

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

'Being good isn't good enough': gender discrimination in Italian academia

This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1739997 since 2022-01-24T19:02:39Z
Published version:
DOI:10.1080/03075079.2019.1693990
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

Modeling epidemic spreading in star-like networks

Luca Ferreri, Paolo Bajardi, Mario Giacobini

GECO - Group of Computational Epidemiology Department of Veterinary Sciences

> CSU - Complex Systems Unit Molecular Biotechnology Center

ARC²S - Applied Research on Computational Complex Systems Group Department of Computer Science University of Torino

Milano, 5 aprile 2013

Tick-Borne Encephalitis

- endemic in Eurasia from Europe, through Russia To China and Japan
- the virus causes potentially fatal neurological infection
- in last years emergenge of the virus in new area and increase of morbidity
- maintained in nature by complex cycle involving lxodid ticks (*I. ricinus* and *I. persulcatus*) and wild vertebrate hosts

Systemic Transmission

time t

time t + 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Non-Systemic Transmission

Non-Systemic Transmission

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Non-Systemic Transmission

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Our research question

how do the non-systemic transmission together with the different aggregation patterns influence the pathogen spreading?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 at time t a fraction, π(t), of passengers (ticks) are infectious

time t

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- at time t a fraction, π(t), of passengers (ticks) are infectious
- P(k) probability that a bus (mouse) transports k passengers (ticks) of them

- at time t a fraction, π(t), of passengers (ticks) are infectious
- P(k) probability that a bus (mouse) transports k passengers (ticks) of them

- at time t a fraction, π(t), of passengers (ticks) are infectious
- P(k) probability that a bus (mouse) transports k passengers (ticks) of them
- β transmission probability for infectious path
- μ recovery probability

- at time t a fraction, π(t), of passengers (ticks) are infectious
- P(k) probability that a bus (mouse) transports k
 passengers (ticks) of them
- β transmission probability for infectious path
- μ recovery probability

$$\Rightarrow \pi(t+1) = f(\pi(t))$$

time t + 1

Analytical Framework

the probability that a susceptible passenger, having h travel mates, gets the infection is

$$1-(1-eta)^h$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Analytical Framework

the probability that a susceptible passenger, having h travel mates, gets the infection is

$$1-(1-\beta)^h$$

Let $\pi(t)$ be the prevalence of infection among passengers at time t, the probability for a susceptible passenger on a bus transporting k individuals including himself to be infectious at time t + 1 is

$$1-(1-\beta)^{(k-1)\cdot\pi(t)}$$

Recalling that $\mathbb{P}(k)$ is the probability for a bus to have k passengers, the probability for a passenger to be on a k-bus is

Math

thus, the probability for a susceptible passenger at time t to be infectious at time t + 1 is

$$\sum_{k=1}^{\infty} \left[1 - (1-\beta)^{(k-1)\cdot\pi(t)} \right] \cdot \frac{k}{\langle k \rangle} \cdot \mathbb{P}(k)$$

and therefore the prevalence among passenger at time t+1 is

$$\begin{aligned} \pi(t+1) &= f(\pi(t)) = \\ &= (1-\mu)\cdot\pi(t) + [1-\pi(t)]\cdot\left\{1 - \sum_{k=1}^{\infty} (1-\beta)^{(k-1)\cdot\pi(t)} \cdot \frac{k}{\langle k \rangle} \cdot \mathbb{P}(k)\right\}\end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

imposing the stationary condition $\pi(t+1) = \pi(t) = x$ we can derive the equilibria as solutions of the following equation

$$x = f(x) = (1 - \mu) \cdot x + [1 - x] \cdot \left\{ 1 - \sum_{k=1}^{\infty} (1 - \beta)^{(k-1) \cdot x} \cdot \frac{k}{\langle k \rangle} \cdot \mathbb{P}(k) \right\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

imposing the stationary condition $\pi(t+1) = \pi(t) = x$ we can derive the equilibria as solutions of the following equation

$$x = f(x) = (1 - \mu) \cdot x + [1 - x] \cdot \left\{ 1 - \sum_{k=1}^{\infty} (1 - \beta)^{(k-1) \cdot x} \cdot \frac{k}{\langle k \rangle} \cdot \mathbb{P}(k) \right\}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Now:

- x = 0 is a solution,
- ► $f(1) = 1 \mu \le 1$,
- f''(x) < 0.

imposing the stationary condition $\pi(t+1) = \pi(t) = x$ we can derive the equilibria as solutions of the following equation

$$x = f(x) = (1 - \mu) \cdot x + [1 - x] \cdot \left\{ 1 - \sum_{k=1}^{\infty} (1 - \beta)^{(k-1) \cdot x} \cdot \frac{k}{\langle k \rangle} \cdot \mathbb{P}(k) \right\}$$

Now:

• x = 0 is a solution,

- $f(1) = 1 \mu \le 1$,
- f''(x) < 0.

assuming $\langle k \rangle$ and $\langle k^2 \rangle$ finite

imposing the stationary condition $\pi(t+1) = \pi(t) = x$ we can derive the equilibria as solutions of the following equation

$$x = f(x) = (1 - \mu) \cdot x + [1 - x] \cdot \left\{ 1 - \sum_{k=1}^{\infty} (1 - \beta)^{(k-1) \cdot x} \cdot \frac{k}{\langle k \rangle} \cdot \mathbb{P}(k) \right\}$$

Now:

$$x = 0 \text{ is a solution,}$$

$$f(1) = 1 - \mu \le 1,$$

$$f''(x) < 0.$$
assuming $\langle k \rangle$ and $\langle k^2 \rangle$ finite
$$f'(0) < 1$$

therefore conditions to have one, and only one, solution $\hat{x} \in (0,1)$ is that f'(0) > 1 or

$$-\frac{\ln\left(1-\beta\right)}{\mu} > \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}.$$

Stability

recalling that f''(x) < 0 and that

• $f'(1) = -\mu + \sum_{k} (1-\beta)^{k-1} \frac{k}{\langle k \rangle} \mathbb{P}(k) > -\mu > -1$

•
$$f'(\hat{x}) < 1$$

hence \hat{x} is asymptotically stable when it exists. Therefore:

- disease-free equilibrium is asymptotically stable when x̂ does not exist.
- disease-free is unstable when x̂ exists. Furthermore, when x̂ exists it is also asymptotically stable.

Conclusion and Discussions

- co-feeding transmission
- spreading on star-like networks
- spreading dynamic on dynamic bipartite networks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

analytical result confirmed by simulations

Acknowledgements

Source of inspirations for this work come from a scientific project hold with the Fondazione Edmund Mach, San Michele all'Adige (TN). In particular, we are grateful to Anna Paola Rizzoli, Roberto Rosà e Luca Bolzoni.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <