

4 2.4473E − 03 5.1717E − 04 3.0110E − 03 2.0553E − 03 1.9817E − 03

9 6 7.3948E − 03 1.1617E − 03 1.4853E − 03 6.3619E − 04 2.0463E − 04

8 1.2175E − 02 2.9818E − 03 1.6647E − 03 1.4512E − 03 1.6162E − 03

10 1.5159E − 02 5.7560E − 03 4.5567E − 03 4.8402E − 03 5.0095E − 03

2 8.8379E − 04 9.6471E − 06 2.9493E − 04 1.8803E − 04 1.2822E − 04

4 6.3940E − 04 8.0798E − 04 1.1069E − 04 7.4175E − 05 1.3221E − 04

17 6 2.2271E − 03 2.4944E − 04 1.4088E − 05 1.3420E − 05 1.3241E − 05

8 3.2797E − 03 3.2388E − 04 1.3759E − 04 5.4048E − 05 2.7913E − 05

10 4.5335E − 03 4.8002E − 04 2.5752E − 04 1.6262E − 04 1.7146E − 04

Table 1: Errors of Lobachevsky spline quadrature formulas computed on Halton points.

7. Conclusions

In this paper we propose the use of a class of piecewise polynomials, called Lobachevsky splines, in numerical

integration of multivariate scattered data. Thus, after recalling analytic expressions of Lobachevsky splines and their

noteworthy convergence properties, we construct new integration formulas based on Lobachevsky spline interpolants,

which are expressed in the multivariate setting as a product of univariate functions. This feature makes effective and

simple the computation of integrals, since each term of Lobachevsky splines are univariate polynomials and variables

are independent and separable. Moreover, we have given an error analysis of Lobachevsky spline cubature formulas,

discussing the role of two crucial parameters like the spectral norm of the inverses of interpolation matrices and the 1–

norm of the computed weight vectors. Several numerical tests have confirmed the goodness of the proposed approach

in univariate and bivariate setting, referring not only to accuracy (errors) and stability (conditioning) of Lobachevsky

splines but also carring out a comparison with RBFs.

Finally, as regards to research and future work we are interested in efficiently extending the use of Lobachevsky

spline integration formulas on scattered data to more general domains.
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N α L2 L4 L6 L8 L10

2 7.7660E + 01 1.5678E + 04 1.0745E + 06 3.5978E + 07 8.9856E + 08

4 4.1503E + 01 2.9330E + 03 2.7549E + 04 3.6286E + 05 4.2038E + 06

9 6 2.9600E + 01 7.4263E + 02 9.9096E + 03 7.5550E + 04 8.0529E + 04

8 2.4326E + 01 4.3273E + 02 2.5151E + 03 2.1736E + 03 1.7523E + 03

10 2.9632E + 01 2.3321E + 02 2.5914E + 02 2.1365E + 02 1.8988E + 02

2 1.5533E + 02 1.2617E + 05 3.5986E + 07 5.9512E + 09 6.4206E + 11

4 7.8054E + 01 1.5937E + 04 1.7169E + 06 4.1552E + 07 2.0475E + 09

17 6 6.6357E + 01 7.3856E + 03 2.1477E + 05 4.7470E + 06 2.4506E + 07

8 5.3073E + 01 3.5426E + 03 5.9873E + 04 1.5540E + 06 4.2012E + 07

10 5.6034E + 01 1.5324E + 03 3.5706E + 04 1.1635E + 06 4.3087E + 06

Table 2: Values of the spectral norm ‖A−1‖2 of Lobachevsky splines computed on Halton points.

N α L2 L4 L6 L8 L10

2 9.8807E − 01 9.9881E − 01 1.4723E + 00 2.5468E + 00 5.6239E + 00

4 9.7761E − 01 1.0676E + 00 1.0711E + 00 1.7690E + 00 3.3156E + 00

9 6 9.6054E − 01 9.8898E − 01 1.3932E + 00 3.9382E + 00 5.2754E + 00

8 9.5308E − 01 9.7890E − 01 1.6376E + 00 1.7623E + 00 1.6551E + 00

10 9.4306E − 01 9.6383E − 01 1.1750E + 00 1.1336E + 00 1.1115E + 00

2 9.9684E − 01 9.9975E − 01 1.0474E + 00 1.3452E + 00 2.4810E + 00

4 9.9371E − 01 1.0100E + 00 1.2703E + 00 1.5682E + 00 3.1502E + 00

17 6 9.9204E − 01 9.9842E − 01 1.1060E + 00 1.5953E + 00 3.5359E + 00

8 9.8630E − 01 9.9716E − 01 1.2866E + 00 1.3107E + 00 6.6115E + 00

10 9.8272E − 01 1.0010E + 00 1.1980E + 00 4.6108E + 00 3.5814E + 00

Table 3: Values of the 1–norm ‖w̃‖1 of Lobachevsky splines computed on Halton points.

