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SATISFYING RESOURCE CONSTRAINTS IN SPACE MISSIONS BY
ON-LINE TASK RECONFIGURATION

Roberto Micalizio, Enrico Scala, and Pietro Torasso

Dipartimento di Informatica, Università di Torino, corso Svizzera 185, 10149 Torino, Italy

ABSTRACT

This paper addresses the problem of robust plan execu-
tion in the context of exploration mission plans carried
on by planetary rovers. In order to deal with limited com-
putational resources, and with limited rover’s autonomy
(the rover is not allowed to change its plan), the paper
proposes a novel methodology to cope with contingencies
rising at execution time. The approach aims at reconfigur-
ing on the fly the plan by changing the parameter configu-
ration of the actions still to be executed. By exploiting an
enriched action representation based on the notion ofex-
ecution modalities, the ReCon system is able to (i) early
detect the violation of mission resource constraints, (ii)
find (if any) a new assignment of modalities to preserve
the mission plan constraints. ReCon uses constraint sat-
isfaction techniques both for plan consistency and plan
reconfiguration. Finally, the paper reports a preliminary
set of experimental results which in practice confirms the
feasibility and the advantages of the approach.

Key words: Robust plan execution; planetary rovers;
CSP; plan reconfiguration.

1. INTRODUCTION

Space exploration missions carried on by planetary rovers
are very challenging. On the one hand, the environment
is just partially observable and very loosely predictable;
thereby the rover must present some form of autonomous
behavior in order to react to unexpected contingencies.
On the other hand, the rover’s autonomy is typically
bounded both because of limitations of on-board com-
putational power, and because the rover is not in general
allowed to replace the plan synthesized on Earth.

In recent years, robust plan execution in partially known
environments has been addressed in a number of works
[GS10, vdKdW05, GGO10]. Most of these approaches
include a replanning step: whenever unexpected situa-
tions cause the failure of an action, the plan execution is
stopped and a new plan is synthesized as a result of a new
planning phase. In the challenging scenario of space ex-
ploration, however, re-planning is not always possible. In

[BWW06, CSW09] the replanning is avoided by means
of contingent plans that encode choices between func-
tionally equivalent sub-plans. At execution time, the plan
executor is able to select a contingent plan according to
the current contextual conditions. These works, however,
are mainly focused on the temporal dimension and do not
consider consumable resources.

In a previous work ([MST12]), we have presented a su-
pervisor, called ActS, which monitors the execution of
each mission task: whenever an anomalous execution
trend is detected, ActS tries to avoid the task failure by
adjusting its parameters (e.g., during a locomotion task,
ActS can intervene by increasing/decreasing the rover’s
speed). ActS is effective in monitoring the execution of
a single task, but its local decisions may have an impact
on the whole mission (e.g., slowing down a locomotion
may cause a delayed execution of all the following tasks).
Therefore, it may be possible that the ActS’s local deci-
sions could threat some global constraints on time and
resources. To mitigate the impact of such threats we pro-
pose to complement ActS with another module, called
ReCon: whenever a significant discrepancy between ex-
pected and actual resource consumption is detected, Re-
Con reconfigures the mission tasks still to be performed
in order to assure the satisfaction of the resource con-
straints.

More precisely, in this paper we consider the mission plan
as an ordered sequence of actions; in addition to this, we
enrich the plan model by associating each action with a
set ofexecution modalities. While the action represents
a possible way for achieving the high-level, qualitative
effects, an execution modality refines this model to spec-
ify a particular configuration of rover’s devices used to
perform the action. Thus, the modalities of a given action
have a significant impact on time and resources consump-
tions with significant variations from one another. While
an initial assignment of modalities for the actions is de-
cided on Earth, ReCon is in charge of adjusting such an
assignment throughout the plan execution with the pur-
pose of preserving the satisfaction of resources and time
constraints.

