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Modeling with Normalized Random
Measure Mixture Models
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Abstract. The Dirichlet process mixture model and more general mixtures
based on discrete random probability measures have been shown to be flex-
ible and accurate models for density estimation and clustering. The goal of
this paper is to illustrate the use of normalized random measures as mixing
measures in nonparametric hierarchical mixture models and point out how
possible computational issues can be successfully addressed. To this end,
we first provide a concise and accessible introduction to normalized random
measures with independent increments. Then, we explain in detail a particu-
lar way of sampling from the posterior using the Ferguson–Klass representa-
tion. We develop a thorough comparative analysis for location-scale mixtures
that considers a set of alternatives for the mixture kernel and for the non-
parametric component. Simulation results indicate that normalized random
measure mixtures potentially represent a valid default choice for density es-
timation problems. As a byproduct of this study an R package to fit these
models was produced and is available in the Comprehensive R Archive Net-
work (CRAN).
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tive process, latent variables, mixture model, normalized generalized gamma
process, normalized inverse Gaussian process, normalized random measure,
normalized stable process.

1. INTRODUCTION

The Dirichlet process mixture model (DPM), intro-
duced by Lo (1984), currently represents the most pop-
ular Bayesian nonparametric model. It is defined as

f̃ (x) =
∫

k(x|θ)P̃ (dθ),(1)

where k is a parametric kernel and P̃ is a random prob-
ability whose distribution is the Dirichlet process prior
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with (finite) parameter measure α, in symbols P̃ ∼ Dα .
It is often useful to write α = aP0 where P0 = E[P̃ ] is
a probability measure and a is in (0,+∞). In other
words, the DPM is a mixture of a kernel k with mix-
ing distribution a Dirichlet process. See also Berry and
Christensen (1979) for an early contribution to DPM.

Alternatively, the DPM can also be formulated as
a hierarchical model (Ferguson, 1983). In this case,
Xi, θi for i = 1, . . . , n,

Xi |θi
ind∼ k(·|θi),

θi |P̃ i.i.d.∼ P̃ ,(2)

P̃ ∼ Dα.

The hierarchical representation of the DPM explicitly
displays features of the model that are relevant for
practical purposes. Indeed, Escobar and West (1995)
developed an MCMC algorithm for simulating from
the posterior distribution. This contribution paved the
way for extensive uses of the DPM, and semiparamet-
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ric variations of it, in many different applied contexts.
See MacEachern and Müller (2000) and Müller and
Quintana (2004) for reviews of the most remarkable
achievements, both computational and applied, in the
field. The main idea behind Escobar and West’s al-
gorithm is represented by the marginalization of the
infinite dimensional random component, namely, the
Dirichlet process P̃ , which leads to work with gener-
alized Pólya urn schemes. If the centering measure P0
is further chosen to be the conjugate prior for kernel k,
then one can devise a Gibbs sampler whose implemen-
tation is straightforward. In particular, the typical setup
in applications involves a normal kernel: if the loca-
tion (or location-scale) mixture of normals is combined
with a conjugate normal (or normal-gamma) probabil-
ity measure P0, the full conditional distributions can be
determined, thus leading to a simple Gibbs sampler.

Given the importance of the DPM model, much at-
tention has been devoted to the development of alter-
native and more efficient algorithms. According to the
terminology of Papaspiliopoulos and Roberts (2008),
these can be divided into two classes: marginal and
conditional methods. Marginal methods, such as the
Escobar and West algorithm, integrate out the Dirich-
let process in (2) and resort to the predictive distribu-
tions, within a Gibbs sampler, to obtain posterior sam-
ples. In this framework an important advance is due to
MacEachern and Müller (1998): they solve the issue of
providing algorithms, which effectively tackle the case
where the kernel k and P0 are not a conjugate pair. On
the other hand, conditional methods work directly on
(2) and clearly have to face the problem of sampling
the trajectories of an infinite-dimensional random ele-
ment such as the Dirichlet process. The first contribu-
tions along this line are given in Muliere and Tardella
(1998) and Ishwaran and James (2001) who use trun-
cation arguments. Exact simulations can be achieved
by the retrospective sampling technique introduced in
Papaspiliopoulos and Roberts (2008) and slice sam-
pling schemes as in Walker (2007).

In this paper we focus on mixture models more
general than the DPM, namely, mixtures with mixing
measure given by normalized random measures with
independent increments (NRMI), namely, a class of
random probability measures introduced in Regazzini,
Lijoi and Prünster (2003). Several applications of spe-
cific members of this class, or closely related distribu-
tions, are now present in the literature and deal with
species sampling problems, mixture models, cluster-
ing, reliability and models for dependence. See Lijoi
and Prünster (2010) for references. Here we describe

in detail a conditional algorithm which allows one
to draw posterior simulations from mixtures based
on a general NRMI. As we shall point out, it works
equally well regardless of k and P0 forming a con-
jugate pair or not and readily yields credible inter-
vals. Our description is a straightforward implemen-
tation of the posterior characterization of NRMI pro-
vided in James, Lijoi and Prünster (2009) combined
with the representation of an increasing additive pro-
cess given in Ferguson and Klass (1972). The R pack-
age BNPdensity, available in the Comprehensive
R Archive Network (CRAN), implements this algo-
rithm. For contributions containing thorough and in-
sightful comparisons of algorithms for Bayesian non-
parametric mixture models, both marginal and condi-
tional, the reader is referred to Papaspiliopoulos and
Roberts (2008) and Favaro and Teh (2013).

The BNPdensity package is used to carry out a
comparative study that involves a variety of data sets
both real and simulated. For the real data sets we show
the impact of choosing different kernels and compare
the performance of location-scale nonparametric mix-
tures. We also examine different mixing measures and
show some advantages and disadvantages fitting the
data and the number of induced clusters. Model perfor-
mance is assessed by referring to conditional predictive
ordinates and to suitable numerical summaries of these
values. For the simulated examples, we rely on the rel-
ative mean integrated squared error to measure the per-
formance of NRMI mixtures with respect to competing
methods such as kernel density estimators, Bayesian
wavelets and finite mixtures of normals. The outcome
clearly shows that NRMI mixtures, and in particular
mixtures of stable NRMIs, potentially represent a valid
default choice for density estimation problems.

The outline of the paper is as follows. We provide
in Section 2 an informal review of normalized random
measures and highlight their uses for Bayesian non-
parametric inference. Particular emphasis is given to
the posterior representation since it plays a key role in
the elaboration of the sampling scheme that we use; in
Section 3 a conditional algorithm for simulating from
the posterior of NRMI mixtures is described in great
detail; Section 4 contains a comprehensive data analy-
sis highlighting the potential of NRMI mixtures.

2. DIRICHLET PROCESS AND NRMIS

A deeper understanding of NRMI mixture models
defined in (1) is eased by an accessible introduction
to the notions of completely random measures and
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NRMIs. This section aims at providing a concise re-
view of the most relevant distributional properties of
completely random measures and NRMIs in view of
their application to Bayesian inference. These are also
important for addressing the computational issues we
shall focus on in later sections.

2.1 Exchangeability and Discrete Nonparametric
Priors

In order to best describe the nonparametric priors we
are going to deal with, we first recall the notion of ex-
changeability, its implication in terms of Bayesian in-
ference and some useful notation. Let (Yn)n≥1 be an
(ideally) infinite sequence of observations, defined on
some probability space (�,F ,P ), with each Yi taking
values in Y (a complete and separable metric space en-
dowed with its Borel σ -algebra). While in a frequentist
setting one typically assumes that the Yi ’s are indepen-
dent and identically distributed (i.i.d.) with some fixed
and unknown distribution, in a Bayesian approach the
independence is typically replaced by a weaker as-
sumption of conditional independence, given a ran-
dom probability distribution on Y, which corresponds
to assuming exchangeable data. Formally, this corre-
sponds to an invariance condition according to which,
for any n ≥ 1 and any permutation π of the indices
1, . . . , n, the probability distribution of (Y1, . . . , Yn)

coincides with the distribution of (Yπ(1), . . . , Yπ(n)).
Then, the celebrated de Finetti representation theorem
states that the sequence (Yn)n≥1 is exchangeable if and
only if its distribution can be represented as a mixture
of sequences of i.i.d. random variables. In other terms,
(Yn)n≥1 is exchangeable if and only if there exists a
probability distribution Q on the space of probability
measures on Y, say, PY, such that

Yi |P̃ i.i.d.∼ P̃ , i = 1, . . . , n,
(3)

P̃ ∼ Q

for any n ≥ 1. Hence, P̃ is a random probability mea-
sure on Y, namely, a random element on (�,F ,P )

taking values in PY (endowed with the topology of
weak convergence). The probability distribution Q of
P̃ is also termed de Finetti measure and represents the
prior distribution in a Bayesian setup. Whenever Q de-
generates on a finite-dimensional subspace of PY, the
inferential problem is usually called parametric. On
the other hand, when the support of Q is infinite di-
mensional, then this is typically referred to as a non-
parametric inferential problem. It is generally agreed
that having a large topological support is a desirable

property for a nonparametric prior (see, e.g., Ferguson,
1974).

