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Abstract

In this paper we deal with the existence of unbounded orbits of the map







θ1θ + 1
ρ [µ(θ) − l1(ρ)] + h1(ρ, θ),

ρ1 = ρ− µ′(θ) + l2(ρ) + h2(ρ, θ),

where µ is continuous and 2π-periodic, l1, l2 are continuous and bounded, h1(ρ, θ) = o(ρ−1),
h2(ρ, θ) = o(1), for ρ → +∞. We prove that every orbit of the map tends to infinity in the
future or in the past for ρ large enough provided that

[lim inf
ρ→+∞

l1(ρ), lim sup
ρ→+∞

l1(ρ)] ∩Range(µ) = ∅

and other conditions hold. On the basis of this conclusion, we prove that the system Jz′ =
∇H(z) + f(z) + p(t) has unbounded solutions when H is positively homogeneous of degree 2
and positive. Meanwhile, we also obtain the existence of 2π-periodic solutions of this system.
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1 Introduction

We are concerned with the coexistence of unbounded and periodic solutions of the system

Jz′ = ∇H(z) + f(z) + p(t), (1.1)

where J =

(

0 −1
1 0

)

is the standard symplectic matrix, the function H : R
2 → R is a C1-

function, with locally Lipschitz continuous gradient, f : R
2 → R

2 is locally Lipschitz continuous
and p : R → R

2 is continuous and 2π-periodic.
We assume that the Hamiltonian function H is positively homogeneous of degree 2 and positive;
in this situation the origin is an isochronous center for the autonomous Hamiltonian system

Jz′ = ∇H(z). (1.2)

This means that all the solutions of (1.2) are periodic with the same minimal period T ; we
suppose that 2π is an integer multiple of T .
A classical example of (1.1) is the first order system equivalent to the well-known equation

x′′ + αx+ − βx− + g(x) = p(t), (1.3)

where x+ = max{x, 0}, x− = max{−x, 0}, α and β are two positive constants satisfying

1√
α

+
1√
β

=
2

n
,

for some n ∈ N. We recall that in this situation all solutions of the homogeneous equation
x′′+αx+−βx− = 0 can be written in the form x(t) = Aφ(t+θ) for some A ≥ 0 and θ ∈ [0, 2π/n),
where φ is the 2π/n-periodic function defined by

φ(t) =























1√
α

sin(
√
αt), t ∈

[

0,
π√
α

)

,

− 1
√

β
sin

[

√

β(t− π√
α

)

]

, t ∈
[

π√
α
,
2π

n

]

.

In order to deal with the existence of periodic solutions of Eq. (1.3), Dancer [6] first introduced
the function

Φ(θ) = 2n

[

g(+∞)

α
− g(−∞)

β

]

−
∫ 2π

0
p(t)φ(t+ θ)dt,

where the limits g(±∞) = lim
x→±∞

g(x) exist and are finite. Later, Fabry and Fonda [7] proved

that Eq. (1.3) has at least one 2π-periodic solution provided that Φ has a constant sign or has 2k
simple zeros in [0, 2π/n), with k ≥ 2. More recently, Fabry and Mawhin [9] generalized in various
directions the results in [7]; in particular, they replaced in the definition of Φ the constants g(±∞)
with

G(±∞) = lim
x→±∞

G(x)

x
,
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where G(x) =
∫ x

0 g(s)ds. Moreover, they also proved the coexistence of periodic solutions and
unbounded solutions of Eq. (1.3).
Later, these results have been improved or extended to various classes of forced Liénard and
Rayleigh equations with asymmetric nonlinearities (cf. [2, 3, 4, 5, 14, 15, 17]). In particular,
Fonda [10] investigated the dynamics of the solutions of a planar isochronous Hamiltonian system
of the form

Jz′ = ∇H(z) + p(t). (1.4)

It was proved in [10] that most of the known results for Eq. (1.3) still hold for system (1.4). Sub-
sequently, Fonda and Mawhin [11] explored the coexistence of periodic solutions and unbounded
solutions of the more general system (1.1) (see also [8]). To do this, it is assumed in [11] that
f : R

2 → R
2 can be written in the form

f(z) =
m

∑

k=1

fk(< z, eiϑk >), (1.5)

where
0 ≤ ϑ1 < ϑ2 < · · · < ϑm < 2π

are m ≥ 1 fixed directions and fk : R → R
2; here, < ·, · > denotes the Euclidean scalar product in

R
2. When f takes the form (1.5), system (1.1) can cover many equations such as forced Liénard

equations, Rayleigh equations with asymmetric nonlinearities. Moreover, it is supposed in [11]
that the limits

F±
k = lim

s→±∞

Fk(s)

s
(1.6)

exist in R
2, where Fk(x) =

∫ x

0 fk(s)ds. Conditions (1.6) are always satisfied if the limits f±k =
lims→±∞ fk(s) exist in R

2. The results in [11] are based on a detailed analysis of the Poincaré
map of system (1.1) via some suitable change of variables. More precisely, when (1.6) holds the
asymptotic expression of the Poincaré map is











θ1 = θ +
1

ρ
[µ(θ) − c1] + o(ρ−1),

ρ1 = ρ− µ′(θ) + c2 + o(1), ρ→ +∞,

where c1, c2 are two constants depending on F±
k and

µ(θ) =

∫ 2π

0
< p(t), ϕ(t+ θ) > dt,

being ϕ is a solution of (1.2) satisfying

H(ϕ(t)) =
1

2
, t ∈ R.

In [11] it is proved the existence of periodic solutions when µ − c1 or µ′ − c2 has constant sign,
and also when µ− c1 has zeros and µ′ − c2 has constant sign or changes sign more than twice on
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the zeros of µ− c1. On the other hand, when µ− c1 has constant sign or has only simple zeros,
it is also proved that all solutions of (1.1) with sufficiently large amplitude are unbounded in the
future or in the past.
In our paper we take [11] as a starting point; hence, we study systems of the form (1.1) with f
having the form above described (see also [13]). The main difference with [11] will be in the fact
that we shall only assume the boundedness of the functions fk. In this case, the Poincaré map
of system (1.1) can be expressed in the form:











θ1 = θ +
1

ρ
[µ(θ) − l1(ρ)] + o(ρ−1),

ρ1 = ρ− µ′(θ) + l2(ρ) + o(1), ρ→ +∞,

(1.7)

where l1(ρ), l2(ρ) are two continuous bounded functions (which are constants if (1.6) holds). In
our general situation, we cannot directly use the transformation ρ = (δr)−1 as in [1] to get a
difference equation which can be regarded as a numerical approximation of a differential equation.
To overcome this difficulty, a new approach for the investigation of the iterates of the planar map
(1.7) is necessary; more precisely, we carefully explore the dynamics of the family of maps











θ1 = θ +
1

ρ
[µ(θ) − l1(s)] + o(ρ−1),

ρ1 = ρ− µ′(θ) + l2(s) + o(1), ρ→ +∞,

(1.8)

where s > 0 is a parameter. As a consequence of our result on planar maps, we are able to prove
(cf. Theorem 3.4) the coexistence of periodic and unbounded solutions to (1.1).
Concerning the notations o,O, throughout this paper the involved limits are always intended
uniformly w.r.t. all the other variables; for example, in (1.8) by writing o(1), ρ → +∞ we mean
that the term tends to zero uniformly w.r.t. θ ∈ [0, 2π].