After motivating the approach (Section 2), we formal-
ize the notion of execution modalities (Section 3) upon
which we show how this problem can be formulated as
a Constraint Satisfaction Problem (CSP) and hence how



a CSP solver can be exploited for implementing ReCon
(Section 4); it follows an exemplification of how ReCon
actually works in a simple exploration mission (Section
5). Our preliminary tests (Section 6) show that ReCon is
able to adjust on-line the mission configuration, actually
preventing many plan failures.

2. MOTIVATIONS

In [MST12] we have presented a reactive supervisor,
called ActS, that is in charge of monitoring the execution
of a given mission plan: it has to detect anomalous trends
that may occur during the execution of durative actions,
and then it has to intervene by correcting, if possible, the
rover’s behavior.

The basic idea of ActS is that the failure of the (durative)
action currently in progress can be prevented by properly
adjusting the setting of some relevant parameters while
the action is still in execution.

In [MST12] we have shown that, to accomplish its job,
ActS needs in input an augmented model of the mission
plan based on the PDDL 2.1 ([FL03]) formalism (it al-
lows to explicitly model durative actions and invariant
conditions, to capture constraints which must be satisfied
during the whole action duration). The concept of du-
rative actions, however, is not sufficiently expressive to
model all the pieces of information required by ActS; for
this reason we have augmented the plan model by asso-
ciating each PDDL action with a set of temporal trends
(both nominal and abnormal) that ActS has to recognize
during the execution. Whenever an anomalous trend is
identified, ActS intervenes by adjusting an appropriate set
of parameters for correcting the current action execution.

The main advantage of ActS is its ability of detecting sit-
uations that may cause an action failure and of overcom-
ing the critical situations without the need of stopping the
plan execution. In many cases it is possible to restore a
nominal trend of execution by adjusting the rover’s pa-
rameter configuration, while the current action is still in
progress. Of course, in situations where the parameters
adjustment is not sufficient for correcting the anomalous
trend, ActS interrupts the plan execution and invokes a
mission replanner.

ActS is focused on the achievement of the expected ef-
fects of the current action. It is mainly concerned with
tuning the parameters of the rover’s devices in order not
to violate the action invariant conditions; these conditions
in fact represent bounds not to be passed for safety rea-
sons. Thus ActS has the role of a short-term (reactive)
supervisor, and it cannot estimate how its local decisions
will impact the rest of the mission plan.

A mission rover example.

Let us assume that roverr1 has to move from its initial
locationl1 to reach a locationl2, take a picture of such

a target, and then move to locationl3 from which it can
upload the collected data to Earth via a communication
action. Such a simple mission is sketched in Figure 1. Let
us assume moreover that the mission represents a feasible
solution for a planning problem with goal:{in(r1,l3),
mem>=120, pwr>=0, time<=115} , i.e.: at the end of plan
the rover must be located inl3 (propositional fluent), the
free memory must be (at least) 120 Mbits, there must be a
positive amount of power, and the mission must be com-
pleted within 115 secs.

The figure shows how the four actions (regular boxes)
change the status of the rover over time (rounded-corner
boxes). To simplify the picture, the rover’s status is rep-
resented by just a subset of the whole status variables.
Note that the status of a rover involves both propositional
fluents; (e.g.,in(r1, l1)meaning roverr1 is in loca-
tionl1), and numeric fluents; in particular,memory rep-
resents the amount of free memory (in Mbits) at a given
step;power is the power (in Joule) available;time is
the mission time given in seconds; finally,com_cost is
an overall cost for communicating.

The picture (1) shows how the rover’s status evolves
when no unexpected situations occur. In particular, the
estimates about the rover’s status are inferred by predict-
ing a deterministic set of effects. Let us now assume that
during the execution of the first drive action the rover
has to travel across a rough terrain. For safety reasons,
ActS decides to reduce the speed, and as a consequence
the drive action will take a longer time to be completed.
While ActS’s local decision is essential to avoid the fail-
ure of the drive action, it is easy to see that it causes the
delayed execution of all the following actions. Conse-
quently, one of the constraints associated with the goal
(i.e.,time <= 115) will be no longer satisfied if the forth-
coming actions will be performed with their default set-
tings.

