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Tick-Borne Encephalitis
I endemic in Eurasia from Europe, through Russia To China

and Japan
I the virus causes potentially fatal neurological infecion
I in last years emergenge of the virus in new area and increase

of morbidity
I maintained in nature by complex cycle involving Ixodid ticks

(I. ricinus and I. persulcatus) and wild vertebrate hosts
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Our research question

how do the non-systemic transmission together with the different
aggregation patterns influence the pathogen spreading?



Spreading Model

I at time t a fraction, π(t), of
passengers (ticks) are
infectious

I P(k) probability that a bus
(mouse) transports k
passengers (ticks) of them

I β transmission probability
for infectious path

I µ recovery probability

⇒ π(t + 1) = f (π(t))

time t
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Analytical Framework

the probability that a susceptible passenger, having h travel mates,
gets the infection is

1− (1− β)h

Let π(t) be the prevalence of infection among passengers at time
t, the probabilityy for a susceptible passenger on a bus transporting
k individuals including himself to be infectious at time t + 1 is

1− (1− β)(k−1)·π(t)
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Math

Recalling that P(k) is the probability for a bus to have k
passengers, the probability for a passenger to be on a k-bus is

#passengers on a k-bus

#passengers
=

k ·#k-bus

#passengers
=

= k · #k-bus

#bus
· #bus

#passengers
= k · P(k) · 1

〈k〉



Math

thus, the probability for a susceptible passenger at time t to be
infectious at time t + 1 is

∞∑
k=1

[
1− (1− β)(k−1)·π(t)

]
· k

〈k〉
· P(k)

and therefore the prevalence among passenger at time t + 1 is

π(t + 1) = f (π(t)) =

= (1− µ)·π(t)+[1− π(t)]·

{
1−

∞∑
k=1

(1− β)(k−1)·π(t) · k

〈k〉
· P(k)

}



Equilibria
imposing the stationary condition π(t + 1) = π(t) = x we can
derive the equilibria as solutions of the following equation

x = f (x) = (1− µ)·x+[1− x ]·

{
1−

∞∑
k=1

(1− β)(k−1)·x · k

〈k〉
· P(k)

}
.

Now:

I x = 0 is a solution,

I f (1) = 1− µ ≤ 1,

I f ′′(x) < 0.

assuming 〈k〉 and 〈k2〉 finite
0.5 1

0.5

1 f ′(0) > 1

f ′(0) < 1

therefore conditions to have one, and only one, solution x̂ ∈ (0, 1)
is that f ′(0) > 1 or

− ln (1− β)

µ
>

〈k〉
〈k2〉 − 〈k〉

.
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Stability

recalling that f ′′(x) < 0 and that

I f ′(1) = −µ+
∑

k(1− β)k−1 k
〈k〉P(k) > −µ > −1

I f ′(x̂) < 1

hence x̂ is asymptotically stable when it exists. Therefore:

I disease-free equilibrium is asymptotically stable when x̂ does
not exist.

I disease-free is unstable when x̂ exists. Furthermore, when x̂
exists it is also asymptotically stable.



Conclusion and Discussions

I co-feeding transmission

I spreading on star-like networks

I spreading dynamic on dynamic bipartite networks

I analytical result confirmed by simulations
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