In the context of nonparametric mixture models,
which identify the main focus of the paper, a key role
is played by discrete nonparametric priors Q, that is,
priors which select discrete distributions with probabil-
ity 1. Clearly, any random probability measure P̃ asso-
ciated to a discrete prior Q can be represented as

P̃ = ∑
j≥1

p̃j δZj
,(4)

where (p̃j )j≥1 is a sequence of nonnegative ran-
dom variables such that

∑
j≥1 p̃j = 1, almost surely,

(Zj )j≥1 is a sequence of random variables taking val-
ues in Y and δZ is the Dirac measure.

As far as the observables Yi ’s are concerned, the
discrete nature of P̃ in (4) implies that any sample
Y1, . . . , Yn in (3) will feature ties with positive prob-
ability and, therefore, display r ≤ n distinct observa-
tions Y ∗

1 , . . . , Y ∗
r with respective frequencies n1, . . . , nr

such that
∑r

i=1 ni = n. Such a grouping lies at the heart
of Bayesian nonparametric procedures for clustering
purposes. Henceforth, Rn will denote the random vari-
able identifying the number of distinct values appear-
ing in the sample Y1, . . . , Yn.

The simplest and most familiar illustration one can
think of is the Dirichlet process prior introduced by
Ferguson (1973), which represents the cornerstone
of Bayesian Nonparametrics. Its original definition
was given in terms of a consistent family of finite-
dimensional distributions that coincide with multivari-
ate Dirichlet distributions. To make this explicit, intro-
duce the (d − 1)-variate Dirichlet probability density
function on the (d − 1)-dimensional unit simplex

h(p; c) = �(
∑d

i=1 ci)∏d
i=1 �(ci)

p
c1−1
1 · · ·pcd−1−1

d−1

·
(

1 −
d−1∑
i=1

pi

)cd−1

,

where c = (c1, . . . , cd) ∈ (0,∞)d and p = (p1, . . . ,

pd−1).

DEFINITION 1 (Ferguson, 1973). Let α be some
finite and nonnull measure on Y such that α(Y) = a.
Suppose the random probability measure P̃ has distri-
bution Q such that, for any choice of a (measurable)
partition {A1, . . . ,Ad} of Y and for any d ≥ 1, one has

Q
({

P :
(
P(A1), . . . ,P (Ad)

) ∈ B
})

(5)
=

∫
B

h(p;α)dp1 · · · dpd−1,
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where α = (α(A1), . . . , α(Ad)). Then P̃ is termed a
Dirichlet process with base measure α.

Note that α/a =: P0 defines a probability measure
on Y and it coincides with the expected value of a
Dirichlet process, that is, P0 = E[P̃ ], for this reason
is often referred to as the prior guess at the shape of P̃ .
Henceforth, we shall denote more conveniently the
base measure α of P̃ as aP0. Also note that the Dirich-
let process has large support and it, thus, shares one
of the properties that makes the use of nonparametric
priors attractive. Indeed, if the support of P0 coincides
with Y, then the support of the Dirichlet process prior
(in the weak convergence topology) coincides with the
whole space PY. In other words, the Dirichlet process
prior assigns positive probability to any (weak) neigh-
borhood of any given probability measure in PY, thus
making it a flexible model for Bayesian nonparametric
inference.

As shown in Blackwell (1973), the Dirichlet process
selects discrete distributions on Y with probability 1
and, hence, admits a representation of the form (4).
An explicit construction of the p̃j ’s in (4) leading to
the Dirichlet process has been provided by Sethuraman
(1994) who relied on a stick-breaking procedure. This
arises when the sequence of random probability masses
(p̃j )j≥1 is defined as

p̃1 = V1,
(6)

p̃j = Vj

j−1∏
i=1

(1 − Vi), j = 2,3, . . . ,

with the Vi’s being i.i.d. and beta distributed with pa-
rameter (1, a), and when the locations (Zj )j≥1 are
i.i.d. from P0. Under these assumptions (4) yields a
random probability measure that coincides, in distribu-
tion, with a Dirichlet process with base measure aP0.

A nice and well-known feature about the Dirichlet
process is its conjugacy. Indeed, if P̃ in (3) is a Dirich-
let process with base measure aP0, then the posterior
distribution of P̃ , given the data Y1, . . . , Yn, still coin-
cides with the law of a Dirichlet process with param-
eter measure (a + n)Pn where Pn = aP0/(a + n) +∑n

i=1 δYi
/(a + n), where δy denotes a point mass at

y ∈ Y. On the basis of this result, one easily determines
the predictive distributions associated to the Dirichlet
process and for any A in Y, one has

P [Yn+1 ∈ A|Y1, . . . , Yn]
(7)

= a

a + n
P0(A) + n

a + n

1

n

r∑
j=1

njδY ∗
j
(A),

where, again, the Y ∗
j ’s with frequency nj denote the

r ≤ n distinct observations within the sample. Hence,
the predictive distribution appears as a convex linear
combination of the prior guess at the shape of P̃ and of
the empirical distribution.

From (4) it is apparent that a decisive issue when
defining a discrete nonparametric prior is the deter-
mination of the probability masses p̃j ’s, while at the
same time preserving a certain degree of mathemati-
cal tractability. This is in general quite a challenging
task. For instance, the stick-breaking procedure is use-
ful to construct a wide range of discrete nonparametric
priors as shown in Ishwaran and James (2001). How-
ever, only for a few of them is it possible to establish
relevant distributional properties such as, for example,
the posterior or predictive structures. See Favaro, Lijoi
and Prünster (2012) for a discussion on this issue. Also,
as extensively discussed in Lijoi and Prünster (2010),
a key tool for defining tractable discrete nonparamet-
ric priors (4) is given by completely random measures,
a concept introduced in Kingman (1967). Since it is es-
sential for the construction of the class of NRMIs con-
sidered in the paper, in the following section we con-
cisely recall the basics and refer the interested reader
to Kingman (1993) for an exhaustive account.

2.2 CRM and NRMI

Denote first by MY the space of boundedly finite
measures on Y, this meaning that for any μ in MY and
any bounded set A in Y one has μ(A) < ∞. Moreover,
MY can be endowed with a suitable topology that al-
lows one to define the associated Borel σ -algebra. See
Daley and Vere-Jones (2008) for technical details.

DEFINITION 2. A random element μ̃, defined on
(�,F ,P ) and taking values in MY, is called a com-
pletely random measure (CRM) if, for any n ≥ 1 and
A1, . . . ,An in Y, with Ai ∩ Aj = ∅ for any i 	= j , the
random variables μ̃(A1), . . . , μ̃(An) are mutually in-
dependent.