It is worth noting that the mission goal could be missed
even if ActS does not intervene. This may happen when
the execution of the actions is nominal, in the sense that
their expected high level effects are achieved, but the
actual resource and time consumption is different from
what was estimated at planning time. For instance, a
drive action could take longer to be completed, not be-
cause ActS has slowed down the rover, but because the
path was longer than estimated.

In order to reach the mission goal despite the uncertainty
on the resource profiles at execution time, in this paper we
propose to complement ActS with another agent, called
ReCon. ReCon is along-term supervisor, which con-
siders all the actions still to be performed. It has two
main goals: first, it verifies whether the current execu-
tion is still consistent with plan constraints, and hence the
goal can be satisfied; second, in case the current execu-
tion would lead to the violation of any constraint, ReCon
adjusts (when possible) the rest of the plan in order to re-
store the validity of the constraints on resources and time.

In the next section we will introduce the notion ofaction
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Figure 1. A simple mission plan.

modalityand we will discuss how relying on this notion,
ReCon is able to complement ActS’s local decisions.

3. ACTION MODALITIES

We propose to augment the mission plan by associating
each action instance with a set of alternativemodalities.
The intuition is that while actions differ each other in
terms of qualitative effects, the expected result of an ac-
tion can actually be obtained in many different ways by
appropriately configuring the rover’s devices. Of course,
different configurations have in general different resource
profiles and it is therefore possible that the execution of
an action in a given configuration would lead to a con-
straint violation, whereas the same action performed in
another configuration would not. We call these alterna-
tive configurationsmodalitiesand we propose to capture
the impact of a specific modality by modeling the use of
specific configurations in terms of pre/post conditions on
resource and time profile, which become explicit in the
action model definition.
Thanks to action modalities, ReCon has a chance to adapt
the execution of the mission plan. Its job consists in se-
lecting a modality for each action the rover has still to
perform, such that the execution of these actions in their
assigned modalities does not violate mission constraints.
In the rest of this section we formally introduce the no-
tion of action modality and give an example; while in the
following section we discuss how ReCon infers a new
configuration of modalities.

Definition 1 Action model. Let a be an action instance
in the mission planP , the model of a is represented by
the tuple〈prop pre, prop eff,Mods〉 where:

• prop pre is the propositional preconditions set,
which represents the applicability conditions for the
execution ofa

• prop eff is the set propositional effects ofa, i.e. a
set of propositional atoms which hold after the ac-
tion execution. Only if such atoms will be achieved
the action itself is considered completed with suc-
cess.

• mods is a set of mutually exclusive modalities;
each modalitym ∈ Mods corresponds to a par-
ticular setting Sm over the rover’s parameters.

m specifies how the resources change by execut-
ing a with modality m. Formally, m is a pair
〈num pre, num eff〉 where:

– num pre is a conjunction of comparison
constraints among numeric expression (e.g.,
pwr consumption< 3). As propositional pre-
conditions, these constraints have to be satis-
fied in order to consider applicable the action
in that modality.

– num eff specifies how the numeric fluents
are changed by the action execution in that
modality. For each numeric fluent the relation
is either an increaser or a decreaser or an as-
signer (see an example below).

The action model we propose splits the action behavior
into two parts: one propositional at the higher level
of abstraction and one numeric at the low level. The
propositional part models the applicability conditions
and the expected effects of actiona. The modalities
definition allows to specify how the action impacts the
resource and time profile according to a specific modality.

Extending the mission rover plan model.By recalling
the example of section 2, Figure 2 shows how we
express a drive action by using the augmented model
in a PDDL-like language. The actiondrive (r1,
l1, l2) requires roverr1 to move from locationl1
to locationl2. :modalities introduces the set of
modalities associated with adrive; in particular, we
express for this action, three alternative modalities:
- safe: the rover moves slowly and far from obstacles;
- normal: the rover moves at its cruise speed and can
go closer to obstacles;
- agile: the rover moves faster thannormal.
The :precondition and :effect fields list as
usual the applicability conditions and the expected
effects, respectively, and are structured as follows:
first a propositional formula encodes the precondi-
tion/effect of the action, then for each modality listed in
:modalities a numeric expression is specified; such
a numeric expression is used to model the amount of
resources and time required (precondition) or consumed
(effect) by the action when performed under that specific
modality. The numerical part of the model (Mods) of the
action is hence distributed in the preconditions and in the
effects. For instance, in the preconditions(reachable

l1, l2) and (in r1, l1) are two propositional atoms
required as preconditions of the action. These two atoms