2 Unbounded orbits of planar maps

Given σ > 0, let Bσ be the open ball centered at the origin and with radius σ. Set Eσ = R2\Bσ.
Assume that the map P : Eσ → R2 is a one-to-one and continuous map, whose lift (also denoted
by P ) can be expressed in the form:

P :







θ1θ + 1
ρ [µ(θ) − l1(ρ)] + h1(ρ, θ),

ρ1 = ρ− µ′(θ) + l2(ρ) + h2(ρ, θ),
(2.1)

where µ ∈ C1(S1) with S1 = R
1/2πZ, l1, l2 ∈ C[σ,+∞) and h1, h2 ∈ C([σ,+∞) × S1) satisfy

h1(ρ, θ) = o

(

1

ρ

)

, h2(ρ, θ) = o(1), ρ→ +∞. (2.2)

Given a point (ρ0, θ0) ∈ Eσ, we denote by {(ρj , θj)} the orbit of the map P through the point
(ρ0, θ0), i.e.

P (ρj , θj) = (ρj+1, θj+1).
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For two continuous bounded functions l1, l2, we introduce the following notation:

a = lim inf
ρ→+∞

l1(ρ), b = lim sup
ρ→+∞

l1(ρ);

c = lim inf
ρ→+∞

l2(ρ), d = lim sup
ρ→+∞

l2(ρ).

We can prove the following result.

Proposition 2.1 Assume a = b and µ(θ) − b 6= 0, for every θ ∈ [0, 2π]. Then the following
conclusions hold:

(1) if c > 0 then there exists R0 > 0 such that, for ρ0 ≥ R0, the orbit {(ρj , θj)} exists in the
future and satisfies lim

j→+∞
ρj = +∞.

(2) if d < 0 then there exists R0 > 0 such that, for ρ0 ≥ R0, the orbit {(ρj , θj)} exists in the
past and satisfies lim

j→−∞
ρj = +∞.

Remark 2.2 In [16] the unboundedness of the orbits of the map P was studied in case when
l1(ρ) ≡ constant and l2(ρ) ≡ constant. Thus, the result in [16] can be regarded as a special case
of Proposition 2.1.

An analogous result is valid (under an additional condition) in case a 6= b as well. It is stated at
the end of this Section and its proof is similar to the one of Proposition 2.1.
In what follows we give a Lemma which is valid whenever a = b or a 6= b holds. For brevity, we
only deal with the case µ(θ) − b > 0, for all θ. The other cases can be handled similarly.
Let us observe that, since l1, l2 depend on ρ, the methods in [1] cannot be applied. To overcome
this difficulty we consider the family of planar maps Ps : Eσ → R

2 defined by

Ps :







θ1θ + 1
ρ [µ(θ) − l1(s)] + h1(ρ, θ),

ρ1 = ρ− µ′(θ) + l2(s) + h2(ρ, θ),
(2.3)

where s ≥ σ is a parameter.
Now we introduce the transformation (see [1])

1

ρ
= δr,

where δ > 0 is a parameter to be determined later. Under this transformation, (2.3) becomes

P̃s :

{

θ1 = θ + δr[µ(θ) − l1(s)] + h11(r, θ, s, δ),

r1 = r + δr2[µ′(θ) − l2(s)] + δr2h21(r, θ, s, δ),
(2.4)

where

h11(r, θ, s, δ) = h1(δ
−1r−1, θ),

h21(r, θ, s, δ) = −h2(δ
−1r−1, θ) +

[l2(s) − µ′(θ) + h2(δ
−1r−1, θ)]2

δ−1r−1 + l2(s) − µ′(θ) + h2(δ
−1r−1, θ)

.
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It follows from (2.2) that

lim
δ→0+

δ−1r−1h11(r, θ, s, δ) = 0, lim
δ→0+

h21(r, θ, s, δ) = 0 (2.5)

uniformly in θ, s ≥ σ and sufficiently small r.

We observe that in general the term µ′(θ) − l2(s) in (2.4) does not have constant sign; the next
transformation leads to a planar mapping where the corresponding term has definite sign.
To this aim, we consider the system

θ′ = rν(θ), r′ = r2ν ′(θ), (r > 0), (2.6)

where ν(θ) = µ(θ) − b > 0, for all θ. The first integral of (2.6) is

I(r, θ) =
ν(θ)

r
. (2.7)

Therefore, the orbits of (2.6) can be expressed in the form

Γh : I(r, θ) =
ν(θ)

r
= h,

where h > 0 is an arbitrary constant. Let (r(t), θ(t)) be the solution of (2.6) lying on the curve
Γh. Obviously, (r(t), θ(t)) is a periodic solution; we denote by T (h) its minimal period. From
the first equation in (2.6) and (2.7) we get that

T (h) = h

∫ 2π

0

dϑ

ν2(ϑ)
= λh,

where

λ =

∫ 2π

0

dϑ

ν2(ϑ)
> 0.

We now introduce the functions

ω(h) =
2π

T (h)
=

2π

λh
, K(r, θ) =

ν(θ)

r

∫ θ

0

dϑ

ν2(ϑ)
.

Let us define

τ(θ) = ω(I(r, θ))K(r, θ) =
2π

λ

∫ θ

0

dϑ

ν2(ϑ)

and Ψ : R
+ × R → R

+ × R by

Ψ : (r, θ) → (I, τ) = (I(r, θ), τ(θ)).

It is easy to check that the map Ψ is bijective; its inverse Ψ−1 satisfies the relations

Ψ−1(I, τ) = (r, θ),

r(I, τ) =
ν(θ(τ))

I
,

2π

λ

∫ θ(τ)

0

dϑ

ν2(ϑ)
= τ.
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Moreover, the functions τ and θ fulfill

τ(0) = 0, τ(θ + 2π) = τ(θ) + 2π, ∀ θ ∈ R,

θ(0) = 0, θ(τ + 2π) = θ(τ) + 2π, ∀ τ ∈ R.

Finally, we consider the map P̂s :

P̂s = Ψ ◦ P̃s ◦ Ψ−1 : (I, τ) → (I1, τ1) = P̂s(I, τ).

Remark 2.3 When µ(θ) < a, for every θ, we can proceed in a similar way. More precisely, we
can consider the system

θ′ = rν̂(θ), r′ = r2ν̂ ′(θ), (r > 0),

where ν̂(θ) = µ(θ) − a < 0, for every θ ∈ [0, 2π]. Set

I(r, θ) =
ν̂(θ)

r
, τ(θ) =

2π

λ̂

∫ θ

0

dθ

ν̂2(θ)
.

with λ̂ = −
∫ 0
−2π

dθ
ν̂2(θ)

< 0. Define Ψ̂ : R
+ × R → R

− × R, (r, θ) → (I, τ) = (I(r, θ), τ(θ)) as

follows:

I(r, θ) =
ν̂(θ)

r
, τ(θ) =

2π

λ̂

∫ θ

0

dθ

ν̂2(θ)
.