Hence, a CRM is simply a random measure, which
gives rise to independent random variables when eval-
uated over disjoint sets. In addition, it is well known
that if μ̃ is a CRM on Y, then

μ̃ = ∑
i≥1

JiδZi
+

M∑
i=1

Viδzi
,

where (Ji)i≥1, (Vi)i≥1 and (Zi)i≥1 are independent
sequences of random variables and the jump points
{z1, . . . , zM} are fixed, with M ∈ {0,1, . . .} ∪ {∞}. If
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M = 0, then μ̃ has no fixed jumps and the Laplace
transform of μ̃(A), for any A in Y, admits the follow-
ing representation:

E
[
e−λμ̃(A)]

(8)

= exp
{
−

∫
R+×A

[
1 − e−λv]

ν(dv,dy)

}

for any λ > 0, with ν being a measure on R+ × Y such
that ∫

B

∫
R+

min{v,1}ν(dv,dy) < ∞(9)

for any bounded B in Y. The measure ν is referred to
as the Lévy intensity of μ̃ and, by virtue of (8), it char-
acterizes the CRM μ̃. This is extremely useful from an
operational point of view since a single measure en-
codes all the information about the distribution of the
jumps (Ji)i≥1 and locations (Zi)i≥1 of μ̃. The measure
ν will be conveniently rewritten as

ν(dv,dy) = ρ(dv|y)α(dy),(10)

where ρ is a transition kernel on R+ × Y controlling
the jump intensity and α is a measure on Y determining
the locations of the jumps. Two popular examples are
gamma and stable processes. The former corresponds
to the specification ρ(dv|y) = e−v dv/v, whereas the
latter arises when ρ(dv|y) = γ v−1−γ dv/�(1−γ ), for
some γ ∈ (0,1). Note that if μ̃ is a gamma CRM, then,
for any A, μ̃(A) is gamma distributed with shape pa-
rameter α(A) and scale 1. On the other hand, if μ̃ is a
stable CRM, then μ̃(A) has a positive stable distribu-
tion.

Since μ̃ is a discrete random measure almost surely,
one can then easily guess that discrete random proba-
bility measures (4) can be obtained by suitably trans-
forming a CRM. The most obvious transformation is
“normalization,” which yields NRMIs. As a prelimi-
nary remark, it should be noted that “normalization”
is possible when the denominator μ̃(Y) is positive and
finite (almost surely). Such a requirement can be ex-
pressed in terms of the Lévy intensity, in particular, α

being a finite measure and
∫
R+ ρ(dv|y) = ∞ for any

y ∈ Y are simple sufficient conditions for the normal-
ization to be well defined. The latter condition essen-
tially requires the CRM to jump infinitely often on any
bounded set and is sometimes referred to as infinite
activity. See Regazzini, Lijoi and Prünster (2003) and
James, Lijoi and Prünster (2009) for necessary and suf-
ficient conditions. One can now provide the definition
of a NRMI.

DEFINITION 3. Let μ̃ be a CRM with Lévy inten-
sity (10) such that 0 < μ̃(Y) < ∞ almost surely. Then,
the random probability measure

P̃ = μ̃

μ̃(Y)
(11)

is named a normalized random measure with indepen-
dent increments (NRMI).

It is apparent that a NRMI is uniquely identified
by the Lévy intensity ν of the underlying CRM. If
ρ(dv|y) in (10) does not depend on y, which means
that the distribution of the jumps of μ̃ are indepen-
dent of their locations, then the CRM μ̃ and the cor-
responding NRMI (11) are called homogeneous. Oth-
erwise they are termed nonhomogeneous. Moreover,
it is worth pointing out that all NRMI priors share a
support property analogous to the one recalled for the
Dirichlet process prior. Specifically, if the support of
the base measure coincides with Y, then the corre-
sponding NRMI has full weak support PY.

Note that the Dirichlet process can be defined as an
NRMI: indeed, it coincides, in distribution, with a nor-
malized gamma CRM as shown in Ferguson (1973).
If ν(dv,dy) = e−vv−1 dv aP0(dy), then (11) yields
a Dirichlet process with base measure aP0. Another
early use of (11) can be found in Kingman (1975),
where the NRMI obtained by normalizing a stable
CRM is introduced. The resulting random probability
measure will be denoted as N-stable.

In the sequel particular attention will be devoted to
generalized gamma NRMIs (Lijoi, Mena and Prünster,
2007) since they are analytically tractable and include
many well-known priors as special cases. This class of
NRMIs is obtained by normalizing generalized gamma
CRMs that were introduced in Brix (1999) and are
characterized by a Lévy intensity of the form

ρ(dv)α(dx) = e−κv

�(1 − γ )v1+γ
dv aP0(dx),(12)

whose parameters κ ≥ 0 and γ ∈ [0,1) are such
that at least one of them is strictly positive and with
base measure α = aP0, where a ∈ (0,∞) and P0
is a probability distribution on Y. The correspond-
ing generalized gamma NRMI will be denoted as
P̃ ∼ NGG(a, κ, γ ;P0). Within this class of priors
one finds the following special cases: (i) the Dirichlet
process which is a NGG(a,1,0;P0) process; (ii) the
normalized inverse Gaussian (N-IG) process (Lijoi,
Mena and Prünster, 2005), which corresponds to a
NGG(1, κ,1/2;P0) process; (iii) the N-stable process
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(Kingman, 1975) which arises as NGG(1,0, γ ;P0). As
a side remark, we observe that either κ or a can be
fixed according to one’s convenience. Loosely speak-
ing, this is due to the fact that the normalization oper-
ation implies the loss of “one degree of freedom” as
a reference to the Dirichlet process might clarify. For
example, we mentioned that the Dirichlet case arises
when κ is set equal to 1, but this choice is only due to
convenience. Indeed, a Dirichlet process is obtained,
as long as γ = 0, whatever the value κ takes on. See
Pitman (2003) and Lijoi, Mena and Prünster (2007)
for detailed explanations. For our purposes it is worth
sticking to the redundant parameterization since it al-
lows us to recover immediately all three specific cases
listed above, which would be cumbersome with the
alternative parameterization usually adopted, that is,
NGG(1, β, γ ;P0) with β = κγ /γ . The role of these
parameters is best understood by looking at the induced
(prior) distribution of the number of distinct values Rn

in an sample Y1, . . . , Yn. Indeed, one has that κ (or,
equivalently, a) affects the location: a larger κ (or a)
shifts the distribution of Rn to the right, implying a
larger expected number of distinct values. In contrast,
γ allows to tune the flatness of the distribution of Rn:
the bigger γ , the flatter is the distribution of Rn so that
a large value of γ corresponds to a less informative
prior for the number of distinct values in Y1, . . . , Yn.
This also explains why the Dirichlet process, which
corresponds to γ = 0, yields the most highly-peaked
distribution for Rn. See also Lijoi, Mena and Prünster
(2007) for a graphical display of these behaviors.

Also, variations of NRMI have already appeared in
the literature. In Nieto-Barajas, Prünster and Walker
(2004) weighted versions of NRMIs are considered. To
be more specific, letting h be some nonnegative func-
tion defined on Y, a normalized weighted CRM is ob-
tained, for any B in Y, as

P̃ (B) =
∫
B h(y)μ̃(dy)∫
Y h(y)μ̃(dy)

.

The function h can be seen as a perturbation of the
CRM and in Nieto-Barajas and Prünster (2009) the
sensitivity of posterior inference with respect to (w.r.t.)
h is examined. Another related class is represented by
Poisson–Kingman models (Pitman, 2003), where one
essentially conditions on μ̃(Y) and then mixes with re-
spect to some probability measure on R+.

REMARK 1. If Y = Rm, one can also consider
the càdlàg random distribution function induced by μ̃,
namely, M̃ := {M̃(s) = μ̃((−∞, s1] × · · · ×

(−∞, sm]) : s = (s1, . . . , sm) ∈ Rm}, known in the lit-
erature as the increasing additive process or indepen-
dent increment process. See Sato (1990) for details.
One can then associate to the NRMI random probabil-
ity measure in (11) the corresponding NRMI random
cumulative distribution function

F̃ (s) = M̃(s)

T
for any s ∈ Rm,(13)

where T := lims→∞ M̃(s) and the limit is meant
as componentwise. The original definition of NRMI
in Regazzini, Lijoi and Prünster (2003) was given
in terms of increasing additive processes. The def-
inition on more abstract spaces adopted here, and
used also, for example, in James, Lijoi and Prünster
(2009), allows us to bypass some tedious technicalities.
Nonetheless, we preserve the term NRMI, although on
abstract spaces one should refer to normalized CRM
rather than to “increments.”