(:action drive
:parameters (r1 l1 l2)
:modalities (safe, normal, fast)
:precondition (and (reachable l1 l2)(in r1 l1))

(safe: ((>= (power r1) (f_pwr_safe(l1, l2)))
(normal: ((>= (power r1) (f_pwr_normal(l1,l2)))
(agile: ((>= (power r1) (f_pwr_agile(l1, l2))) )

:effect (and
(in r1 l2)
(not(in r1 l1)))
(safe:

(decrease (power r1)(f_pwr_safe(l1, l2)))
(increase (time) (f_time_safe(l1, l2))) )

(normal:
(decrease (power r1)(f_pwr_normal(l1, l2)))
(increase (time) (f_time_normal(l1, l2))))

(agile:
(decrease (power r1)(f_pwr_agile(l1, l2)))
(increase (time) (f_time_agile(l1, l2))) )

))

Figure 2. The augmented model of adrive action.

must be satisfied independently of the modality actually
used to perform thedrive action. While the expression
(safe -> (>= (power r1) (f_pwr_safe(l1,l2))))

means that the modalitysafe can be selected when
the rover’s power is at least greater than a thresh-
old given by the function(f_pwr_safe(l1,l2)))),
which estimates the power required to reach
l2 from l1 in safe modality. Analogously,
(safe->(decrease(power r1)(f_pwr_safe(l1, l2)))

describes in the effects how the rover’s power is re-
duced after the execution of the drive action. More
precisely, we have modeled the power consumption
as a function depending on the duration of the drive
action (computed considering distance and speed) and
the average power consumption per time unit given
a specific modality. For instance, in safe modality,
the amount of power consumed is estimated by the
function (f_pwr_safe(l1, l2)), corresponding to
(safe_cons * (dist(l1,l2)/safe_speed), where
safe_cons andsafe_speed are the average consumption
and the average speed for the safe modality, respectively,
while dist(l1,l2) is the distance between the two
locationsl1 andl2.
Finally, note that in the numeric effects of each modality,
the model updates also the fluenttime according to the
selected modality. Also in this case, the duration the
action is estimated by a function associated with each
possible action modality.
Analogously to the drive action we model modalities
also for the Take Picture (TP) and the Communication.
For TP we have the low (LR) and high (HR) resolution
modalities, whereas for the Communication we assume
to have two different channels of communication: CH1
with low overall comm cost and low bandwidth, and
CH2 with high overallcomm cost but high bandwidth.

4. RECON: ADAPTIVE PLAN EXECUTION

In this section we describe how the plan adaptation pro-
cess is actually carried on by exploiting a Constraint Sat-

isfaction Problem representation. More precisely, three
main algorithms drive the execution of ReCon: the global
strategy specifying the control loop, and two important
steps of this loop:Update by means of which new ob-
servations are asserted within the CSP representation and
inconsistencies are discovered, andAdapt which has to
adapt the plan.

4.1. The global strategy

Algorithm 1 shows the main steps of the adaptation pro-
cess. The algorithm takes in input the initial rover’s state
S0, the mission goalGoal, and the planP enriched as
discussed above. The algorithm returnsSuccess when
the execution of the whole mission plan achieves the goal;
Failure otherwise. In this case, a failure means that
there is no way to adapt the current plan in order to reach
the goal satisfying mission constraints. To recover from
this failure, a replanning step altering the structure of the
plan should be invoked, but this step requires the inter-
vention of the ground control station on Earth.

