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Abstract One dimensional Leaky Integrate and Fire neuronal models describe Inter-
spike Intervals (ISIs) of a neuron as a renewal process and disregarding the neuron
geometry. Many multi-compartment models account for the geometrical features of
the neuron but are too complex for their mathematical tractability. Leaky Integrate
and Fire two compartment models seem a good compromise between mathematical
tractability and an improved realism. They indeed allow to relax the renewal hypoth-
esis, typical of one dimensional models, without introducing too strong mathematical
difficulties. Here we pursue the analysis of the two compartment model studied by
Lansky and Rodriguez [16], aiming of introducing some specific mathematical results
used together with simulation techniques. With the aid of these methods we investi-
gate dependency properties of ISIs for different values of the model parameters. We
show that an increase of the input increases the strength of the dependence between
successive ISIs.

Keywords Two compartment neural model - ISI dependency properties

1 Introduction

The number of models for single neuron dynamics is very large and their complexity
ranges from oversimplified to highly realistic biophysical models. One dimensional
Leaky Integrate and Fire (LIF) model success is due to their relative simplicity jointly
with their reasonable ability to reproduce neuronal input-output features. These mod-
els reproduce the membrane potential dynamics, between two consecutive neuronal

E.Benedetto, L.Sacerdote

Department of Mathematics ”G.Peano”, University of Torino,Via Carlo Alberto 10, 10123 Torino, Italy
Tel.: +39-0116702919

Fax.: +39-0116702878

E-mail: elisa.benedetto @unito.it

E-mail: laura.sacerdote @unito.it



firings (spikes), through one-dimensional diffusion processes X = {X () ;¢ > 0} (cf.
[7]). These stochastic processes describe the difference between the physical value of
the membrane potential and the resting level. An action potential is produced when
the membrane voltage X exceeds, for the first time, a voltage threshold S, often as-
sumed to be constant. After each spike the membrane potential is reset, generally to
its resting value X (0) = xo and the membrane potential evolution restarts according
to the diffusion process dynamics. The interspike interval corresponds to the first pas-
sage time T, = inf{r > 0:X (r) > S|X (0) = xo } of the associated stochastic pro-
cess X across the boundary S > x¢. The assumed resetting mechanism ensures that the
ISIs form a renewal process, i.e. they are independent identically distributed random
variables. Then the knowledge of the renewal process corresponds to the knowledge
of the distribution of T ,,. Strong mathematical efforts have been devoted to the study
of LIF models (cf. [3], [4] for a review on LIF models and [11] for a review of the
mathematical tools for their study) and results have been used to analyse input-output
relationships for the described neurons.

The mathematical tractability of LIF models derives from the fact that they con-
centrate the neuron into a single point. This choice implies not taking into account all
geometrical features of the neuron.

Multi-compartment models are spatially complex models (cf. [5], [6], [8], [13],
[19] and [26]). Generally they do not aim at describing the input-output properties of
the neuron but focus on features related to the information processing within the neu-
ron itself. These models are able to catch some geometrical properties of the neuron.
Unfortunately the cost of this improvement is the introduction of strong mathemati-
cal difficulties related to the multivariate nature of the associated process. Since their
mathematical complexity prevents the application of mathematical methods, simula-
tion is the typical tool for their study.

Attempts to generalize single point LIF models make use of LIF paradigm in the
frame of multi-compartmental models. In [2], [15], [18] and [17], two compartment
LIF models are discussed. The relative simplicity of these models suggests the devel-
opment of specific mathematical methods for their study.

Here, we consider the two-compartment model proposed by Bressloff (cf. [2]) and
analysed by Lansky and Rodriguez in [16]. Hence we introduce two interconnected
parts of the neuron: the dendritic tree and the soma. The input acts on the dendritic
zone and is characterized by intensity y and variability o. The depolarization of the
two components (X (¢),X,(z)) is described by leaky integrators with firing and reset
mechanisms at the somatic zone. Hence the trigger zone is identified with the somatic
one. Following [16] we introduce a firing threshold on the somatic component. The
role of this threshold is the typical one of the LIF paradigm. When the somatic po-
tential X, (¢) attains the firing threshold S > X,(0) a spike is elicited. Then the value
of X, () is reset to its resting value while the dendritic component X (¢) pursues its
evolution. Both the compartments are characterized by the same leakage constant ¢
and the junction between them depends upon a constant o,