REMARK 2. Although the previous examples deal
with homogeneous CRMs and NRMIs, nonhomoge-
neous CRMs are also very useful for the construction
of nonparametric priors. This is apparent in contribu-
tions to Bayesian nonparametric inference for survival
analysis. See Lijoi and Prünster (2010). Hence, given
the importance of nonhomogeneous structures in some
other contexts, it seems worth including these in our
treatment.

2.3 Posterior Distribution of a NRMI

The posterior distribution associated to an exchange-
able model as in (3) is a preliminary step for attain-
ing Bayesian inferential results of interest and, there-
fore, represents an object of primary importance. In the
case of NRMIs, the determination of the posterior dis-
tribution is a challenging task since one cannot rely
directly on Bayes’ theorem (the model is not domi-
nated) and, with the exception of the Dirichlet process,
NRMIs are not conjugate as shown in James, Lijoi and
Prünster (2006). Nonetheless, a posterior characteriza-
tion has been established in James, Lijoi and Prünster
(2009) and it turns out that, even though NRMIs are
not conjugate, they still enjoy a sort of “conditional
conjugacy.” This means that, conditionally on a suit-
able latent random variable, the posterior distribution
of a NRMI coincides with the distribution of a NRMI
having fixed points of discontinuity located at the ob-
servations. Such a simple structure suggests that when
working with a general NRMI, instead of the Dirichlet
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process, one faces only one additional layer of diffi-
culty represented by the marginalization with respect
to the conditioning latent variable.

Before stating the main result we recall that, due to
the discreteness of NRMIs, ties will appear with pos-
itive probability in Y = (Y1, . . . , Yn) and, therefore,
the sample information can be encoded by the Rn =
r distinct observations (Y ∗

1 , . . . , Y ∗
r ) with frequencies

(n1, . . . , nr) such that
∑r

j=1 nj = n. Moreover, intro-
duce the nonnegative random variable U such that the
distribution of [U |Y] has density, w.r.t. the Lebesgue
measure, given by

fU |Y(u) ∝ un−1 exp
{−ψ(u)

} r∏
j=1

τnj

(
u|Y ∗

j

)
,(14)

where τnj
(u|Y ∗

j ) = ∫ ∞
0 vnj e−uvρ(dv|Y ∗

j ) and ψ is the
Laplace exponent of μ̃ as in (8). Finally, in the follow-
ing we assume the probability measure P0 defining the
base measure of a NRMI to be nonatomic.

THEOREM 1 (James, Lijoi and Prünster, 2009). Let
(Yn)n≥1 be as in (3) where P̃ is a NRMI defined in (11)
with Lévy intensity as in (10). Then the posterior dis-
tribution of the unnormalized CRM μ̃, given a sample
Y, is a mixture of the distribution of [μ̃|U,Y] with re-
spect to the distribution of [U |Y]. The latter is identi-
fied by (14), whereas [μ̃|U,Y] is equal in distribution
to a CRM with fixed points of discontinuity at the dis-
tinct observations Y ∗

j ,

μ̃∗ +
r∑

j=1

J ∗
j δY ∗

j
(15)

such that:

(a) μ̃∗ is a CRM characterized by the Lévy intensity

ν∗(dv,dy) = e−uvρ(dv|y)α(dy);(16)

(b) the jump height J ∗
j corresponding to Y ∗

j has
density, w.r.t. the Lebesgue measure, given by

f ∗
j (v) ∝ vnj e−uvρ

(
dv|Y ∗

j

)
.(17)

(c) μ̃∗ and J ∗
j , j = 1, . . . , r , are independent.

Moreover, the posterior distribution of the NRMI P̃ ,
conditional on U , is given by

[P̃ |U,Y] d= w
μ̃∗

μ̃∗(X)
+ (1 − w)

∑r
i=1 J ∗

i δY ∗
i∑r

l=1 J ∗
l

,(18)

where w = μ̃∗(X)/(μ̃∗(X) + ∑r
l=1 J ∗

l ).

In order to simplify the notation, in the statement
we have omitted explicit reference to the dependence
on [U |Y] of both μ̃∗ and {J ∗

i : i = 1, . . . , r}. However,
such a dependence is apparent from (16) and (17).
From Theorem 1 follows is apparent that the only
quantity needed for deriving explicit expressions for
particular cases of NRMI is the Lévy intensity (10). For
instance, in the case of normalized generalized gamma
NRMI, NGG(a, κ, γ ;P0) one has that the unnormal-
ized posterior CRM μ̃∗ in (15) is characterized by a
Lévy intensity of the form

ν∗(dv,dy) = e−(κ+u)v

�(1 − γ )v1+γ
dv aP0(dy).(19)

Moreover, the distribution of the jumps (17) corre-
sponding to the fixed points of discontinuity Y ∗

i ’s in
(15) reduce to a gamma distribution with density

f ∗
j (v) = (κ + u)nj−γ

�(nj − γ )
vnj−γ−1e−(κ+u)v.(20)

Finally, the conditional distribution of the latent vari-
able U given Y (14) is given by

fU |Y(u)
(21)

∝ un−1(u + κ)rγ−n exp
{
− a

γ
(u + κ)γ

}

for u > 0. The availability of this posterior characteri-
zation makes it then possible to determine several im-
portant quantities such as the predictive distributions
and the induced partition distribution. See James, Li-
joi and Prünster (2009) for general NRMI and Lijoi,
Mena and Prünster (2007) for the subclass of general-
ized gamma NRMI.

2.4 NRMI Mixture Models

Discrete nonparametric priors are particularly effec-
tive when used for modelling latent variables within
hierarchical mixtures. The most popular of these mod-
els is the DPM due to Lo (1984) and displayed in (2).
Its most natural generalization corresponds to allowing
any NRMI to act as a nonparametric mixing measure.
In view of the result on the posterior characterization
of NRMIs, such a program is also feasible from a prac-
tical perspective.

We start by describing the NRMIs mixture model in
some detail. First, let us introduce a change in the no-
tation. In order to highlight that the law of a NRMIs
acts as the de Finetti measure at a latent level, we de-
note the elements of the exchangeable sequence by
θi instead of Yi , for i = 1,2, . . . . Then, consider a
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NRMI P̃ and convolute it with a suitable density ker-
nel k(·|θ), thus obtaining the random mixture density
f̃ (x) = ∫

� k(x|θ)P̃ (dθ). This can equivalently be writ-
ten in a hierarchical form as

Xi |θi
ind∼ k(·|θi), i = 1, . . . , n,

θi |P̃ i.i.d.∼ P̃ , i = 1, . . . , n,(22)

P̃ ∼ NRMI .

In the sequel, we take kernels defined on X ⊆ R and
NRMIs defined on Y = � ⊆ Rm. Consequently, in-
stead of describing the results in terms of the random
measures μ̃ and P̃ , we will work with corresponding
distribution functions M̃ and F̃ , respectively, for the
sake of simplicity in the presentation (see Remark 1).
It is worth noting that the derivations presented here
carry over to general spaces in a straightforward way.

As for the base measure of the NRMI P0 on �,
we denote its density (w.r.t. the Lebesgue measure) by
f0. When P0 depends on a further hyperparameter φ,
we will use the symbol f0(·|φ). The case m = 2 typ-
ically corresponds to the specification of a nonpara-
metric model for the location and scale parameters of
the mixture, that is, θ = (μ,σ ). This will be used to
illustrate the algorithm in Section 4, where we apply
our proposed modeling to simulated and real data sets.
In order to distinguish the hyperparameters for loca-
tion and scale, we will use the notation f0(μ,σ |φ) =
f 1

0 (μ|σ,ϕ)f 2
0 (σ |ς). In applications a priori indepen-

dence between μ and σ is commonly assumed.
The most popular uses of mixtures of discrete ran-

dom probability measures, such as the one displayed
in (22), relate to density estimation and data clustering.
The former can be addressed by evaluating

f̂n(x) = E
(
f̃ (x)|X1, . . . ,Xn

)
(23)

for any x in X. As for the latter, if Rn is the number
of distinct latent values θ∗

1 , . . . , θ∗
Rn

out of a sample of
size n, one can deduce a partition of the observations
such that any two Xi and Xj belong to the same cluster
if the corresponding latent variables θi and θj coincide.
Then, it is interesting to determine an estimate R̂n of
the number of clusters into which the data are grouped.
In the examples we will illustrate R̂n is set equal to the
mode of Rn|X, with X := (X1, . . . ,Xn) representing
the observed sample. Both estimation problems can be
faced by relying on the simulation algorithm that will
be detailed in the next section.