The first step of the ReCon algorithm is to build a
CSPModel representing the mission plan (line 1). Due
to lack of space, we cannot present this step in details;
our approach, however, is similar to the one presented by
Lopex et al. in [LB03] in which the planning problem is
addressed as a CSP.

However, while Lopex et al.’s work is mainly focused
on propositional planning (and hence CSP variables are
Boolean) in this work we are mainly focused on the sat-
isfiability of numeric constraints. Thus, in creating the
CSPModel, we associate each numeric fluentN j of the
original planning problem with a setN j

i of numeric vari-
ables into the CSP representation, wherei : 0..|P | + 1.
The variableN j

i will therefore denote the value of the
numeric fluentN j at the i-th step (i.e., before the ap-
plication of thei-th action in the plan). The creation
of theCSPModel also includes the definition of con-
straints relating variables at stepi with other variables at
stepsi+1 (see [LB03]). Within theCSPModel there
is another important set of variables: for each action
ai ∈ P , we create a variablemodi whose domain is
Mods(ai); variablemodi therefore represents the modal-
ity assigned to actionai. These modality variables are
decisionalvariables in the CSP (i.e., variables that drive
the search process), whereas the numeric fluent variables
can be considerednon decisionalas they represent just
the side effect of the modalities selection. Of course, at
the time in whichCSPModel is created, each variable
modi (i : 1..|P |) is initialized with the modality selected
at planning time forai.

Once theCSPModel has been built, the algorithm loops
over the execution of the plan. Each iteration corresponds
to the execution of thei-th action in the plan. First of all,
ReCon submits actionai to ActS (line 4), that is respon-
sible for the on-line monitoring of the action execution.
At the end of the action execution, ActS returns to Re-



Con a pair (outcome, obsi+1); outcome is eitherSuccess
(when the propositional effects of the action have been
achieved) orFailure (when the execution of the action
has been interrupted due to the violation of some invari-
ant conditions, or when the expected propositional effects
have not been achieved);obsi+1 is the set of observations
got after the execution of actionai and hence referring
to the i + 1-th step of execution. In caseoutcome is
Failure, ReCon stops the plan execution and returns a
failure; i.e., a replanning procedure is required. Other-
wise, whenoutcome is Success, ReCon exploitsobsi+1

to update theCSPModel (line 8). By propagating the
observations inside the CSP representation, it is possible
to verify the violation of some global constraints; when-
ever an inconsistency is found (line 10), ReCon has to
adapt the current plan by finding an alternative assign-
ments to action modalities that satisfies the numeric con-
straints (line 11). If the adaptation has success, a new
non-empty plannewP is returned and substituted to the
old one. Otherwise, the plan cannot be adapted and a fail-
ure is returned; in this case, the plan execution is stopped
and a new planning phase is needed starting from the ac-
tual state resulting after the execution of actionai.

Algorithm 1 : ReCon
Input : S0, Goal, P
Output : Successor Failure
CSPModel = Init(S0, Goal, P ) ;1

i = 0;2

while ¬ P is completeddo3

(outcome, obsi+1) = ActS(ai, curMod(P, ai));4

if outcome is Failure then5

return Failure6

end7

else8

Update(CSPModel,ai,num(obsi+1));9

if ¬ numeric-consistent(CSPModel,Goal)10

then
newP = Adapt(CSPModel,i,Goal,P );11

if newP 6= ∅ then12

P = newP13

end14

else15

return Failure16

end17

end18

end19

end20

return Success21

4.2. Update

The Update step is sketched in Algorithm 2. The algo-
rithm takes in input the CSP model to update, the last
performed actionai, and the setNObs of observations
about numeric fluents. The algorithm starts by asserting
within the model that thei-th action has been performed;
see lines 1 and 2 in which variablemodi is constrained

to assume the special valueexec. In particular, a first
role of theexec value is to prevent the adaptation pro-
cess to change the modality of an action that has already
been performed, as we will see in the following section.
Moreover,exec allows also the acquisition of observa-
tions even when the observed values are completely un-
expected. In fact, by assigning the modality of actionai
to exec, we relax all the constraints over the numeric vari-
ables at stepi + 1-th (which encode the action effects).
This is done in lines 3-6 in which we iterate over the nu-
meric fluentsN j mentioned in the effects of actionai,
and assign to the corresponding variable ati + 1-th step
the value observed inNObs. On the other hand, all the
numeric fluent that are not mentioned in the effects of ac-
tion ai do not change, so the corresponding variables at
stepi + 1 assume the same values as in the previousi-th
step (lines 7-10).