We can thus consider the map P̄s :

P̄s = Ψ̂ ◦ P̃s ◦ Ψ̂−1 : (I, τ) → (I1, τ1) = P̄s(I, τ).

Lemma 2.4 Assume that l1, l2 are continuous and bounded, µ ∈ C2[0, 2π] and µ(θ) > b, for
every θ. Then the map P̂s can be expressed in the form:

P̂s :







τ1 = τ + δω(I)
[

1 + b−l1(s)
ν(θ(τ))

]

+ δh12(I, τ, s, δ),

I1 = I + δ [ν(θ(τ))l2(s) + ν ′(θ(τ))(b− l1(s))] + δh22(I, τ, s, δ),

where h11 and h22 satisfy

lim
δ→0+

Ih12(I, τ, s, δ) = 0, lim
δ→0+

h22(I, τ, s, δ) = 0,

uniformly in τ ∈ R, s ≥ σ and sufficiently large I.

Proof. Let us first consider the expression of P̃ ◦ Ψ−1. Set P̃ ◦ Ψ−1(I, τ) = (θ1, r1). Since
Ψ−1(I, τ) = (r(I, τ), θ(τ)), from (2.4) we get that

{

θ1 = θ(τ) + δr(I, τ)ν(θ(τ)) + δr(I, τ) [b− l1(s)] + h11 (r(I, τ), θ(τ), s, δ) ,

r1 = r(I, τ) + δr2(I, τ)[ν ′(θ(τ)) − l2(s)] + δr2(I, τ)h21(r(I, τ), θ(τ), s, δ).
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Using the relation r(I, τ) = ν(θ(τ))/I, we can infer that






























θ1 = θ(τ) +
δν2(θ(τ))

I +
δν(θ(τ))

I [b− l1(s)] + h11

(

ν(θ(τ))
I , θ(τ), s, δ

)

,

r1 =
ν(θ(τ))

I +
δν2(θ(τ))[ν ′(θ(τ) − l2(s)]

I2

+
δν2(θ(τ))

I2 h21

(

ν(θ(τ))
I , θ(τ), s, δ

)

.

In what follows, we shall give an asymptotic expression of (I1, τ1). Let us recall that

I1 =
ν(θ1)

r1
, τ1 =

2π

λ

∫ θ1

0

dϑ

ν2(ϑ)
.

Expanding ν(θ1), we have that

ν(θ1) = ν(θ(τ)) +
δν ′(θ(τ))ν2(θ(τ))

I
+
δν ′(θ(τ))ν(θ(τ))

I
[b− l1(s)] + h̃11, (2.8)

where h̃11 = h̃11(I, τ, s, δ) is defined by

h̃11 = ν ′(θ(τ))h11

(

ν(θ(τ))
I , θ(τ), s, δ

)

+

∫ 1

0
(1 − ζ)ν ′′

[

θ(τ) + ζ
δν2(θ(τ))

I
+ ζ

δν(θ(τ))

I
(b− l1(s)) + ζh11

(

ν(θ(τ))

I
, θ(τ), s, δ

)]

×
[

δν2(θ(τ))
I +

δν(θ(τ))
I (b− l1(s)) + h11

(

ν(θ(τ))
I , θ(τ), s, δ

)]2

dζ.

On the other hand, we have that

1

r1
=

I

ν(θ(τ))[1 + δν(θ(τ))(ν ′(θ(τ)) − l2(s))/I + δν(θ(τ))h̄21(I, τ, s, δ)/I]

with h̄21(I, τ, s, δ) = h21

(

ν(θ(τ)
I , θ(τ), s, δ

)

. Therefore, we get that

1

r1
=

I

ν(θ(τ))
+ δ[l2(s) − ν ′(θ(τ))] + δh̃21, (2.9)

with h̃21 = h̃21(I, τ, s, δ) defined by

h̃21 = −h̄21(I, τ, s, δ) +
δν(θ(τ))

I

[ν ′(θ(τ)) − l2(s) + h̄21(I, τ, s, δ)]
2

1 + δν(θ(τ))[ν ′(θ(τ)) − l2(s) + h̄21(I, τ, s, δ)]/I
.

From (2.8) and (2.9) we obtain that

I1 = I +δ[l2(s)ν(θ(τ)) + ν ′(θ(τ))(b− l1(s))] + δν(θ(τ))h̃21(I, τ, s, δ)

+
δ2[l2(s) − ν ′(θ(τ))]

I ν ′(θ(τ))ν2(θ(τ)) +
δ2ν ′(θ(τ))ν2(θ(τ))

I h̃21(I, τ, s, δ)

+
δ2[l2(s) − ν ′(θ(τ))][b− l1(s)]

I ν ′(θ(τ))ν(θ(τ)) +
δ2ν ′(θ(τ))ν(θ(τ))

I [b− l1(s)]h̃21(I, τ, s, δ)

+ I
ν(θ(τ))

h̃11(I, τ, s, δ) + δ[l2(s) − ν ′(θ(τ))]h̃11(I, τ, s, δ) + δh̃11(I, τ, s, δ)h̃21(I, τ, s, δ).
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Consequently, I1 can be expressed in the form

I1 = I + δ[l2(s)ν(θ(τ)) + ν ′(θ(τ))(b− l1(s))] + δh22(I, τ, s, δ),

where

h22(I, τ, s, δ) = ν(θ(τ))h̃21(I, τ, s, δ) +
δ[l2(s) − ν ′(θ(τ))]

I ν ′(θ(τ))ν2(θ(τ))

+
δν ′(θ(τ))ν2(θ(τ))

I h̃21(I, τ, s, δ) +
δ[l2(s) − ν ′(θ(τ))][b− l1(s)]

I ν ′(θ(τ))ν(θ(τ))

+
δν ′(θ(τ))ν(θ(τ))

I [b− l1(s)]h̃21(I, τ, s, δ) + I
δν(θ(τ))

h̃11(I, τ, s, δ)

+[l2(s) − ν ′(θ(τ))]h̃11(I, τ, s, δ) + h̃11(I, τ, s, δ)h̃21(I, τ, s, δ).

Next, we shall prove that
lim

δ→0+
h22(I, τ, s, δ) = 0 (2.10)

uniformly in τ ∈ [0, 2π], s ≥ σ and sufficiently large I.
In fact, since ν(θ) = µ(θ) − b > 0 for all θ, from (2.5) we can infer that

lim
δ→0+

δ−1Ih11

(

ν(θ(τ))

I
, θ(τ), s, δ

)

= 0, lim
δ→0+

h21

(

ν(θ(τ))

I
, θ(τ), s, δ

)

= 0 (2.11)

uniformly in τ ∈ [0, 2π], s ≥ σ and sufficiently large I. Therefore, we have that

lim
δ→0+

δ−1Ih̃11(I, τ, s, δ) = 0, (2.12)

and
lim

δ→0+
h̃21(I, τ, s, δ) = 0 (2.13)

uniformly in τ ∈ [0, 2π], s ≥ σ and sufficiently large I. From (2.12) we have obtained that

lim
δ→0+

h̃11(I, τ, s, δ) = 0, lim
δ→0+

I

δν(θ(τ))
h̃11(I, τ, s, δ) = 0 (2.14)

uniformly in τ ∈ [0, 2π], s ≥ σ and sufficiently large I. From (2.13), (2.14) and the boundedness
of ν, ν ′, l1, l2 we can deduce that (2.10) holds.
We are now in position to give the estimate on τ1. From the definition of τ1 we have that

τ1 =
2π

λ

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]+h11

 

ν(θ(τ))
I

,θ(τ),s,δ

!