3. POSTERIOR SIMULATION OF NRMI MIXTURES

Our main aim is to provide a general algorithm to
draw posterior inferences with the mixture model (22),
for any choice of the mixing NRMI and of the kernel.
A further byproduct of our algorithm is the possibil-
ity of determining credible intervals. The main block
of the conditional algorithm presented in this section
is the posterior representation provided in Theorem 1.
In fact, in order to sample from the posterior distribu-
tion of the random mixture model (22), given a sample
X1, . . . ,Xn, a characterization of the posterior distri-
bution of the mixing measure at the higher stage of the
hierarchy is needed. We rely on the posterior represen-
tation, conditional on the unobservable variables θ :=
(θ1, . . . , θn), of the unnormalized process M̃ , since the
normalization can be carried out within the algorithm.

For the implementation of a Gibbs sampling scheme
we use the distributions of

[M̃|X, θ] and [θ |X, M̃].(24)

For illustration we shall detail the algorithm when P̃ ∼
NGG(a, κ, γ ;P0) and provide explicit expressions for
each of the distributions in (24). Nonetheless, as al-
ready recalled, the algorithm can be implemented for
any NRMI: one just needs to plug in the corresponding
Lévy intensity.

Due to conditional independence properties, the con-
ditional distribution of M̃ , given X and θ , does not de-
pend on X, that is, [M̃|X, θ] = [M̃|θ ]. Now, by Theo-
rem 1, the posterior distribution function [M̃|θ ] is char-
acterized as a mixture in terms of a latent variable U ,
that is, through [M̃|U, θ ] and [U |θ ]. Specifically, the
conditional distribution of M̃ , given U and θ , is an-
other CRM with fixed points of discontinuity at the dis-
tinct θi’s, namely, {θ∗

1 , . . . , θ∗
r }, given by

M̃∗+(s) := M̃∗(s) +
r∑

j=1

J ∗
j I(−∞,s]

(
θ∗
j

)
,(25)

where (−∞, s] = {y ∈ Rm :yi ≤ si, i = 1, . . . ,m} and
IA denotes the indicator function of a set A. Recall that
in the NGG(a, κ, γ ;P0) case, M̃∗ has Lévy intensity as
in (19) and the density of the jumps J ∗

j is (20). Finally,
the conditional distribution of U , given θ , is then (21).

The second conditional distribution [θ |X, M̃] in-
volved in the Gibbs sampler in (24) consists of con-
ditional independent distributions for each θi , whose
density is given by

f
θi |Xi,M̃

(s) ∝ k(Xi |s)M̃∗+{s}(26)
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for i = 1, . . . , n, where the set {s} corresponds to the
m-variate jump locations s ∈ Rm of the posterior pro-
cess M̃∗+.

In the following we will provide a way of simulating
from each of the distributions (25), (21) and (26).

3.1 Simulating [M̃|U,θ]
Since the distribution of the process M̃ , given U

and θ , is the distribution function associated to a CRM,
we need to sample its trajectories. Algorithms for sim-
ulating such processes usually rely on inverse Lévy
measure techniques as is the case for the algorithms
devised in Ferguson and Klass (1972) and in Wolpert
and Ickstadt (1998). According to Walker and Damien
(2000), the former is more efficient in the sense that
it has a better performance with a small number of
simulations. Therefore, for simulating from the condi-
tional distribution of M̃ we follow the Ferguson and
Klass device. Their idea is based on expressing the
part without fixed points of discontinuity of the poste-
rior M̃∗+, which in our case is M̃∗, as an infinite sum
of random jumps Jj that occur at random locations

ϑj = (ϑ
(1)
j , . . . , ϑ

(m)
j ), that is,

M̃∗(s) =
∞∑

j=1

Jj I(−∞,s](ϑj ).(27)

The positive random jumps are ordered, that is, J1 ≥
J2 ≥ · · ·, since the Jj ’s are obtained as ξj = N(Jj ),
where N(v) = ν∗([v,∞),Rm) and ξ1, ξ2, . . . are jump
times of a standard Poisson process of unit rate, that

is, ξ1, ξ2 − ξ1, . . .
i.i.d.∼ ga(1,1). Here ga(a, b) denotes

a gamma distribution with shape and scale parameters
a and b. The random locations ϑj , conditional on the
jump sizes Jj , are obtained from the distribution func-
tion Fϑj |Jj

, given by

Fϑj |Jj
(s) = ν∗(dJj , (−∞, s])

ν∗(dJj ,Rm)
.

Therefore, the Jj ’s can be obtained by solving the
equations ξi = N(Ji). This can be accomplished by
combining quadrature methods to approximate the in-
tegral (see, e.g., Burden and Faires, 1993) and a nu-
merical procedure to solve the equation. Moreover,
when one is dealing with a homogeneous NRMI the
jumps are independent of the locations and, therefore,
Fϑj |Jj

= Fϑj
does not depend on Jj , implying that the

locations are i.i.d. samples from P0. For an extension of
the Ferguson–Klass device to general space see Orbanz
and Williamson (2011).

In our specific case where M̃ is a generalized gamma
process, the functions N and Fϑ take on the form

N(v) = a

�(1 − γ )

∫ ∞
v

e−(κ+u)xx−(1+γ ) dx,

(28)
Fϑ(s) =

∫
(−∞,s]

P0(dy),

and all above described steps become straightforward.
As for the part of M̃∗+ concerning the fixed points

of discontinuity, the distribution of the jumps at the
fixed locations will depend explicitly on the underlying
Lévy intensity as can be seen from (17). In the NGG
case they reduce to the gamma distributions displayed
in (20).

Now, combining the two parts of the process, with
and without fixed points of discontinuity, the overall
posterior representation of the process M̃ will be

M̃∗+(s) = ∑
j

J̄j I(−∞,s](ϑ̄j ),

having set {J̄j }j≥1 = {J ∗
1 , . . . , J ∗

r , J1, . . .} and also
{ϑ̄j }j≥1 = {θ∗

1 , . . . , θ∗
r , ϑ1, . . .}.

REMARK 3. A fundamental merit of Ferguson and
Klass’ representation, compared to similar algorithms,
is the fact that the random heights Ji are obtained in a
descending order. Therefore, one can truncate the se-
ries (27) at a certain finite index � in such a way that
the relative error between

∑
j≤� Jj and

∑
j≤�+1 Jj is

smaller than ε, for any desired ε > 0. This, on the one
hand, guarantees that the highest jumps are not left out
and, on the other hand, allows us to control the size of
the ignored jumps. Argiento, Guglielmi and Pievatolo
(2010) provide an upper bound for the ignored jump
sizes.

As mentioned before, the generalized gamma NRMI
defines a wide class of processes which include gamma,
inverse Gaussian and stable processes. To appreciate
better the difference between these processes, consider
the function N in (28). This function is depicted in
Figure 1 for the three cases with parameters fixed in
such a way that the corresponding NRMIs (Dirichlet,
normalized inverse Gaussian and normalized stable)
share the same baseline probability measure P0 = α/a

and have the same mean and variance structures. See
Lijoi, Mena and Prünster (2005) and James, Lijoi and
Prünster (2006) for the relevant explicit expressions
needed to fix the parameters. In particular, Figure 1 is
displayed in two panels which represent close-up views
to the upper left and bottom right tails of the graph.
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FIG. 1. Function N in (28) for three special cases of generalized gamma processes: gamma process with (a, κ, γ ) = (2,1,0) (solid line);
inverse Gaussian process with (a, κ, γ ) = (1,0.126,0.5) (dashed line); and stable process with (a, κ, γ ) = (1,0,0.666) (dotted line). In all
the cases, the prior mean and variance of P̃ (A) obtained by normalization are the same, for any A.