Algorithm 2 : Update
Input : CSPModel, ai,NObs
Output : modifiedCSPModel
removeConstraint(CSPModel,modi=curMod(ai));1

addConstraint(CSPModel,modi=exec);2

foreachN j ∈ affected(ai) do3

addConstraint(CSPModel,4

(modi=exec)→N
j
i+1

=get(NObs,N j
i+1

))5

end6

foreachN j ∈ ¬affected(ai) do7

addConstraint(CSPModel,8

(modi=exec)→N
j
i+1

=N j
i )9

end10

4.3. Adapt

TheAdapt module, shown in Algorithm 3, takes in input
the CSP model, the indexi of the last action performed by
the rover, the mission goal, and the planP ; the algorithm
returns a new adapted plan, if it exists, or an empty plan
when no solution exists.

The algorithm starts by removing fromCSPModel the
constraints on the modalities of actions still to be per-
formed; i.e., each variablemodk with k greater thani
is no longer constrained (ai is the last performed ac-
tion and its modality is set toexec) (lines 1-4). This
step is essential since the currentCSPModel is incon-
sistent; that is, the current assignment of modalities does
not satisfies the global constraints. By removing these
constraints, we allow the CSP solver to search in space
of possible assignments to modality variables (i.e., the
decisional ones), and find an alternative assignment that
satisfies the global constraints (line 5). If the solver re-
turns an empty solution, then there is no way to adapt
the current plan andAdapt returns no solution. Other-
wise (lines 9-16), at least a solution has been found. In
this last case, a new assignment of modalities to the vari-
ablesmodk (k : i+1..|P |) is extracted from the solution,
and this assignment is returned to the ReCon algorithm



as a new plannewP such that the actions are the same as
in P , but the modality labels associated with the actions
ai+1, .., a|P | are different.

Note that, in order to keep updated the CSP model for
future adaptations, the returned assignment of modalities
is also asserted inCSPModel; see lines 11-14.

Algorithm 3 : Adapt
Input : CSPModel, i,Goal,P
Output : a new plan, if any
for k=i+1 to |P | do1

removeConstraint(CSPModel,2

modk=currentMod(ak));3

end4

Solution = solve(CSPModel);5

if Solution = null then6

return ∅7

end8

else9

newP=extractModalitiesVar(Solution);10

for k=i+1 to |newP | do11

addConstraint(CSPModel,12

modi=curMod(newP [i]));13

end14

return newP15

end16

5. RUNNING THE MISSION ROVER EXAMPLE

Let us consider again the example in Figure 1, and let us
see how RoCon manages its execution. First of all, the
plan model must be enriched with the execution modal-
ities as explained in Section 3; Figure 3 (top) shows the
initial configuration of action modalities: the drive ac-
tions havecruise modalities, the take picture (TP) has
LR (low resolution) modality, and the communication
(Comm) uses the low bandwidth channel (CH1). This is
the enriched plan ReCon receives in input.

Now, let us assume that the actual execution of the first
drive action takes a longer time than expected, 47s in-
stead of 38s, and consumes more power, 3775 Joule in-
stead of 3100 Joule. While the discrepancy on power is
not a big issue as it will not cause a failure, the discrep-
ancy on time will cause the violation of the constraint
time <=115; in fact, performing the subsequent actions
in their initial modalities would require 120 seconds. In
other words, the assignment of modalities to the subse-
quent actions does not satisfies the mission constraints.
This situation is detected by ReCon that intervenes and,
by means of theAdapt algorithm discussed above, tries
to find an alternative configuration of modalities.