0

dϑ

ν2(ϑ)
.

Therefore,

τ1 = 2π
λ

∫ θ(τ)

0

dϑ

ν2(ϑ))
+

2π

λ

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

θ(τ)

dϑ

ν2(ϑ)

+2π
λ

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]+h11

 

ν(θ(τ))
I

,θ(τ),s,δ

!

θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

dϑ

ν2(ϑ)
.
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From the definition of θ(τ) we get

2π

λ

∫ θ(τ)

0

dϑ

ν2(ϑ)
= τ.

On the other hand, we have

2π
λ

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

θ(τ)

dϑ

ν2(ϑ)

= 2π
λ

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

θ(τ)

dϑ

ν2(θ(τ))

+2π
λ

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

θ(τ)

[ν2(θ(τ)) − ν2(ϑ)]dϑ

ν2(ϑ)ν2(θ(τ))

= δω(I)
[

1 + b−l1(s)
ν(θ(τ))

]

+ δh̃12(I, τ, s, δ),

with

h̃12(I, τ, s, δ) =
2π

δλ

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

θ(τ)

[ν2(θ(τ)) − ν2(ϑ)]dϑ

ν2(ϑ)ν2(θ(τ))
.

Since
ν2(θ(τ)) − ν2(ϑ) = [ν(θ(τ)) + ν(ϑ)][ν(θ(τ)) − ν(ϑ)],

using the Lagrange mean-value theorem and the fact ν(θ) > 0 for all θ, we infer that there exists
a constant c′ > 0 such that

∣

∣

∣

∣

∣

∣

∣

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

θ(τ)

[ν2(θ(τ)) − ν2(ϑ)]dϑ

ν2(ϑ)ν2(θ(τ))

∣

∣

∣

∣

∣

∣

∣

≤ c′δ2

I2 .

As a consequence, we obtain
lim

δ→0+
Ih̃12(I, τ, s, δ) = 0 (2.15)

uniformly in τ ∈ [0, 2π], s ≥ σ and sufficiently large I. From the fact that ν(θ > 0 for all θ, we
deduce that there exists c′′ > 0 such that
∣

∣

∣

∣

∣

∣

∣

∣

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]+h11

 

ν(θ(τ))
I

,θ(τ),s,δ

!

θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

dϑ

ν2(ϑ)

∣

∣

∣

∣

∣

∣

∣

∣

≤ c′′
∣

∣

∣

∣

h11

(

ν(θ(τ))

I
, θ(τ), s, δ

)
∣

∣

∣

∣

,

which, together with the first limit in (2.11), implies that

lim
δ→0+

Ih̄12(I, τ, s, δ) = 0, (2.16)
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where

h̄12(I, τ, s, δ) =
2π

λδ

∫ θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]+h11

 

ν(θ(τ))
I

,θ(τ),s,δ

!

θ(τ)+
δν2(θ(τ))

I
+
δν(θ(τ))

I
[b−l1(s)]

dϑ

ν2(ϑ)
.

Therefore, we obtain

τ1 = τ + δω(I)

[

1 +
b− l1(s)

ν(θ(τ))

]

+ δh12(I, τ, s, δ),

where h12(I, τ, s, δ) = h̃12(I, τ, s, δ) + h̄12(I, τ, s, δ). Combining (2.15) and (2.16), we deduce that
lim

δ→0+
h12(I, τ, s, δ) = 0 uniformly in τ ∈ [0, 2π], s ≥ σ and sufficiently large I.

Remark 2.5 In case when µ ∈ C2[0, 2π] and µ(θ) − a < 0, for every θ, we can prove that the
map P̄s can be expressed in the form:

P̄s :







τ1 = τ + δω(I)
[

1 + a−l1(s)
ν(θ(τ))

]

+ δĥ12(I, τ, s, δ),

I1 = I + δ [ν(θ(τ))l2(s) + ν ′(θ(τ))(a− l1(s))] + δĥ22(I, τ, s, δ),

where ĥ11 and ĥ22 satisfy

lim
δ→0+

Iĥ12(I, τ, s, δ) = 0, lim
δ→0+

ĥ22(I, τ, s, δ) = 0,

uniformly in τ ∈ R, s ≥ σ and sufficiently large |I|.

To finish the proof of Proposition 2.1, we still the following lemma.

Lemma 2.6 Assume that µ ∈ C1(S1). Then, for any sufficiently small ε > 0, there exists a
function µ̃ ∈ C2(S1) such that the following inequalities hold:

|µ(θ) − µ̃(θ)| < ε, |µ′(θ) − µ̃′(θ)| < ε, ∀θ ∈ [0, 2π].

Proof. Since µ ∈ C1(S1), there exists a constant ̺ > 0 such that, if |τ | < ̺, then

|µ(θ + τ) − µ(θ)| < ε, |µ′(θ + τ) − µ′(θ)| < ε, ∀θ ∈ [0, 2π].

Let us define

Ψ̺(θ) =











A̺

(

1 − θ2

̺2

)3

, |θ| ≤ ̺,

0, |θ| > ̺,

where the positive constant A̺ is defined by

∫ +∞

−∞

Ψ̺(θ)dθ = 1. (2.17)
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It is straightforward to check that (2.17) is equivalent to

A̺

∫ 1

0
(1 − τ2)3dτ =

1

2
.

Define

µ̃(θ) =

∫ +∞

−∞

Ψ̺(θ − τ)µ(τ)dτ.

It is easy to check that µ̃ ∈ C2(R). Moreover, we have that

µ̃(θ) = A̺̺

∫ 1

−1
(1 − τ2)3µ(θ + ̺τ)dτ.

Hence, µ̃ ∈ C2(S1) and we have that, for any θ ∈ [0, 2π],

|µ̃(θ) − µ(θ)| ≤ A̺̺

∫ 1

−1
(1 − τ2)3|µ(θ + ̺τ) − µ(θ)|dτ < ε.

Similarly, we can prove that |µ′(θ) − µ̃′(θ)| < ε, ∀θ ∈ [0, 2π].

Proof of Proposition 2.1. As already announced, we only deal with the case ν(θ) = µ(θ)−b >
0, for every θ. Since a = b, we have l1(ρ) = b+ o(1), ρ→ +∞. Therefore, we know from Lemma
2.4 that P̂s can be expressed in the form:

P̂s :

{

τ1 = τ + δω(I) + δh12(I, τ, s, δ),

I1 = I + δν(θ(τ))l2(s) + δh22(I, τ, s, δ),
(2.18)

where h11 and h22 satisfy

lim
δ→0+

Ih12(I, τ, s, δ) = 0, lim
δ→0+

h22(I, τ, s, δ) = 0, (2.19)

uniformly in τ ∈ R, s ≥ σ and sufficiently large I.
Let us consider the orbit {(ρj , θj)} of the map P through the point (ρ0, θ0) with ρ0 > σ. Setting
sj = ρj , we have

Psj
(ρj , θj) = (ρj+1, θj+1)

and
Psj

◦ · · · ◦ Ps1
◦ Ps0

(ρ0, θ0) = (ρj+1, θj+1).