The function N defines the height of the jumps in
the part of the process without fixed points of discon-
tinuity, that is, Ji = N−1(ξi). To help intuition, imag-
ine horizontal lines going up in Figure 1. The values
in the y-axis correspond to the Poisson process jumps
and, for each of them, there is a value in the x-axis cor-
responding to the jump sizes of the process. Looking
at the right panel in Figure 1, we can see that the sta-
ble process has the largest jumps followed closely by
the inverse Gaussian process. On the other hand, the
left panel shows the concentration of the sizes of the
jumps of the (unnormalized) CRMs around the origin.
Hence, the stable CRM tends to have a larger number
of jumps of “small” size when compared to the Dirich-
let process, with the N-IG process again in an interme-
diate position. As shown in Kingman (1975), this dif-
ferent behavior also impacts the normalized weights.
To grasp the idea, let the Ji ’s be the jump sizes of
the CRM and p̃i = Ji/

∑
k≥1 Jk are the normalized

jumps. Moreover, (p̃(j))j≥1 is the sequence obtained
by considering the p̃j ’s in decreasing order so that
p̃(1) > p̃(2) > · · · . One then has p̃(j) ∼ exp{−j/a} as
j → ∞, almost surely, in the Dirichlet case, whereas
p̃(j) ∼ ξ(γ )j−1/γ as j → ∞, almost surely, in the
N-stable case. Here ξ(γ ) is a positive random vari-
able. Hence, for j large enough the atom Z(j) as-

sociated to the weight p̃(j) is less likely to be ob-
served in the Dirichlet case rather than in the N-stable
case. These arguments can be suitably adapted and the
conclusion can be extended to the case where the N-
stable is replaced by a NGG(a, κ, γ,P0) process, for
any γ ∈ (0,1). An important well-known implication
of this different behavior concerns the distribution of
the number of distinct values Rn: clearly, for both the
Dirichlet and the NGG(a, κ, γ,P0) (with γ > 0) pro-
cesses Rn diverges as n diverges; however, the rate at
which the number of clusters Rn increases is slower
in the Dirichet than in the NGG case, being, respec-
tively, log(n) and nγ . Moreover, in order to gain a full
understanding of the role of γ in determining the clus-
tering structure featured by models defined either as
in (3) or (22), one has to consider the influence γ has
on the sizes of the clusters. To this end, it is useful to
recall that when γ > 0 a reinforcement mechanism of
larger clusters takes place. A concise description is as
follows: Consider a configuration reached after sam-
pling n values, and denote by ni and nj the sizes of the
ith and j th cluster, respectively, with ni > nj . Then,
the ratio of the probabilities that the (n + 1)th sam-
pled value will belong to the ith or j th clusters coin-
cides with (ni − γ )/(nj − γ ), an increasing function
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of γ , with its lowest value corresponding to the Dirich-
let process, that is, γ = 0. For instance, if ni = 2 and
nj = 1, the probability of sampling a value belong-
ing to the ith cluster is twice the probability of get-
ting a value belonging to the j th cluster in the Dirich-
let case, whereas it is three times larger for γ = 1/2
and five times larger for γ = 3/4. This implies that as
γ increases, the clusters tend to be much more con-
centrated with a very large number of small clusters
and very few groups having large frequencies. In other
words, a mass reallocation occurs and it penalizes clus-
ters with smaller sizes while reinforcing larger clusters,
which are interpreted as those having stronger empiri-
cal evidence. On the other hand, κ (or a) does not have
any significant impact on the balancedness of the parti-
tion sets. This mechanism is far from being a drawback
and Lijoi, Mena and Prünster (2007) have shown that it
is beneficial when drawing inference on the number of
components in a mixture. Finally, it is worth stressing
that, in general, the unevenness of partition configura-
tions is an unavoidable aspect of nonparametric models
beyond the specific cases we are considering here. This
is due to the fact that, with discrete nonparametric pri-
ors, Rn increases indefinitely with n. Hence, for any n

there will always be a positive probability that a new
value is generated and, even if at different rates, new
values will be continuously added, making it impos-
sible to obtain models with (a priori) balanced parti-
tions. If one needs balancedness even a priori, a finite-
dimensional model is more appropriate.

3.2 Simulating [U |θ]
Since the conditional density of U given in (21)

is univariate and continuous, there are several ways
of drawing samples from it. Damien, Wakefield and
Walker (1999), for instance, propose to introduce uni-
form latent variables to simplify the simulation. How-
ever, in our experience, this procedure increases the
autocorrelation in the chain, thus leading to a slower
mixing. Additionally, the values of this conditional
density explode for sample sizes larger than 100.
An alternative procedure consists of introducing a
Metropolis–Hastings (M–H) step (see, e.g., Tierney,
1994). M–H steps usually work fine as long as the pro-
posal distribution is adequately chosen, and since they
rely only on ratios of the desired density, this solves
the overflow problem for large values of n.

In our approach we propose to use a M–H step with
proposal distribution that follows a random walk. Since
U takes only positive values, we use a gamma proposal
distribution centered at the previous value of the chain

and with coefficient of variation equal 1/
√

δ. Specifi-
cally, at iteration [t +1] simulate u� ∼ ga(δ, δ/u[t]) and
set u[t+1] = u� with acceptance probability given by

q1
(
u�, u[t])

(29)

= min
{

1,
fU |θ (u�)ga(u[t]|δ, δ/u�)

fU |θ (u[t])ga(u�|δ, δ/u[t])

}
,

where ga(·|a, b) denotes the density function of a
gamma random variable whose expected value is a/b.
The parameter δ controls the acceptance rate of the M–
H step being higher for larger values. It is suggested to
use δ ≥ 1.

3.3 Resampling the Unique Values θ∗
j

It is well known that discrete nonparametric priors,
as is the case of NRMIs, induce some effect when
carrying out posterior inference via simulation. This
is called by some authors the “sticky clusters effect.”
Bush and MacEachern (1996) suggested an important
acceleration step to overcome this problem by resam-
pling the location of the fixed jumps θ∗

j from its condi-
tional distribution given the cluster configuration (c.c.),
which in this case takes on the form

fθ∗
j |X,c.c.(s) ∝ f0(s)

∏
i∈Cj

k(Xi |s),(30)

where Cj = {i : θi = θ∗
j }. Also recall that θ∗

j = (θ∗
j1,

. . . , θ∗
jm) ∈ Rm with m ≥ 1. For the case m = 2 of

location-scale mixture, that is, θ = (μ,σ ), we suggest
to use a M–H step with joint proposal distribution for
the pair (μ,σ ) whose density we denote in general
by g. In particular, at iteration [t +1] one could sample
θ∗� = (μ∗�

j , σ ∗�
j ) by first taking σ ∗�

j ∼ ga(δ, δ/σ ∗[t]
j ) and

then, conditionally on σ ∗�
j , take μ∗�

j from the marginal

base measure on μ, f 1
0 , specified in such a way that

its mean coincides with X̄j and its standard deviation
with ησ ∗�

j /
√

nj , where X̄j = 1
nj

∑
i∈Cj

Xi . Finally, set

θ
∗[t+1]
j = θ∗�

j with acceptance probability given by

q2
(
θ∗�, θ∗[t])

(31)

= min
{

1,
fθ∗

j |X,c.c.(θ
�)

fθ∗
j |X,c.c.(θ

∗[t])
g(θ∗[t])
g(θ �)

}
.

For the examples considered in this paper we use δ = 4
and η = 2 to produce a moderate acceptance probabil-
ity.
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3.4 Simulating [θ |X,M̃]
Since M̃∗+ is a pure jump process, the support of the

conditional distribution of θi are the locations of the
jumps of M̃∗+, that is, {ϑ̄j }, and, therefore,

f
θi |Xi,M̃

(s) ∝ ∑
j

k(Xi |s)J̄j δϑ̄j
(ds).(32)

Simulating from this conditional distribution is
straightforward: one just needs to evaluate the right-
hand side of the expression above and normalize.