Let us assume that communication cost is constrained;
that is, the mission goal includes the constraint
com_cost = 1; this prevents ReCon from using the fast
communication channel. In order to gain some time, Re-

Con can just switch the modality of the second drive ac-
tion from cruise to agile, which allows the rover to
move faster. Figure 3 (bottom), shows the reconfigured
plan with the estimation on the resource and time con-
sumption. Note that the new configuration has an im-
pact not only ontime, but also onpower; such an im-
pact, however, does not represent a violation of the global
constraints (the constraint on power is not so strict), and
hence the proposed (re)configuration is a solution.

6. EXPERIMENTAL VALIDATION

The approach described in the paper aims at detecting de-
viations from the expected use of resources, and in re-
configuring the forthcoming actions by selecting alterna-
tive modalities once relevant deviations can prevent the
plan accomplishment. The reconfiguration purpose is in-
tended to accommodate the actual plan execution in such
a way that all the constraints continue to be satisfied.

Therefore it is quite obvious that the approach is of lim-
ited use in case there is no discrepancy between the pre-
dicted and actual consumption of the resources. For
this reason we have designed an experimental setting
which allows us to evaluate the performance of our sys-
tem depending on the degree of discrepancy encountered
throughout the execution of the plan.

We have designed 170 test cases, each of which involves a
plan composed of 17-18 activities (typically 10-11 drives,
6-7 take pictures, 1-2 communications). The initial plan
is fully instantiated (a modality has been assigned to each
action) and is feasible since the constraints built upon all
the propositional and numerical aspects defined for the
problem at hand are satisfied. The 170 test cases have
been subdivided into two subsets: 102hardcases and 68
mediumcases. The classification depends on the degree
of strictness we have imposed on the numeric constraints:
in thehardcases numeric constraints on the resources are
very strict since they are just sufficient for completing the
plan and there is a very little tolerance for accommodat-
ing deviations. In themediumcases the constraints are
strict but there is a larger margin for tolerating deviations.

ReCon has been implemented in Java 1.7, the Choco CSP
solver (version 2.1.3)1 has been used in theAdapt algo-
rithm to find an alternative configuration. Each case has
been run in ten different scenarios2: in scenario 1 the ob-
servations coming from the simulated execution coincide
with the predicted values, in scenario 10 the discrepancy
between observed values and predicted ones is high (over
32%), in the intermediate scenarios there is an increasing
amount of discrepancy between the two extremes values
(0 and 32%). In order to (i) simulate exogenous events
and (ii) have a comprehensive experimental setting, to
each action we associate an ordered set of noised ”real

1http://www.emn.fr/z-info/choco-solver/
2Experiments have run on a 2.53GHz Intel(R) Core(TM)2 Duo pro-

cessor with 4 GB.
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Figure 3. The initial configuration of modalities (above), and the reconfigured plan (below).

action”: the set is ordered wrt the amount of noise we
considered. Therefore, for each i-th scenario, the execu-
tion of action A is simulated by picking up the i-th real
action B associated to A and hence the status is trans-
formed by taking into account effects of action B instead
of A.

We compared the performance of the proposed system in-
volving ReCon with a basic architecture which excludes
it but performs the consistency check. In case a constraint
violation is detected, the basic architecture stops with a
failure while the proposed system looks for a new plan
configuration. We measured the performance of the two
systems as the amount of the plan which has been exe-
cuted before a failure (let us call it PPE). Ideally, PPE is
100% when the system is able to complete the plan with
success; the architecture with ReCon may of course in-
clude the execution of pieces of plan which have been
subject of reconfigurations.

Figure 4 and 5 report the data concerning the performance
for the mediumcases and thehard cases, respectively.
Along the abscissa we have the identifier of the scenario
(from 1 to 10), whereas the ordinate values correspond to
the percentage of plan executed with success. For the
medium cases, it is easy to see that for small degrees
of deviations the average performance is quite close to
100% for both architectures, while they show different
degrees of ability in carrying on the plan when the degree
of discrepancy increases. It is worth noting that the re-
configuration system is able to deal effectively also with
high degree of deviations (PPE over 70% for the 10-th
scenario where the discrepancy is high).