Letting rj = 1/(δρj), we get
P̃sj

(rj , θj) = (rj+1, θj+1),

and
P̃sj

◦ · · · ◦ P̃s1
◦ P̃s0

(r0, θ0) = (rj+1, θj+1).

Set Ψ(rj , θj) = (Ij , τj). From the definition of Ψ we have

I0 =
ν(θ0)

r0
, τ0 =

2π

λ

∫ θ0

0

dϑ

ν2(ϑ)
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and

Ij =
ν(θj)

rj
, τj =

2π

λ

∫ θj

0

dϑ

ν2(ϑ)
.

Obviously,
P̂sj

(Ij , τj) = (Ij+1, τj+1),

and
P̂sj

◦ · · · ◦ P̂s1
◦ P̂s0

(I0, τ0) = (Ij+1, τj+1).

Next, we first prove the conclusion under the additional condition µ ∈ C2(S1). In order to obtain
the result we will distinguish two cases.

(1) c > 0. Since ν(θ) > 0, θ ∈ [0, 2π] and lim infs→+∞ l2(s) = c > 0, we know that there exist
positive constants ς(> σ) and γ such that, for s ≥ ς,

ν(θ)l2(s) ≥ γ, ∀θ ∈ [0, 2π].

Moreover, it follows from (2.19) that there exist positive constants δ0 and ̺0 satisfying ̺0 ≥
ςδ0ν0, ν0 = max{ν(θ) : θ ∈ [0, 2π]}, such that, for I ≥ ̺0 and s ≥ ς,

|h22(I, τ, s, δ0)| ≤
γ

2
, ∀τ ∈ [0, 2π].

If I0 ≥ ̺0, then s0 = ρ0 = I0
δ0ν(θ0) ≥ ςν0

ν(θ0) ≥ ς. Therefore, for I0 ≥ ̺0, we have

I1 = I0 + δ0ν(θ(τ0))l2(s0) + δ0h22(I0, τ0, s0, δ0) ≥ I0 +
δ0γ

2
,

which implies that I1 ≥ I0 ≥ ̺0. Inductively, we get that, for j = 1, 2, · · · ,

Ij+1 = Ij + δ0ν(θ(τj))l2(sj) + δ0h22(Ij , τj , sj , δ0) ≥ Ij +
γ

2
≥ · · · ≥ I0 +

(j + 1)δ0γ

2
.

Hence,
lim

j→+∞
Ij = +∞. (2.20)

Since ν(θ) > 0 for every θ ∈ [0, 2π] and rj = ν(θj)/Ij , it follows from (2.20) that

lim
j→+∞

rj = 0,

which, together with the transformation ρj = 1
δ0rj

, implies that limj→+∞ ρj = +∞.

(2) d < 0. Since ν(θ) > 0 for all θ and lim sups→+∞ l2(s) = d < 0, we know that there exist
positive constants ς ′(> σ) and γ′ such that, for s ≥ ς ′,

ν(θ)l2(s) ≤ −γ′, ∀θ ∈ [0, 2π].

From (2.19) we know that there exist δ′0 > 0 and ρ′0 > 0 such that, for I ≥ ̺′0 and s ≥ ς ′,

|h22(I, τ, s, δ
′
0)| ≤

γ′

2
, ∀τ ∈ [0, 2π].
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Set ̺′′0 = max{̺′0, δ′0ς ′ν0)} with ν0 = max{ν(θ) : θ ∈ R}. Let us define

Ω = {(I, τ) : I ≥ ̺′′0, τ ∈ R}.

From (2.18) and (2.19) we infer that, for any s ≥ ς ′, P̂s(Ω) contains a neighborhood of infinity;
therefore, there exists a positive constant ˆ̺0 independent of s such that if I0 ≥ ˆ̺0, s ≥ ς ′ and
P̂−1

s (I0, τ0) = (I−1, τ−1), then I−1 ≥ ̺′′0.
If I0 ≥ ˆ̺0, then we get

s−1 = ρ−1 =
I−1

δ′0ν(θ−1)
≥ ̺′′0
δ′0ν(θ−1)

≥ ς ′ν0

ν(θ−1)
≥ ς ′.

Since
{

τ0 = τ−1 + δ′0ω(I−1) + δ′0h12(I−1, τ−1, s−1, δ
′
0),

I0 = I−1 + δ′0ν(θ(τ−1))l2(s−1) + δ′0h22(I−1, τ−1, s−1, δ
′
0),

we have






τ−1 =τ0 − δ′0ω(I−1) − δ′0h12(I−1, τ−1, s−1, δ
′
0),

I−1 =I0 − δ′0ν(θ(τ−1))l2(s−1) − δ′0h22(I−1, τ−1, s−1, δ
′
0).

(2.21)

From the second equation of (2.21) we obtain that, for I0 ≥ ˆ̺0,

I−1 =I0 − δ′0ν(θ(τ−1))l2(s−1) − δ′0h22(I−1, τ−1, s−1, δ
′
0)

≥I0 + δ′0|ν(θ(τ−1))l2(s−1) − δ′0|h22(I−1, τ−1, s−1, δ
′
0)|

≥I0 +
1

2
δ0γ

′.

Inductively, we deduce that

Ij ≥ Ij+1 +
1

2
δ0γ

′ ≥ · · · ≥ I0 +
1

2
δ0|j|γ′,

for every j = −1,−2,−3, · · · . Hence, we have that, if I0 is large enough, then the orbit {(Ij , τj)}
exists in the past and satisfies

lim
j→−∞

Ij = +∞.

Arguing as in case 1, we can deduce that, if ρ0 is large enough, then the orbit {(ρj , θj)} exists in
the past and satisfies limj→−∞ ρj = +∞.
In what follows, we shall prove the conclusion under the condition µ ∈ C1(S1). In this case, we
know from Lemma 2.6 that there exist µk ∈ C2(S1) (k = 1, 2, · · · ) such that

µk(θ) → µ(θ), µ′k(θ) → µ′(θ) (k → +∞)

uniformly in θ ∈ [0, 2π]. If µ(θ) > b for every θ, then we have that, for k large enough,

µk(θ) > b, ∀θ ∈ [0, 2π]. (2.22)
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Let us consider the maps Pk : Eσ → R
2,

Pk :







θ1θ + 1
ρ [µk(θ) − l1(ρ)] + h1(ρ, θ),

ρ1 = ρ− µ′k(θ) + l2(ρ) + h2(ρ, θ),

where k ∈ N, l1, l2 and h1, h2 satisfy the same conditions as in (2.1). Obviously, we have that

lim
k→+∞

Pk(ρ, θ) = P (ρ, θ)

holds uniformly in (ρ, θ) ∈ Eσ. Given a point (ρ0, θ0) ∈ Eσ, we denote by {(ρ(k)
j , θ

(k)
j )} the orbit

of the map Pk through the point (ρ0, θ0), i.e.