The resulting model is very similar to Ornstein Uhlenbeck one-dimensional LIF
model (cf. [22]). However the lack of resetting of the dendritic component destroys
the renewal character of the one dimensional diffusion models. Hence the interspikes
intervals determined by the two compartment model are not independent. A first study



of the ISIs of such model is proposed in [16], mainly through simulations. The aim
of this paper is to pursue this analysis, through both further simulations and the aid of
some analytical results. Hence we focus on dependency measures and we make use
of the Kendall’s 7, the correlation coefficient and the notion of copula (cf. [21]) as a
possible alternative to different methods proposed in literature to analyse irregulari-
ties of ISIs (cf. [20], [23] and [24]).

This is an abstract model, as underlined in [16]. We do not claim that the use of a two
dimensional process makes this model more realistic than the classical stochastic one
dimensional LIF models. For example, this model assumes that the compartments are
infinitely close to one another and further constrains should be introduced to make
the model biologically acceptable. However we are interested on this model features
because it seems one of the simplest models allowing the dependence between ISIs.
This fact motivates its study, as a prototype of a model neuron of non renewal type.
Our study will focus on dependency properties of ISIs, disregarding other features
already studied in [16] to which we refer.

2 The model

For ¢ > 0, consider a two compartment model defined by the following system of
stochastic differential equations (cf. [16]):

{ dX,(t) ={—(a+ o)X, (t) + . X>(t) + u} dt + ocdB; (1a)
dX>(t) = {—(a+ o )X>(t) + 0 X, (1) } dt (1b)

with X (0) = y; and X,(0) = y;.

Here X (¢) and X; (¢) describe the dendritic and somatic depolarization, respectively.
Furthermore & and - are the inverse of the membrane time constant and a junctional
constant, accounting for the intensity of the junction between the two components.
For simplicity we assume that the membrane time constants are the same in both the
compartments, however this assumption can be easily removed. Note that this model
simplifies the connection between the two compartments, assuming that they are in-
finitely close to one the other. In absence of a firing threshold, the solution of (1a)
and (1b) is a bivariate Gaussian process with mean E(X(¢)) =m (¢) = (m; (¢) ,m2 (1))
given by (cf. [16]):

1
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The depolarization y = (y;,y») of the two components at time zero is identified
with the resting potential of both the compartments when the time origin coincides
with a firing time and the first component is in a stationary regime. The constants

m o) = LM -

a(a+2a,) (o) = ala+2a,) ®

represent the asymptotic depolarizations. Note that the depolarization of the den-
dritic zone is always greater than the one of the somatic compartment. Furthermore
the depolarizations of the two zones become similar when @, > ¢. For notational
simplicity we identify the resting potential with zero.

When the initial values are constant, the covariance matrix I"(¢,T) has components
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denote the asymptotic dendritic variance and covariance between the two compart-
ments, respectively.

We assume that our origin of times coincides with the epoch of a spike and we
indicate with #; the epoch of the i-th successive spike, i > 1. Then the i-th ISI, i > 1,
is described by the random variable

Ti=inf{t >0:X,(r) > S|Xp(t;—1) =0}, (10)

with 1o = 0 and hence 71 = #;.
After each spike the somatic component is reset to its resting value while the den-
dritic component is not reset and continues its evolution (cf. Figure 1).
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Fig. 1: Example of evolution of the dendritic (lower panel) and somatic (upper panel)
components, simulated according with equations (1a), (1b). Here o = 0.05 ms~ !,

o =05ms !, u=15mV,c=1mV/ms"/? and S = 10 mV.

In the following we denote with i* the index of the spiking epoch such that the
dendritic component X () is statistically stationary. To estimate the value of i* we
perform Kolmogorov-Smirnov tests upon the random variables X; (#;) and X; (¢;+1),
i >1*, to check their identical distribution.

To study this model we separate the case of the absence of noise from the one with
noise, following the classical approach of the one dimensional models.

2.1 Absence of Noise

When o = 0, the time evolution of the dendritic and somatic potentials is given
by equations (2a) and (2b) respectively. Hence in the subthreshold regime (i.e. S >
my (o)) a neuron is silent. Furthermore in the suprathreshold regime (i.e. S < my (o)),
it spikes regularly at fixed times ¢; = t; + (j — i*)T;+, for j > i*.