When we considerhardcases the impact of the reconfig-
uration module is even more apparent. The basic system
has a limited PPE even when the degree of discrepancy is
small since the resource constraints are very strict and the
possibility of occurrence of a failure is high, while ReCon
is able to achieve high levels of PPE even for large values
of discrepancy. Of course, this improvement of perfor-
mance has a computational cost due at the time spent by
the CSP solver to find a consistent modalities assignment.

Figure 4. Percentage of Plan Completion for the medium
difficulty cases

Figure 5. Percentage of Plan Completion for the Hard
Difficulty Cases

However, by observing Table 1, the average CPU time for
each reconfiguration in most cases is negligible and even
in the worst case is acceptable. Figure 6 shows the av-
erage number of reconfigurations for each scenario; the
experiment results confirm that the activation of ReCon
is more frequent as the discrepancy increases. It is worth
noting that for hard cases the CPU time increases since
the Choco solver has to perform much more search when
the problem is severely constrained.



Figure 6. Average Number of Reconfiguration

Medium Hard
Average Recon Cpu Time (msec) 119 (±11) 244 (±44)

Max Recon Cpu Time (msec) 1412 8983

Table 1. Cpu Time

7. CONCLUSIONS

While many approaches to robust plan execution [GS10,
vdKdW05, GGO10] are based on a re-planning step to re-
cover from plan failures, in this paper we have proposed
an alternative methodology based on the re-configuration
of the mission. Our approach leaves the high-level struc-
ture of the plan (i.e., the sequence of mission tasks) un-
changed, but operates at the level ofmodalitiesassociated
with each action in the plan. This idea stems by the ob-
servation that, albeit a planetary rover carrying on a space
exploration mission has to exhibit some form of auton-
omy, its autonomy is often bounded by two main factors:
(1) the on-board computational power is not always suf-
ficient to handle mission recovery problems, and (2) the
rover cannot in general deviate from the given plan with-
out the approval from the ground control station.

The strategy we propose has therefore the advantage of
maintaining the structure of the mission plan unchanged
while endowing the rover with an appropriate level of au-
tonomy for handling unexpected contingencies. In this
paper we have presented a module, ReCon, in charge of
finding a configuration of modalities that does not violate
the global constraints on the use of resources included
in the mission goal. As we have discussed, ReCon is
located in between ActS (focused on the execution of
a single action) [MST12] and a mission (re)planner (on
Earth). The idea is that the intervention of ReCon can
reduce the number of expensive invocations to the mis-
sion (re)planner. The experimental results we have pre-
sented, show in fact that the percentage of mission ac-
complished by the rover is significantly higher when Re-
Con is active, than when it is inactive in the basic ap-
proach. The advantages of ReCon are evident even in
thehard cases, where high degrees of discrepancies and
strong constraints make the plan execution particularly
challenging.

As we have discussed above, the implementation of Re-
Con exploits a generic CSP solver to find a consistent

assignment of modality; in our specific case we have
adopted the Choco solver, which was the fastest CSP
solver implemented in Java in the Fourth International
Constraint Solver Competition (CSC’09)3. Since in
Choco many features involving real-valued variables are
still under development, in our current implementation
we had to map real-valued variables into appropriate in-
teger variables (without losing too much precision).

The approach we have presented can be improved in a
number of ways. A first important improvement is the
search for an optimal solution. In the current version, in
fact, ReCon just finds one possible configuration that sat-
isfies the global constraints. In general, one could be in-
terested in finding the best configuration that optimizes a
given objective function. Reasonably, the objective func-
tion could take into account the number of changes to
action modalities; for instance, in some cases it is de-
sirable to change the configuration as little as possible.
Moreover, the objective function could be defined to pre-
fer configurations that adhere as close as possible to the
resource profile that was estimated at planning time. Of
course, the search for an optimal configuration is justi-
fied when the global constraints are not strict, and several
alternative solutions are possible.
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