Pk

(

ρ
(k)
j , θ

(k)
j

)

=
(

ρ
(k)
j+1, θ

(k)
j+1

)

.

From (2.22) and the result in case 1 we know that, if c > 0 and ρ0 is large enough, then the orbit

{(ρ(k)
j , θ

(k)
j )} exists in the future and

lim
j→+∞

ρ
(k)
j = +∞, (2.23)

for k sufficiently large. Moreover, since µk(θ) → µ(θ) and µ′k(θ) → µ′(θ) (k → +∞) uniformly
in θ ∈ [0, 2π], we can prove, analogously to the proof in case 1, that (2.23) holds uniformly in k
large enough. As a result, if ρ0 is large enough, then for every j ∈ N and sufficiently large k,

ρ
(k)
j ≥ σ;

this implies that ρj ≥ σ, j ∈ N. On the other hand, since

P j
k (ρ0, θ0) = (ρ

(k)
j , θ

(k)
j ),

we get that, for any fixed j ∈ N,

lim
k→+∞

(ρ
(k)
j , θ

(k)
j ) = lim

k→+∞
P j

k (ρ0, θ0) = P j(ρ0, θ0) = (ρj , θj).

This equality, together with (2.23), implies that, for ρ0 large enough, the orbit {(ρj , θj)} satisfies
limj→+∞ ρj = +∞.
The case d < 0 can be treated similarly.
Arguing as in the proof of Proposition 2.1 and using Lemma 2.4, Lemma 2.6, Remark 2.5 we can
obtain the following more general result. For brevity, we omit the technical proof.

Proposition 2.7 Assume that a 6= b. Then the following conclusions hold:
(1) if c > 0, µ(θ) > b and cµ(θ) + (b− a)µ′(θ) > bc for every θ, then there exists R0 > 0 such

that, for ρ0 ≥ R0, the orbit {(ρj , θj)} exists in the future and satisfies lim
j→+∞

ρj = +∞.

(2) if d < 0, µ(θ) > b and dµ(θ) + (b− a)µ′(θ) < bd for every θ, then there exists R0 > 0 such
that, for ρ0 ≥ R0, the orbit {(ρj , θj)} exists in the past and satisfies lim

j→−∞
ρj = +∞.

(3) if c > 0, µ(θ) < a and cµ(θ) + (b− a)µ′(θ) < ac for every θ, then there exists R0 > 0 such
that, for ρ0 ≥ R0, the orbit {(ρj , θj)} exists in the future and satisfies lim

j→+∞
ρj = +∞.

(4) if d < 0, µ(θ) < a and cµ(θ) + (b− a)µ′(θ) > bc for every θ, then there exists R0 > 0 such
that, for ρ0 ≥ R0, the orbit {(ρj , θj)} exists in the past and satisfies lim

j→−∞
ρj = +∞.
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3 Unbounded solutions and periodic solutions

In this section we consider the system

Jz′ = ∇H(z) + f(z) + p(t), (3.1)

where the function H : R
2 → R is of class C1 with locally Lipschitz continuous gradient, f :

R
2 → R

2 is locally Lipschitz continuous and p : R → R
2 is continuous and 2π-periodic.

We assume that the Hamiltonian H is positively homogeneous of degree 2 and positive, i.e. for
every z ∈ R

2 − {0} and λ > 0 we have

H(λz) = λ2H(z) > 0.

Under this condition, all solutions of
Jz′ = ∇H(z) (3.2)

are periodic with the same minimal period, which will be denoted by T . Assume that 2π is an
integer multiple of T . Let ϕ : R → R

2 be a solution of (3.2) satisfying

H(ϕ(t)) =
1

2
, t ∈ R.

Then we have

< Jϕ′(t), ϕ(t) >=< ∇H(ϕ(t)), ϕ(t) >= 2H(ϕ(t)) = 1, t ∈ R.

Therefore, the orbit of ϕ is strictly star-shaped and any solution of (3.2) can be expressed in the
form z(t) = Aϕ(t+ θ), for some A > 0, θ ∈ [0, T ).
Moreover, we suppose that f : R

2 → R
2 can be written in the form

f(z) =
m

∑

k=1

fk(< z, eiϑk >),

where
0 ≤ ϑ1 < ϑ2 < · · · < ϑm < 2π

are m ≥ 1 fixed directions and fk : R → R
2.

Assuming that every function fk : R → R
2 is locally Lipschitz continuous and bounded, we obtain

that f is locally Lipschitz continuous and bounded. For every k = 1, · · · ,m, we set

Fk(x) =

∫ x

0
fk(s)ds, x ∈ R.

Finally, we suppose that the set

{u ∈ R
2 : ||u|| = 1 and

∇H(u)

||∇H(u)|| = ±eiϑk}

has only isolated points, for every k = 1, 2, · · · ,m; let us observe that this assumption is satisfied
when H is a strictly convex function.
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Now, let z(t) be a solution of system (3.1) satisfying the initial condition z(0) 6= 0. Write

z(t) = ρ(t)ϕ(t+ θ(t)),

with ρ(0) > 0. If ρ(t) > 0, then the functions ρ(t) and θ(t) are of class C1 and satisfy






θ′ = 1
ρ < f(ρϕ(t+ θ)), ϕ(t+ θ) > +1

ρ < p(t), ϕ(t+ θ) >,

ρ′ = − < f(ρϕ(t+ θ)), ϕ′(t+ θ) > − < p(t), ϕ′(t+ θ) > .
(3.3)

Denote by (θ(t), ρ(t)) = (θ(t, θ0, ρ0), ρ(t, θ0, ρ0)) the solution of (3.3) through the initial point

θ(0, θ0, ρ0) = θ0, ρ(0, θ0, ρ0) = ρ0

and consider the Poincaré map

P : (θ0, ρ0) → (θ1, ρ1) = (θ(2π, θ0, ρ0), ρ(2π, θ0, ρ0)).

It is immediate to check that, for ρ0 large enough, P can be written as


















































θ1 = θ0 +

∫ 2π

0

1

ρ(t)
< f(ρ(t)ϕ(t+ θ(t))), ϕ(t+ θ(t)) > dt

+

∫ 2π

0

1

ρ(t)
< p(t), ϕ(t+ θ(t)) > dt,

ρ1 = ρ0 −
∫ 2π

0
< f(ρ(t)ϕ(t+ θ(t))), ϕ′(t+ θ(t)) > dt

−
∫ 2π

0
< p(t), ϕ′(t+ θ(t)) > dt.

(3.4)

Let us observe that the boundedness of f , p and ϕ imply that

ρ(t) = ρ0 +O(1), t ∈ [0, 2π]. (3.5)

Therefore, for ρ0 → +∞, we obtain

θ(t) = θ0 + o(1), t ∈ [0, 2π]. (3.6)

We are now in position to prove the following result.