3.5 Updating the Hyperparameters of P0

As pointed out by one of the referees, in general the
hyperparameters φ of the base measure density f0(·|φ)

affect the performance of nonparametric mixtures. For
the location-scale mixture case, that is, m = 2 with
θ = (μ,σ ) and f0(μ,σ |φ) = f 1

0 (μ|σ,ϕ)f 2
0 (σ |ς), it

turns out that the subset of parameters ϕ pertaining to
the locations μ have a higher impact. By assuming in
addition a priori independence between μ and σ , the
conditional posterior distribution of ϕ, given the ob-
served data and the rest of the parameters, only de-
pends on the distinct μi’s, say, μ∗

j , for j = 1, . . . , r .
The simplest way to proceed is to consider a conju-
gate prior f (ϕ) for a sample μ∗

1, . . . ,μ
∗
r from f 1

0 (μ|ϕ).
Clearly such a prior depends on the particular choice of
f 1

0 and some examples will be considered in Section 4.

3.6 Computing a Path of f̃ (x)

Once we have a sample from the posterior distribu-
tion of the process M̃ , the desired path from the poste-
rior distribution of the random density f̃ , given in (22),
can be expressed as a discrete mixture of the form

f̃
(
x|M̃∗+, φ

) = ∑
j

k(x|ϑ̄j )
J̄j∑
l J̄l

.(33)

3.7 General Algorithm

An algorithm for simulating from the posterior dis-
tributions (24) can be summarized as follows. Given
the starting points θ

[0]
1 , . . . , θ [0]

n , with the correspond-

ing unique values θ
∗[0]
j and frequencies n

[0]
j , for j =

1, . . . , r , and given u[0], at iteration [t + 1]:
1. Sample the latent U |θ : simulate a proposal value

U∗ ∼ ga(δ, δ/U [t]) and take U [t+1] = U∗ with
probability q1(U

∗,U [t]), otherwise take U [t+1] =
U [t], where the acceptance probability q1 is given
in (29).

2. Sample trajectories of the part of the process with-
out fixed points of discontinuity M̃∗: simulate ζj ∼
ga(1,1) and find J

[t+1]
j by solving numerically the

equation
∑j

l=1 ζl = N(Jj ); simulate ϑ
[t+1]
j from

P0. The function N is given in (28). Stop simulating
when J�+1/

∑�
j=1 Jj < ε, say, ε = 0.0001.

3. Resample the unique values {θ∗
j }: record the unique

values θ
∗[t]
j from {θ [t]

1 , . . . , θ [t]
n } and their frequency

n
[t]
j . If m = 2 with k(·|θ) parameterized in terms

of mean and standard deviation (θ = (μ,σ )), simu-
late a pair (μ∗�

j , σ ∗�
j ) from a joint proposal (see Sec-

tion 3.3) and then set θ
∗[t+1]
j equal to θ∗�

j with prob-

ability q2(θ
∗�, θ∗[t]). Otherwise take θ

∗[t+1]
j = θ

∗[t]
j .

The acceptance probability q2 is given in (31).
4. Sample the fixed jumps of the process, {J ∗

j }: for

each θ
∗[t+1]
j with frequency n

[t+1]
j , j = 1, . . . , r ,

sample the jump J
∗[t+1]
j ∼ ga(n[t+1]

j − γ, κ +
u[t+1]).

5. Update the hyperparameters φ of f0(θ |φ): in partic-
ular, for the case of m = 2 with θ = (μ,σ ) simulate
a value ϕ[t+1] from its conditional posterior distri-
bution as described in Section 3.5.

6. Sample the latent vector θ : for each i = 1, . . . , n,
sample θ

[t+1]
i from its discrete conditional density

given in (32) by evaluating the kernel k(Xi |·) at the
different jump locations {ϑ̄ [t+1]

j } = {θ∗[t+1]
1 , . . . ,

θ∗[t+1]
r , ϑ

[t+1]
j , . . .} and weights {J̄ [t+1]

j } = {J ∗[t+1]
1 ,

. . . , J ∗[t+1]
r , J

[t+1]
1 , . . .}.

7. Compute a path of the desired random density func-
tion f̃ (x|(M̃∗+)[t+1]) as in (33).

Repeat steps 1 to 7 for t = 1, . . . , T . Note that the
values of δ and η can be used to tune the acceptance
probability in the M–H steps. The values suggested
here are those considered more appropriate according
to our experience. The performance of this algorithm
depends on the particular choices of the density kernel,
the NRMI driving measure and the data set at hand. In
order to assess the mixing of the chains, one can resort
to the effective sample size (ESS) implemented in the
R package library coda. In our context the natural pa-
rameter to consider for assessing the mixing is given by
the total jump sizes of the NRMI process

∑
j J̄j . First

note that the conjugacy of the Dirichlet process yields
a simpler posterior representation (independent of the
latent variable U ) and recall also that the jumps are in-
dependent of the locations. Therefore, the samples are
independent and the ESS coincides with the number
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of iterations of the chain. For the other NRMIs this is
not the case: the posterior representation depends on
the latent variable U and, moreover, the distribution of
the jumps depends on the θ∗

j ’s. For instance, for the
two real data sets considered in Section 4.1, for chains
of length 4500 (obtained from 20,000 iterations with
burn-in of 2000 and keeping every 4th iteration), the
ESS was around 1250 for the N-IG process and for the
associated latent variable U , the value of the ESS was
1500.

4. COMPARING NRMI MIXTURES

In this section we provide a comprehensive illustra-
tion of NRMI mixtures using the R package BNPden-
sity, which implements the general algorithm out-
lined in Section 3.7. The aim of such a study is twofold:
on the one hand, it illustrates the potential and flexi-
bility of NRMI mixture models in terms of fitting and
capturing the appropriate number of clusters in a data
set for different choices of kernels and mixing NRMI;
on the other hand, we also compare the performance of
NRMI mixtures with respect to other alternative den-
sity estimates.

To implement the algorithm described in the previ-
ous section, we first specify the mixture kernel k(·|θ).
We will consider, in total, a set of four kernels param-
eterized in terms of mean μ and standard deviation σ

such that θ = (μ,σ ). Two of these kernels have sup-
port R and the other two have support R+. They are as
follows:

(i) Normal kernel:

k(x|μ,σ) = 1√
2πb

exp
{
− 1

2b2 (x − a)2
}
IR(x),

with a = μ and b = σ .
(ii) Double exponential kernel:

k(x|μ,σ) = 1

2b
exp

{
−1

b
|x − a|

}
IR(x),

with a = μ and b = σ/
√

2.
(iii) Gamma kernel:

k(x|μ,σ) = ba

�(a)
xa−1e−bxIR+(x),

with a = μ2/σ 2 and b = μ/σ 2.
(iv) Log-normal kernel:

k(x|μ,σ) = 1

x
√

2πb
exp

{
− 1

2b2 (logx − a)2
}
IR+(x),

with a = log(
μ√

1+σ 2/μ2
) and b =

√
log(1 + σ 2

μ2 ).

As for the NRMI mixing measure, we will re-
sort to different members of the class NGG(a, κ, γ ;
P0): the Dirichlet process NGG(a,1,0;P0), the N-
IG process NGG(1, κ,1/2;P0), the N-stable process
NGG(1,0, γ ; P0). Their parameters will be fixed
to obtain mixtures with a prior expected number of
components E(Rn) equal to any desired number c ∈
{1, . . . , n}, where n denotes the sample size. This strat-
egy allows one to effectively compare different priors
given they induce a priori the same expected number
of mixture components. See Lijoi, Mena and Prünster
(2007) for details on this procedure. As for the base
measure P0 of the NRMIs to be considered, we will
assume a priori independence between μ and σ so that
f0(μ,σ |φ) = f 1

0 (μ|ϕ)f 2
0 (σ |ς). In particular, we will

take f 2
0 (σ |ς) = ga(σ |ς1, ς2), with shape ς1 and scale

ς2 fixed a priori to specify a certain knowledge in the
degree of smoothness. For f 1

0 we will consider two op-
tions with support R and R+, respectively. These are
as follows:

(a) Normal base measure for μ:

f 1
0 (μ|ϕ) = N(μ|ϕ1, ϕ2),

where ϕ1 and ϕ2 are the mean and precision, respec-
tively. The conjugate prior distribution for ϕ is then
f (ϕ) = N(ϕ1|ψ1,ψ2ϕ2)ga(ϕ2|ψ3,ψ4) and the (condi-
tional) posterior distribution, needed for the hyperpa-
rameter updating (see Section 3.5), are given by

f
(
ϕ|μ∗) = N

(
ϕ1

∣∣∣ψ2ψ1 + rμ̄∗

ψ2 + r
, (ψ2 + r)ϕ2

)

· ga

(
ϕ2

∣∣∣ψ3 + r

2
,ψ4 + 1

2

r∑
j=1

(
μ∗

j − μ̄∗)2

+ ψ2r(μ̄
∗ − ψ1)

2

2(ψ2 + r)

)
.