If the spike frequency is low the two components attain their stationary dynamics
during each ISI. In fact, in this case the resetting does not influence the dendritic
component evolution at the spike epochs. Then we have m; (t;) = mj (), my (t;) = S
and m; (1;) =0, for i > 1. Here #;" indicates the instant immediately following the
spike. In the case of supra-threshold regime and low spiking frequency with initial
condition {m; (0) = m(e0),my(0) = 0}, each ISI T}, i > 1, is solution of (cf. [16]):

S —my(e0) = (efaT" + ef(a+2a,)T,-) S—m#g(w) +e 2Ty (o). (11)
This equation relates the spiking times with the asymptotic depolarization of the so-
matic component, whenever the dendritic component attains its stationary dynamics
during each ISL.
Since the dendritic potential evolution is perturbed by the resetting of the somatic
component, the stationary regime is not attained during the first ISI. Therefore, in
general (11) holds for any T;, with j > i* 4 1.



2.2 Presence of Noise

For ¢ > 0, the value of the dendritic component at spiking epochs is random and
its distribution depends upon the preceding dynamics of the process. Hence a depen-
dency between ISIs and the past evolution of the neuronal depolarization appears.
When the dendritic component is stationary, approximate formulas relating ISIs and
the values of the dendritic component at spike epochs can be proved. To obtain these
formulas we integrate equation (1b) between two spike times, #;_; and ¢;, for i > 2.
Note that the somatic component can not attain values larger than S on ¢ € (f;_1,1;),
i > 1. Hence we introduce the process Xf (t), witht € (t;_1,1;), i > 2, to model the
somatic depolarization. X2 () sample paths coincide with those of X>(t) that have
not crossed S for 7 € (t;_1,4;), i > 1. Then, by definition, X¥(+;" ;) = 0 and X2 (1;) = S.
In mathematics XzB(t) is known as a Bridge process not crossing the boundary S on
t € (ti—1,4;), 1> 1 (cf. [12]). Ont € (t;,_1,1;) it is solution of
ti 1
XB3(t) X2t 1) = —(a+a) | X3(t)dt + o, | Xy (r)dt . (12)
i—1 i—1
In order to determine a relationship between the value of the dendritic component at
t;—1 and the ISI T;, we separate the analysis of (12) in the two cases of subthreshold
and suprathreshold regimes.

2.2.1 Supra-threshold regime

When the input is strong, ISIs are short and X2 (¢) can be approximated by X (t) for
t € (ti—1,4;), with X5(#;) = S. Indeed, in this case, multiple crossings of the thresh-
old on a short interval are rare and a small percentage of sample paths of X,(¢) have
not a corresponding one of X¥(¢). The fast spiking activity makes the ISIs depen-
dent random variables. The dendritic component does not attain its stationary regime
during each ISI and it assumes different values at spike epochs. Hence the value
of the dendritic depolarization at time #;_; depends upon the past dynamics of pro-
cess {X(),r < t;_1 }. We denote with M; | =E[X; (t;,_1) |X(¢),7 < t;—1] the expected
value of the dendritic component conditioned upon the previous history of the pro-
cess. Then conditioning (12) upon {X(#),# < ;1 } and taking the expectation we get
(cf. Appendix A.1):

H\ —ar u —(a+20,)T;
2S—ma(e) = {Miy = £ hem Mg E ;. L (13
(5= mae) = (M- B eena f e 13)
Hence the distribution of the i —th ISI 7; depends from the past evolution of the
process only through the conditional expectation of the dendritic component at the
previous spiking epochs.
When o — 0 and e~ *%i ~ 1, equation (13) can be solved to get:

1 28
T~ — In(l—-——F— | i=12,... (14)
a+20, M;_ —
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The approximated equation (14) holds when the argument of the logarithm is posi-
tive. Therefore to determine the distribution of 7; one should know the entire history
of the process. However when the conditional random variables {M j} are identically
distributed and their distribution does not depend upon the previous evolution of the
process, then the interspike intervals {7j,;} become identically distributed. Indeed
this happens for any j > i* when the ISI distribution depends only from the distribu-
tion of M at the previous spiking epochs, since the dendritic component is stationary.