N α L2 L4 L6 L8 L10

2 7.8605E − 04 1.8290E − 03 1.9500E − 03 6.3251E − 03 1.1955E − 02

4 2.0255E − 03 1.9810E − 03 1.0816E − 03 2.3345E − 03 5.2299E − 03

81 6 4.2102E − 03 4.8743E − 04 1.7374E − 03 6.2329E − 04 1.2988E − 04

8 7.9439E − 03 1.8623E − 03 1.2394E − 03 1.2890E − 03 1.3617E − 03

10 1.6255E − 02 3.1382E − 03 2.8899E − 03 3.0567E − 03 3.1761E − 03

2 2.2706E − 04 7.7034E − 05 2.5455E − 04 2.1428E − 05 3.3971E − 03

4 1.4565E − 04 5.5468E − 05 4.1333E − 04 1.8705E − 04 5.7711E − 04

289 6 6.2325E − 04 2.7228E − 05 5.2692E − 05 1.5188E − 04 2.7640E − 05

8 9.7914E − 04 1.2671E − 04 6.9888E − 05 1.0035E − 04 5.1256E − 05

10 2.1137E − 03 3.2837E − 04 1.9814E − 04 1.3899E − 04 1.2249E − 04

Table 4: Errors of Lobachevsky spline cubature formulas computed on Halton points.
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N α L2 L4 L6 L8 L10

2 2.9725E + 02 4.5256E + 05 9.2843E + 07 5.2922E + 09 1.9512E + 11

4 1.2441E + 02 2.5366E + 04 8.1775E + 05 1.7445E + 07 1.1485E + 08

81 6 7.5543E + 01 6.2493E + 03 5.8514E + 04 6.2348E + 05 2.5916E + 06

8 5.6686E + 01 2.0079E + 03 1.9298E + 04 2.0299E + 04 1.4742E + 04

10 4.3990E + 01 9.1388E + 02 1.1248E + 03 8.4091E + 02 7.0674E + 02

2 8.6924E + 02 1.0258E + 07 2.2006E + 10 1.8086E + 13 3.1644E + 15

4 3.3701E + 02 6.3173E + 05 2.2711E + 08 3.1951E + 10 3.0653E + 12

289 6 2.0125E + 02 1.1183E + 05 1.7880E + 07 7.5518E + 08 2.1627E + 10

8 1.4744E + 02 3.6117E + 04 1.9239E + 06 5.9256E + 07 1.0332E + 09

10 1.1338E + 02 1.5675E + 04 5.4789E + 05 6.8735E + 06 5.6836E + 07

Table 5: Values of the spectral norm ‖A−1‖2 of Lobachevsky splines computed on Halton points.

N α L2 L4 L6 L8 L10

2 9.9833E − 01 1.0001E + 00 1.3935E + 00 2.1302E + 00 2.9088E + 00

4 9.9512E − 01 1.0097E + 00 1.0760E + 00 1.6840E + 00 2.2429E + 00

81 6 9.8875E − 01 1.0355E + 00 1.1215E + 00 1.6633E + 00 2.2558E + 00

8 9.7735E − 01 1.0150E + 00 1.1665E + 00 1.1924E + 00 1.1623E + 00

10 9.5512E − 01 1.0159E + 00 1.0510E + 00 1.0447E + 00 1.0404E + 00

2 9.9975E − 01 1.0081E + 00 1.2204E + 00 2.5202E + 00 2.6853E + 01

4 9.9928E − 01 1.0209E + 00 1.2406E + 00 2.0654E + 00 4.4176E + 00

289 6 9.9805E − 01 1.0068E + 00 1.2512E + 00 1.9596E + 00 4.2948E + 00

8 9.9669E − 01 1.0213E + 00 1.1889E + 00 1.7920E + 00 3.5613E + 00

10 9.9342E − 01 1.0328E + 00 1.1858E + 00 1.8841E + 00 3.5574E + 00

Table 6: Values of the 1–norm ‖w̃‖1 of Lobachevsky splines computed on Halton points.