Lemma 3.1 For ρ0 → +∞ the following conclusions hold:
∫ 2π

0

1

ρ(t)
< f(ρ(t)ϕ(t+ θ(t))), ϕ(t+ θ(t)) > dt =

= 1
ρ0

∫ 2π

0
< f(ρ0ϕ(t+ θ0)), ϕ(t+ θ0) > dt+ o(

1

ρ0
) =

= 1
ρ0

∫ 2π

0
< f(ρ0ϕ(t), ϕ(t) > dt+ o(

1

ρ0
);

∫ 2π

0
< f(ρ(t)ϕ(t+ θ(t))), ϕ′(t+ θ(t)) > dt =

=

∫ 2π

0
< f(ρ0ϕ(t+ θ0)), ϕ

′(t+ θ0)) > dt+ o(1) =

=

∫ 2π

0
< f(ρ0ϕ(t), ϕ′(t) > dt+ o(1).
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Proof. We follow an argument similar to the one developed in [11]. For every k = 1, · · · ,m, we
have

d
dt
Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >)

= fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >)[< ρ′(t)ϕ(t+ θ(t)), eiϑk >

+ < ρ(t)ϕ′(t+ θ(t)), eiϑk > (1 + θ′(t))].

Let [x, y] be an arbitrary interval contained in the set

{t ∈ R :< ϕ′(t+ θ0), e
iϑk >6= 0}.

It follows from (3.3)-(3.5) that

< ρ′(t)ϕ(t+ θ(t)), eiϑk > + < ρ(t)ϕ′(t+ θ(t)), eiϑk > (1 + θ′(t)) 6= 0,

for every t ∈ [x, y] and for ρ0 large enough. Then, for t ∈ [x, y], it follows that

fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >)

=

d

dt
Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >)

< ρ′(t)ϕ(t+ θ(t)), eiϑk > + < ρ(t)ϕ′(t+ θ(t)), eiϑk > (1 + θ′(t))
.

Therefore, we have that, for ρ0 → +∞,

∫ y

x

1

ρ(t)
< fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >), ϕ(t+ θ(t)) > dt

=

∫ y

x

1

ρ(t)

<
d

dt
Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >), ϕ(t+ θ(t)) >

< ρ′(t)ϕ(t+ θ(t)), eiϑk > + < ρ(t)ϕ′(t+ θ(t)), eiϑk > (1 + θ′(t))
dt

= 1
ρ0

∫ y

x

<
d

dt
Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >), ϕ(t+ θ0) >

ρ0 < ϕ′(t+ θ0), e
iϑk >

dt+ o(
1

ρ0
).

Integrating by parts,

∫ y

x

<
d

dt
Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >), ϕ(t+ θ0) >

ρ0 < ϕ′(t+ θ0), e
iϑk >

dt

= 〈Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >),
ϕ(t+ θ0)

ρ0 < ϕ′(t+ θ0), e
iϑk >

〉|yx

−
∫ y

x

< Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >),
d

dt
(

ϕ(t+ θ0)

ρ0 < ϕ′(t+ θ0), e
iϑk >

) > dt.

Since fk is bounded, we get

Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >) = Fk(< ρ0ϕ(t+ θ0), e
iϑk >) +O(1).
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Therefore, we obtain

< Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >),
ϕ(t+ θ0)

ρ0 < ϕ′(t+ θ0), e
iϑk >

> |yx

=< Fk(< ρ0ϕ(t+ θ0), e
iϑk >),

ϕ(t+ θ0)

ρ0 < ϕ′(t+ θ0), e
iϑk >

> |yx + o(1).

On the other hand,
∫ y

x

< Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >),
d

dt
(

ϕ(t+ θ0)

ρ0 < ϕ′(t+ θ0), e
iϑk >

) > dt

=

∫ y

x

< Fk(< ρ0ϕ(t+ θ0), e
iϑk >),

d

dt
(

ϕ(t+ θ0)

ρ0 < ϕ′(t+ θ0), e
iϑk >

) > dt+ o(1).

Hence,

∫ y

x

<
d

dt
Fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >), ϕ(t+ θ0) >

ρ0 < ϕ′(t+ θ0), e
iϑk >

dt

=< Fk(< ρ0ϕ(t+ θ0)), e
iϑk >),

ϕ(t+ θ0)

ρ0 < ϕ′(t+ θ0), e
iϑk >

> |yx

−
∫ y

x

< Fk(< ρ0ϕ(t+ θ0)), e
iϑk >),

d

dt
(

ϕ(t+ θ0)

ρ0 < ϕ′(t+ θ0), e
iϑk >

) > dt+ o(1)

=

∫ y

x

<
d

dt
Fk(< ρ0ϕ(t+ θ0)), e

iϑk >), ϕ(t+ θ0) >

ρ0 < ϕ′(t+ θ0), e
iϑk >

dt+ o(1)

=

∫ y

x

< fk(< ρ0ϕ(t+ θ0)), e
iϑk >), ϕ(t+ θ0) > dt+ o(1).

Consequently, we get that, for ρ0 → +∞,
∫ y

x

1

ρ(t)
< fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >), ϕ(t+ θ(t)) > dt

= 1
ρ0

∫ y

x

< fk(< ρ0ϕ(t+ θ0)), e
iϑk >), ϕ(t+ θ0) > dt+ o(

1

ρ0
).

The assumption on H implies that the set {t ∈ R :< ϕ′(t + θ0), e
iθk >= 0} has only isolated

points. Therefore, for any sufficiently small constant η > 0, we can take a finite number of
intervals [xi, yi](i = 1, 2, · · · , n) as above such that

meas[0, 2π]\
i=n
⋃

i=1

[xi, yi] ≤ η.

Since fk is bounded, we have that
∫ 2π

0

1

ρ(t)
< fk(< ρ(t)ϕ(t+ θ(t)), eiϑk >), ϕ(t+ θ(t)) > dt

= 1
ρ0

∫ 2π

0
< fk(< ρ0ϕ(t+ θ0)), e

iϑk >), ϕ(t+ θ0) > dt+ o(
1

ρ0
).
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Summing up for k = 1, 2, · · · ,m, we obtain
∫ 2π

0

1

ρ(t)
< f(ρ(t)ϕ(t+ θ(t)), ϕ(t+ θ(t)) > dt

= 1
ρ0

∫ 2π

0
< f(ρ0ϕ(t+ θ0)), ϕ(t+ θ0) > dt+ o(

1

ρ0
).

(3.7)

Since ϕ is 2π-periodic, it follows that
∫ 2π

0
< f(ρ0ϕ(t+ θ0)), ϕ(t+ θ0) > dt =

∫ 2π

0
< f(ρ0ϕ(t)), ϕ(t) > dt. (3.8)

Therefore, from (3.7) and (3.8) we can write

∫ 2π

0

1

ρ(t)
< f(ρ(t)ϕ(t+ θ(t)), ϕ(t+ θ(t)) > dt

= 1
ρ0

∫ 2π

0
< f(ρ0ϕ(t)), ϕ(t) > dt+ o(

1

ρ0
).

The second conclusion can be proved similarly.

With a similar argument, based again on (3.5)-(3.6) and the periodicity of ϕ, it is possible to
prove the following result.