Moreover, the ISIs of a collection (T}, T 1, ..., Ti+,) are dependent since M; depends
upon T;_. A further approximation of (14)
1 28
T~ . (15)
o + 206r Mi—l - m
holds when —25—— is small enough, i.e. for large input. Hence the mean firing
o+20 ~ Mi—1
frequency is approximately
1 o420, u
Ef—=)~ EM;-)— 16
()~ 5 (pn0 - 5 ) (16)

and its variance is

1 a+2aq, 2
Var (Tz> ~< 75 ) Var(M;_). a7

Furthermore for the correlation we get:

1 1
— | = M[, ,M,', . 1
P <Ti7Ti1> p(M;—y 2) (13)

Formulas (14)-(18) are not useful for computational aims. Indeed their use requests
the knowledge of the moments of the conditional random variable M;_;. However
they are interesting because they illustrate the relationship between the moments of
the random variables 7; and M;_;.

2.2.2 Sub-threshold regime

When the somatic depolarization is in the sub-threshold regime, formulas from (13)
to (18) do not hold. However, in this case, the attainment of the threshold is rare and
it is determined by the noise. For moderate noise intensity, interspike intervals in-
crease and the dendritic component attains its stationary behaviour during each ISI.
Hence we can postulate the identical distribution of 7;11, i > 1. Furthermore in this
case, during each ISI, the process forgets the initial value of the dendritic compo-
nent. Hence the ISIs are approximately independent and identically distributed. The
presence of the renewal property makes the features of the two compartment model
similar to those of one-dimensional one. Hence our interest focuses mainly on the
supra-threshold regime.



2.2.3 Distribution of T;

When the dendritic component is stationary the ISIs are identically distributed, hence
T; ~ T for any i > i*. In this case we determine the ISI distribution. For this aim we
introduce a bidimensional generalization of the celebrated Fortet equation for the first
passage time distribution. Let

0
g(S,t|(vi,y2)) = zﬁip(7'<iﬂ(Y1,Y2),T) (19)

be the first passage time probability density function of the somatic component through
S > y,. It holds (cf. [1]):

fxtly,1)= (20)

= f’;dﬁ j:g(S719| yvr)aizP(XI(TS) §Z|TS = 19)f(X7l‘ (S,Z),'ﬁ)dz.

Here y = (y1,y2) with y, = 0, due to the resetting procedure, and x = (x1,x,) with
xp > S. The transition probability density of the process (X (t), X2 (t)) originated in
y= (y1,y2), f (x,¢] y, ), is Gaussian with mean given by (2) and (3) and covariance
matrix given by (5)-(8). One can solve (20) for fixed initial values of the dendritic
component y;. Since y; is assumed stationary, in the sequel we choose y| & my ().
An analytical solution of (20) is not available but a numerical method for its solution
is proposed in [1].

2.2.4 Dependency between ISI

ISIs of the two compartment model are dependent for specific choices of the parame-
ters. To check the presence of dependencies between successive ISIs we estimate the
correlation coefficient p and the Kendall’s 7. The latter is an index preferable to the
former when we are investigating non linear dependencies between random variables
(cf. [9]). The Kendall’s 7 between two random variables X and Y is defined as the
difference between the probabilities of concordance and discordance for two inde-
pendent copies (X,Y;) and (X3,Y2) of the bivariate random variable (X,Y) (cf. [14]),
that is

T= P{(Xl —Xg)(Yl - Y2) > 0} — P{(Xl —Xz)(Y] — Yz) < 0} 21

Considering a set of n observations {(x;,y;),i = 1,...n} of (X,Y), the couples (x;,y;)
and (x;,y;) are concordant if (x; —x;)(y; —y;) > 0, for i # j, otherwise they are
discordant. Then an estimator 7 of the Kendall’s 7 is

(number of concordant pairs) — (number of discordant pairs)

t= n(n—1)/2

(22)

where n(n— 1)/2 is the total number of pairs.
When the parameters of the process are such that the ISIs are identically distributed
but dependent, one can study the joint distribution of successive ISIs determining the



associated copula C(u,v), (u,v) € [0,1] x [0,1]. In Appendix A.2 we introduce basic
ideas on copulas, while we refer to [21] for a complete introduction to the topic.
Here we limit ourselves to recall that the joint distribution function Fr, r,(f1,t2) =
P(Ty < t1,T» < 1) of two random variables 77 and 7, with marginal distributions
Fr.(t;) =P(T; < 1;), i = 1,2, verifies

Fr, 1, (t1,2) = C(Fr, (1), Fry (12)) - (23)

The shape of C(u,v) can be determined from modelling arguments or can be argued
from plots and confirmed through statistical tests. In this paper we follow this last
procedure.