N α G IMQ MQ δ W2

2 4.8924E − 03 1.6015E − 01 1.1403E − 01 0.2 4.5294E − 04

4 8.9399E − 04 3.3075E − 04 1.2776E − 05 0.4 4.0482E − 04

81 6 5.0700E − 04 1.4696E − 04 2.8271E − 04 0.6 3.8675E − 04

8 1.6435E − 03 1.9427E − 04 1.6314E − 04 0.8 4.4893E − 04

10 3.6736E − 03 3.7124E − 04 7.3634E − 05 1.0 6.3491E − 04

2 7.8848E − 02 6.3287E + 04 1.1464E + 05 0.2 8.1873E − 05

4 2.5766E − 02 6.7067E − 03 3.8577E − 01 0.4 7.9784E − 05

289 6 1.5309E − 04 8.1104E − 06 2.0180E − 04 0.6 8.3610E − 05

8 3.2439E − 05 4.1534E − 05 8.2208E − 05 0.8 9.4982E − 05

10 1.5733E − 04 6.1244E − 05 1.8593E − 05 1.0 1.1711E − 04

Table 7: Errors of RBF cubature formulas computed on Halton points (TPS = 1.5111E − 04, 1.6642E − 05 for N = 81 and 289, respectively).

“Istituto Nazionale di Alta Matematica” (INdAM) for its financial support by a research grant.
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N α G IMQ MQ δ W2

2 6.2590E + 15 3.1702E + 08 4.8519E + 09 0.2 4.4433E + 04

4 1.3311E + 09 2.4902E + 04 2.5075E + 05 0.4 5.5839E + 03

81 6 4.3610E + 05 7.4148E + 02 5.0971E + 03 0.6 1.6659E + 03

8 4.8384E + 03 1.5120E + 02 6.6564E + 02 0.8 7.0864E + 02

10 4.0145E + 02 5.9656E + 01 2.0624E + 02 1.0 3.6633E + 02

2 3.7212E + 17 3.2629E + 16 6.3110E + 16 0.2 5.1713E + 05

4 3.0225E + 18 1.0935E + 09 2.1294E + 10 0.4 6.4648E + 04

289 6 5.1966E + 16 1.4766E + 06 1.9339E + 07 0.6 1.9158E + 04

8 1.9877E + 11 5.0693E + 04 5.1188E + 05 0.8 8.0844E + 03

10 1.2328E + 08 6.3926E + 03 5.2700E + 04 1.0 4.1406E + 03

Table 8: Values of the spectral norm of the inverses of RBF interpolation matrices computed on Halton points (TPS = 4.1077E + 02, 1.9983E + 03

for N = 81 and 289, respectively).

N α G IMQ MQ δ W2

2 3.9032E + 01 2.4361E + 02 4.4889E + 02 0.2 9.9994E − 01

4 6.4813E + 00 1.1400E + 00 3.8158E + 00 0.4 9.9975E − 01

81 6 1.6694E + 00 1.0290E + 00 1.0654E + 00 0.6 9.9945E − 01

8 1.0972E + 00 1.0081E + 00 1.0179E + 00 0.8 9.9894E − 01

10 1.0250E + 00 1.0016E + 00 1.0108E + 00 1.0 9.9829E − 01

2 3.2302E + 02 9.6988E + 10 3.3028E + 10 0.2 1.0081E + 00

4 3.0523E + 03 6.2388E + 04 3.2533E + 05 0.4 1.0081E + 00

289 6 8.2696E + 02 8.2031E + 01 5.1410E + 02 0.6 1.0081E + 00

8 4.3699E + 01 3.3683E + 00 3.6460E + 01 0.8 1.0081E + 00

10 6.5256E + 00 1.3148E + 00 1.9652E + 00 1.0 1.0081E + 00

Table 9: Values of the 1–norm of the RBF weight vectors computed on Halton points (TPS = 1.0006E + 00, 1.2362E + 00 for N = 81 and 289,

respectively).
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