Lemma 3.2 For ρ0 → +∞ the following conclusions hold:
∫ 2π

0

1

ρ(t)
< p(t), ϕ(t+ θ(t)) > dt =

1

ρ0

∫ 2π

0
< p(t), ϕ(t+ θ0) > dt+ o(

1

ρ0
),

∫ 2π

0
< p(t), ϕ′(t+ θ(t)) > dt =

∫ 2π

0
< p(t), ϕ′(t+ θ0) > dt+ o(1).

Now, let us define

l1(ρ) = −
∫ 2π

0
< f(ρϕ(t)), ϕ(t) > dt, l2(ρ) = −

∫ 2π

0
< f(ρϕ(t)), ϕ′(t) > dt,

for ρ > 0, and

µ(θ) =

∫ 2π

0
< p(t), ϕ(t+ θ) > dt,

for every θ ∈ [0, 2π]. From the fact that ∇H is locally Lipschitz continuous and ϕ is the solution
of system Jz′ = ∇H(z) we deduce that ϕ(t) is continuously differentiable on [0, 2π]. Hence,
µ ∈ C1(S1); moreover, we have

µ′(θ) =

∫ 2π

0
< p(t), ϕ′(t+ θ) > dt,

for every θ ∈ [0, 2π].
From (3.4), Lemma 3.1 and Lemma 3.2 we plainly deduce the following result.
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Lemma 3.3 The Poincaré map of (3.3) can be expressed in the form:







θ1 = θ0 + 1
ρ0

[µ(θ0) − l1(ρ0)] + h1(ρ0, θ0),

ρ1 = ρ0 − µ′(θ0) + l2(ρ0) + h2(ρ0, θ0),

where h1, h2 satisfy

h1(ρ0, θ0) = o

(

1

ρ0

)

, h2(ρ0, θ0) = o(1), ρ0 → +∞.

To state the main theorems of this section, we still use notations of a, b, c, d and υ given in
section 2, namely, a = lim infρ→+∞ l1(ρ), b = lim supρ→+∞ l1(ρ); c = lim infρ→+∞ l2(ρ), d =
lim supρ→+∞ l2(ρ).

Theorem 3.4 Assume that a = b and µ(θ) 6= b, for every θ ∈ [0, 2π]. Then (3.1) has at least
one 2π-periodic solution. Moreover, the following conclusions hold:

(1) if c > 0, then there exists R0 > 0 such that all solutions of (3.1) with ||z(0)|| ≥ R0 satisfy

lim
t→+∞

||z(t)|| = +∞;

(2) if d < 0, then there exists R0 > 0 such that all solutions of (3.1) with ||z(0)|| ≥ R0 satisfy

lim
t→−∞

||z(t)|| = +∞.

Proof. We first prove that (3.1) has at least one 2π-periodic solution. Since

µ(θ) 6= b, θ ∈ [0, 2π],

we have that, for ρ0 large enough, the image (ρ1, θ1) of the point (ρ0, θ0) under the Poincaré map
P cannot lie on the ray θ = θ0. According to the Poincaré-Bohl theorem [12], the map P has at
least one fixed point. Therefore, (3.1) has at least one 2π-periodic solution.

Now we prove the unboundedness of the solutions of (3.1) when ρ0 is large enough; we will
concentrate on the first case. The other cases can be treated similarly.
From Lemma 3.3 we deduce that we can apply Proposition 2.1 to the Poincaré map P ; hence,
there exists R0 > 0 such that, if ρ0 ≥ R0, then {(ρj , θj)} exists in the future and satisfies
limj→+∞ ρj = +∞.
On the other hand, since f is bounded, from the second equality of (3.3) we infer that there exists
a constant c0 > 0 such that |ρ(t) − ρ(s)| ≤ c0 for t and s satisfying |t − s| ≤ 2π. Therefore, we
obtain

lim
t→+∞

ρ(t) = +∞.

Now, let us observe that the assumptions on the Hamiltonian H and the fact that H(ϕ(t)) = 1/2
(t ∈ [0, 2π]) imply that there exists a constant d0 > 0 such

||ϕ(t)|| ≥ d0, t ∈ [0, 2π].
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Hence, we obtain
lim

t→+∞
||z(t)|| = lim

t→+∞
ρ(t)||ϕ(t)|| = +∞.

Using Proposition 2.7 and the same method as in the proof of Theorem 3.4 we can prove the
following

Theorem 3.5 Assume that a 6= b and

[a, b] ∩ Range(µ) = ∅. (3.9)

Then (3.1) has at least one 2π-periodic solution. Moreover, the following conclusions hold:
(1) if c > 0, µ(θ) > b and cµ(θ) + (b − a)µ′(θ) > bc, for every θ ∈ [0, 2π], then there exists

R0 > 0 such that all solutions of (3.1) with ||z(0)|| ≥ R0 satisfy

lim
t→+∞

||z(t)|| = +∞;

(2) if d < 0, µ(θ) > b and dµ(θ) + (b − a)µ′(θ) < bd, for every θ ∈ [0, 2π], then there exists
R0 > 0 such that all solutions of (3.1) with ||z(0)|| ≥ R0 satisfy

lim
t→−∞

||z(t)|| = +∞;

(3) if c > 0, µ(θ) < a and cµ(θ) − υµ′(θ) < ac, for every θ ∈ [0, 2π], then there exists R0 > 0
such that all solutions of (3.1) with ||z(0)|| ≥ R0 satisfy

lim
t→+∞

||z(t)|| = +∞;

(4) if d < 0, µ(θ) < a and dµ(θ)− υµ′(θ) > ad, for every θ ∈ [0, 2π], then there exists R0 > 0
such that all solutions of (3.1) with ||z(0)|| ≥ R0 satisfy

lim
t→−∞

||z(t)|| = +∞.

Remark 3.6 Theorem 3.4 is a generalization of Corollary 2 (case 1) and of Theorem 2 in [11].
Indeed, in [11] it is assumed that f is bounded and (1.6) holds, while in our paper it is sufficient
to suppose the boundedness of f . Hypothesis (1.6) which we avoid (and which was crucial in [11])
causes the cancellation, in the development of the Poincaré map obtained in Lemma 1 of [11],
of the term arising from the presence of f . Similar unboundedness results can be found in [8],
where a different class of (homogeneous) nonlinearities f is considered.
We also observe that the coexistence of periodic solutions and unbounded solutions (on the lines
of case 2 in Corollary 2 of [11]) can be obtained when (3.9) may not hold and it is assumed that

[lim inf
ρ→+∞

l2(ρ), lim sup
ρ→+∞

l2(ρ)] ∩ Range(µ′) = ∅.

Remark 3.7 Various applications of Theorems 3.4 and 3.5 to second order equations are pos-
sible. In particular, this is true for the classical Liénard equation x′′ + ψ(x)x′ + αx+ − βx− +
g(x) = p(t) and the Rayleigh equation x′′ + ψ(x′) + αx+ − βx− + g(x) = p(t) when α, β satisfy
1/
√
α + 1/

√
β = 2/n, n ∈ N. The coexistence of periodic and unbounded solutions follows from

our result when we limit ourselves to assume that g and any primitive of ψ are bounded.
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