3 Results

To discuss features of the model we make use of the approximated formulas of the
previous Section and of simulations. Here we focus on dependency properties be-
tween ISIs as the parameter values vary, while we refer to [16] for further properties.
Where not differently established, the parameters values are: S = 10 mV, a = 0.05
ms L o,=05ms,0=1 mV/msl/z, U € [1,5] mV. We use simulations of 1000
sample paths.

We first perform a sensitivity analysis on the parameters «,, ¢ and y involved in the
model. In this analysis we recognize that particular choices of the parameters make
the ISTs dependent and identically distributed. Then we discuss the joint distribution
of successive ISIs for these instances.

Role of a,: the junctional constant determines the strength of the connections be-
tween the two compartments. When o, = 0, the somatic potential evolves indepen-
dently from the dendritic one. Actually its dynamics becomes deterministic, because
it does not receive noise from the dendritic component. For fixed «, as o, increases,
the dependency between the values of the dendritic component at the epochs of suc-
cessive spikes decreases. In Table 1 we illustrate the dependence between two succes-
sive ISIs by means of the Kendall’s 7 and the correlation coefficient p. The estimated
values of 7 and p refer to successive ISIs. With the choice of the parameters of Table
1, the ISI 7+ and T+ j, j > 1 are dependent (£ > 0.1) when «, = 0.05, otherwise the
dependence disappears.

*

Qy 3 p i
0.05 | [0.39,0.47 [0.57,0.65
0.25 | [0.11,0.19 [0.17,0.29

[V BV, RO, N

] ]
] ]
05 | [0.10,0.18] | [0.10,0.22]
0.75 | [0.03,0.11] | [0.05,0.16]

Table 1: Values of Kendall’s 7 and correlation coefficient p (95% confidence inter-
vals) between subsequent ISIs. Here & = 0.05 ms™', 6 = 1 mV /ms'/?, u = 3.5 mV
and S = 10 mV. For these values of ¢, the neuron is in the suprathreshold regime.
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Fig. 2: Two examples of samples of the somatic (upper) and dendritic (lower) compo-
nents. In panels (a) &, = 0.5 ms~!, while in panels (b) a;, = 10 ms~!. Here o = 0.05
ms~, u=35mVand o =1 mV/msl/z.

In Figure 2 we illustrate sample paths of the dendritic and somatic components for
two values of .. When - increases the somatic potential dynamics affects strongly
the dendritic potential evolution. Hence, for larger values of ,, both potentials ex-
hibit a resetting effect at spike times and the ISIs become independent (cf. Figure
2(b)). On the contrary, in the presence of a weak coupling of the two components, the
dendritic potential attains a stationary dynamics since no perturbation arrives from
the somatic dynamics. Hence the bidimensional process shows renewal features only
on the somatic component, generating a dependence between successive ISIs.

In Figure 3(a) we illustrate the ISIs distribution for different values of ;. The other
parameters are chosen to have identically distributed ISIs. Note that these distribu-
tions are not normal. Indeed they show slight asymmetries and the normal assumption
cannot be accepted (the p-value of a normal goodness of fit test is lower than 10~7).

Role of o: The noise affects directly only the dendritic compartment. However
the interconnection between the two compartments allows the input variability to
influence the somatic dynamics and the distribution of ISIs. Increasing ¢ the de-
pendence between successive ISIs increases (cf. Table 2). However the dependency
between ISIs disappears when one considers T;+ and T;+, j, j > 1. Furthermore, in-
creasing o, the ISI variability increases (cf. Table 2) and the stationary distribution
of {M;};> becomes more flat (figure not shown). In Figure 3(b) we illustrate some
ISIs distributions for different choices of ¢. Note that such distribution functions are
again not normal, since they show slight asymmetries (the p-value of a normal good-
ness of fit test is lower than 107'9). Moreover we observed that % captures the ISI
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dependencies better than p. This fact is related to the properties of the two indexes T
and p. The correlation index p detects linear dependencies while 7 does not hypoth-
esizes specific shapes of the dependencies.

c i* | o(Ts) 7 p

0.05 | 6 | [0.003,0.004] | [0.06,0.14] | [0.07,0.19]
1 5 | 0.33,0.39] [0.08,0.16] | [0.13,0.25]
5 4 | [9.21,10.98] | [0.09,0.17] | [0,0.11]

10 | 3 | [26.93,32.09] | [0.21,0.29] | [0.03,0.15]

Table 2: Values of i*, Kendall’s 7, correlation coefficient p (95% confidence inter-
vals) and sample variance o (7Tg) of Ts (95% confidence interval), for different noise
intensities. i* is determined using a Kolmogorov-Smirnov test to check the identical
distribution of X (#;) and X (t;, 1) for i > i*. The other parameters are @ = 0.05 ms~!,
o, =05ms™, u=35mVand S =10 mV.

Role of u: Examples in Table 3 show an increase of the dependence between
successive ISIs as the input increases. For small values of the input p the somatic
component is in the sub-threshold regime. In this case the neuron is slow and the
somatic component attains its stationary regime during each ISIL.

| i p U(T))jsie | ma(ee) =S
T [ 1 [ [=0.05,0.03] | [=0.05,0.07] | 52401 ms | -0.48

2 | 2 | [-0.02,0.06] | [~0.05,0.07] | 87091 ms | 9.05

3| 4 | [0.06,0.14 | [0.10,022] | 47324ms | 18.57
4|6 | 016024 | [0.20,032] | 3.2923ms | 28.09
518 | [0.34,042] | [0.33,0.44] | 25176ms | 37.62

Table 3: Values of i*, Kendall’s T and correlation coefficient p (95% confidence in-
tervals) and ISI sample mean u(7;) for j > i* as u varies. In the last column the
values of my(eo) — S allow to recognize sub-threshold and supra-threshold regimes.
Here a = 0.05ms™!, o, =0.5ms™ ', 6 =1 mV /ms'/? and S = 10 mV.

Furthermore during each ISI, the process has the necessary time to forget the initial
value of the dendritic component and ISIs are independent (cf. Table 3, third and
fourth column). For values of u < 2 mV, a Kolmogorov Smirnov test on the distri-
bution of M; confirms that these random variables are identically distributed (with
a p-value of 0.29). When the input u increases, the ISIs decrease and X; (¢) does
not attain its stationary regime during the first ISI. This implies that the variables M;
are not identically distributed for small values of i. However for i > i* the random
variables M; become identically distributed (with a p-value of 0.53). Furthermore as
U increases successive interspikes intervals, as well as successive values of the vari-
ables M;, i > 1, become dependent. This dependence strengthens with u (cf. Table 3).
This fact can be explained considering the decrease of the ISIs as u increases. The
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process does not forget its starting point when the spikes are frequent. In particular
for u > 4 we can also observed a light dependence between ISIs T;+ and T+ ; with
j > 1 (results not shown).

In Figure 3(c) we illustrate the shape of the distribution of Tj, for j > i*, as u in-
creases. Note that such distribution functions are not normal (the p-values of all nor-
mal goodness of fit tests are lower than 10’6), as observed before for other choices
of the parameters.

(2)

) g g i ‘

© ] T

Fig. 3: Probability density functions of identically distributed ISIs through a boundary
S = 10 mV, computed numerically solving equation (20). In panel (a) &, = 0.1 ms~!
(solid), & = 0.3 ms~! (dashdot) and &, = 0.5 ms~! (dotted). In panel (b) ¢ = 1
mV /ms'/? (solid), 6 = 5 mV /ms'/? (dashdot) and ¢ = 10 mV /ms'/? (dotted). In
panel (¢) 4 =2 mV (solid), u =3 mV (dashdot) and u = 4 mV (dotted). Furthermore
o =0.05 ms~!, while a;, = 0.5 ms™! in (b) and (c), 4 = 3.5 mV in (a) and (b), 6 = 1
mV /ms'/? in (a) and (c).

Joint distribution of successive ISIs: We study the joint distribution of successive
dependent and identically distributed ISIs, using some scatterplots of the associated
copula for different values of u (cf. Figure 4).

The shape of these scatterplots suggests to hypothesize the presence of a normal
copula. As U increases the scatterplot shows a stronger dependence between two
subsequent ISIs, confirming the results of Table 3. A goodness of fit test confirms
this conjecture, with p-values greater than 0.2. Hence the joint distribution of two
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subsequent ISIs can be obtained using the Gaussian copula, with covariance matrix
estimated from the data. The marginals are obtained numerically solving equation
(20), but they are non Gaussian distributions (cf. Figure 3). In Figure 5 we show an
example of ISI joint distribution.

() (b)

(c) (C))

Fig. 4: Scatterplot of the copula C(u,v) between Ty and Ts for 4 =2 mV (a), u = 3.5
mV (b), u =4 mV (c), u =5 mV (d). Here « =0.05 ms™", o, = 0.5 ms™!, 6 =3
mV /ms'/? and S = 10 mV..

Similar results are obtained also varying the other parameters when the successive
ISIs are dependent but identically distributed. Note that the presence of a Gaussian
copula between subsequent ISIs does not implies that the ISI marginals are normally
distributed. In fact normal goodness of fit tests on the FPT probability density func-
tions, shown in Figure 3, reject the Gaussian hypothesis with a p-value lower than
1076, This fact is evident in Figure 3(b), where the probability density functions with
o =5 and ¢ = 10 are strongly asymmetric.



Fig. 5: Evaluation of the joint probability density of 75 and Tg using a normal copula
with correlation coefficient of 0.4, estimated from data, and marginal distributions
computed from (20). The set of the parameters is: & = 0.05 ms~!, o, = 0.5 ms™!,
u=4mv,oc=3 mV/msl/z, S=10mV.

Appendix
A.1. Proof of equation (13)

When Xf (1) = X»(71), T € (t;i_1,t;), with #;_; and #; firing times, equation (12) be-

comes .

"X\ (1)dr. (24)

i1

-l’l
X (t) = X2 (ti1) = —(a+ay) / Xo(t)dt + a
tiq
Since X,(1;) = S and X(1;" ;) = 0, equation (24) can be rewritten as:
t; 1

S=—(a+o) | Xo(t)dt+o | Xi(r)dr. (25)

ti1 i

Taking the expectation of each member of (25) and applying Fubini’s theorem (cf.[10]),
we get

S=—(a+o) Uti mz(t)dt] +a, {/titilml(t)dt} . (26)

i1
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Now, considering the expressions (2a) and (2b) with initial condition m;(f;_1) = 0
and my (t;-1) = M;_1, we have

1
(1) =mi () + 5 (Mi1 = £ ) e @
1
— (o420 )t
+ M;_1— p +2ar) e
1
my (l) =m2(°°) + 5 (Mi—l — %) e ¥ (28)

1 u _
_ — M (o+2a)t
3 (a+2ar ' 1) ¢

Finally replacing (27) and (28) into (26) we get the following equation for the i-th
ISI,i>2

(e = { g\ am Ly —(a+20,)T;
2(S — my(e)) {M,,l a}e +{a+2a, Mll}e .9

A.2. The bivariate copula

Copulas are mathematical objects increasingly used to describe the joint behaviour of
random vectors. We introduce here only the material necessary for this paper while
we refer to [21] for a detailed introduction.

A bivariate copula is the joint cumulative distribution function of a bivariate random
vector (U, V) on the unit square [0, 1] x [0, 1] with uniform marginals:

Clu,v) =PU <u,V <v).

If Fi(x;) and F>(x2) are the marginal distribution functions of the random variables
Xj and X>, then
C(Fi(x1),F2(x)) = F(x1,x2) (30)

defines a bivariate distribution function with marginals Fj (x;) and F>(x7). Sklar (cf.
[25]) established also that the converse is true. Indeed he proved that any bivariate
distribution function F' can be written in the form (30). Moreover if the marginal dis-
tributions are continuous, the copula representation (30) is unique.

Copulas separate the study of dependency properties from the study of marginals. On
the contrary this two features are mixed in the joint distribution. Moreover copulas
are invariant under increasing and continuous transformations, i.e. they are scale free.
There exist different types of copulas, corresponding to different dependency struc-
tures. One example is the Gaussian copula associated to a multivariate normal dis-
tribution. It is constructed by projecting a bivariate normal distribution on the unit
square [0, 1]2. For a given 2 x 2 correlation matrix X, the Gaussian copula is

Cs(u,v) =z (¢ (u), 97" (v)) -
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Here ¢! denotes the inverse cumulative distribution function of a standard normal
and ¢y is the joint cumulative distribution function of a bivariate normal distribution
with mean vector zero and covariance matrix equal to X.

Note that if in (30) one uses a Gaussian copula and non Gaussian marginal distribu-
tions, the joint distribution is not a bivariate normal distribution.

Acknowledgements Work supported in part by MIUR Project PRIN-Cofin 2008.
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