(b) Gamma base measure for μ:

f 1
0 (μ|ϕ) = ga(μ|1, ϕ),

where ϕ corresponds to the scale parameter. The conju-
gate prior for ϕ is f (ϕ) = ga(ϕ|ψ1,ψ2) and the (condi-
tional) posterior distribution is f (ϕ|μ∗) = ga(ϕ|ψ1 +
r,ψ2 + ∑r

j=1 μ∗
j ). Clearly, this choice is reasonable

only for experiments leading to positive outcomes.

Since we aim at comparing the performance of
NRMI mixtures in terms of density estimates, we also
need to specify measures of goodness of fit. We will
use two different measures for the real data and the
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simulated data. In the former case, we resort to the con-
ditional predictive ordinates (CPOs) statistics, which
are now widely used in several contexts for model as-
sessment. See, for example, Gelfand, Dey and Chang
(1992). For each observation i, the CPO statistic is de-
fined as follows:

CPOi = f̃
(
xi |D(−i)) =

∫
k(xi |θ)P̃

(
dθ |D(−i)),

where D(−i) denotes the observed sample D with the
ith case excluded and P̃ (dθ |D(−i)) the posterior den-
sity of the model parameters θ based on data D(−i). By
rewriting the statistic CPOi as

CPOi =
(∫ 1

k(xi |θ)
P̃ (dθ |D)

)−1

,

it can be easily approximated by Monte Carlo as

ĈPOi =
(

1

T

T∑
t=1

1

k(xi |θ [t])

)−1

,

where {θ [t], t = 1,2, . . . , T } is an MCMC sample from
P̃ (θ |D). We will summarize the CPOi , i = 1, . . . , n,
values in two ways, as an average of the logarithm of
CPOs (ALCPO) and as the median of the logarithm
of CPOs (MLCPO). The average of log-CPOs is also
called the average of log-pseudo marginal likelihood
and is denoted by ALPML.

In contrast, when considering simulated data, the
true model, say, f ∗, is known and, hence, it is possi-
ble to use the mean integrated squared error (MISE)
for model comparison. If we denote by f̂n the density
estimate conditional on a sample of size n from f ∗,
then the MISE is defined as

MISE = E
{∫ {

f̂n(x) − f ∗(x)
}2 dx

}
.

Like in other approaches to density estimation (see,
e.g., Müller and Vidakovic, 1998; Roeder and Wasser-
man, 1997), the standard method to compare with is
the kernel density estimator (Silverman, 1986). There-
fore, instead of the MISE, we report the relative MISE
(RMISE) defined as the ratio of the MISE obtained
with the NRMI mixture model and the MISE obtained
with the kernel density estimator with standard band-
width.

We are now in a position to illustrate our method-
ology. We first provide the analysis of two real data
sets popular in the mixture modeling literature, namely,
the galaxy data and the enzyme data. See Richardson
and Green (1997). Then, we perform an extensive sim-
ulation study by considering the models dealt with in

Marron and Wand (1992). In analyzing the real data we
focus on the performance of different NRMI mixtures,
by varying kernel and mixing NRMI, and illustrate the
flexibility of the algorithm. Later, through the simula-
tion study we aim at comparing NRMI mixtures with
other methods used in the literature. For this purpose
we fix a single NRMI mixture. Such a choice, based
on the results of the real data examples and on our
previous experience, exhibits good and robust perfor-
mances, thus making it a valid default model.

4.1 Real Data

4.1.1 Galaxy data. For illustration of the algorithm
and analysis of NRMI mixtures we start with some
real data. The first data set we consider is the widely
studied galaxy data set. Data consist of velocities of
82 distant galaxies diverging from our own galaxy.
Typically this density has been estimated by consid-
ering mixtures of normal kernels (Escobar and West,
1995; Richardson and Green, 1997; Lijoi, Mena and
Prünster, 2005): given the data range from 9.2 to 34,
clearly away from zero, it is possible to use kernels
with support R. Here, we compare the normal kernel
with another kernel with real support, namely, the dou-
ble exponential kernel. These two kernels are written
in mean and standard deviation parameterization as in
cases (i) and (ii) above. In terms of mixing measures
we compare two options: the Dirichlet process with
specifications NGG(3.641,1,0;P0) and the N-IG pro-
cess with specifications NGG(1,0.015,1/2;P0). The
prior parameters of the two processes were determined
so as to obtain an expected number of a priori com-
ponents equal to 12, roughly twice the typically es-
timated number of components, which is between 4
and 6. It is worth noting that with such a prior spec-
ification the N-stable process would correspond to a
NGG(1,0,0.537;P0). This essentially coincides with
the above N-IG specification which indeed has a small
value of κ and γ = 1/2, and is therefore omitted.

For the base measure P0 we took f 2
0 (σ |ς) =

ga(σ |ς1, ς2) with two specifications for (ς1, ς2),
namely, (1,1) and (0.1,0.1), and the gamma specifi-
cation in case (b) above for f 1

0 (μ|ϕ) with a vague hy-
perprior on the scale parameter ϕ, namely, ψ1 = ψ2 =
0.01. In neither case P0 is conjugate w.r.t. the kernel
and in addition to the standard deviations, it forces also
the means of the mixture components to be positive as
required. The Gibbs sampler was run for 20,000 iter-
ations with a burn-in of 2000 sweeps. One simulation
every 4th after burn-in was kept, resulting in 4500 iter-
ations to compute the estimates.
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TABLE 1
Galaxy data set: Summaries of log-conditional predictive ordinates [average (ALCPO) and median (MLCPO)] and mode of the posterior

distribution of the number of components in the mixture, Rn|X, for different prior specifications. Bold numbers denote best fitting according
to the corresponding statistic

Measure Kernel (ς1, ς2) ALCPO MLCPO Mode(Rn|X)

Dirichlet Normal (1,1) −2.581 −2.250 7
(0.1,0.1) −2.619 −2.205 6

Dble.Exp. (1,1) −2.597 −2.303 7
(0.1,0.1) −2.620 −2.305 6

N-IG Normal (1,1) −2.608 −2.099 5
(0.1,0.1) −2.647 −2.154 3

Dble.Exp. (1,1) −2.600 −2.258 5
(0.1,0.1) −2.637 −2.260 4

Table 1 provides the ALCPO statistics, the MLCPO
statistics and the mode of posterior distribution of the
number of components, Rn|X, for the 8 = 2 × 2 × 2
combinations of kernel-NRMI-(ς1, ς2). Recall that the
ALCPO and MLCPO statistics are the average and the
median of the CPOs in log scale, respectively. First
note that starting from an “incorrect” prior specifica-
tion of the number of components Rn, the N-IG pro-
cess mixture is able to detect the typically estimated
number of components regardless of the choice of the
kernel and the other parameters. In contrast, DPMs are
not able to overcome completely the wrong prior spec-
ification and tend to overestimate the number of com-
ponents. As one would expect, given, on the one hand,
a distribution can always be fitted with more com-
ponents than necessary and, on the other, the kernel
smooths out differences in the mixing measures, the
differences between the two processes in terms of the
density estimates are much less evident. Considering
the ALCPO goodness-of-fit statistics, the best fitting is
obtained with the normal DPM with (ς1, ς2) = (1,1).
However, the differences w.r.t. other specifications are
not particularly remarkable. If, instead, we consider the
MLCPO statistic, the best fitting is achieved by the N-
IG normal mixture with (ς1, ς2) = (1,1) and the supe-
rior performance starts becoming significant, being 0.1
better than any DPM specification. The overall behav-
ior of the CPO is illustrated by Figure 2, where box-
plots of the logarithm of the CPO values correspond-
ing to normal mixtures with (ς1, ς2) = (1,1) for both
Dirichlet and N-IG processes are depicted. Coherently
with the values of the ALCPO and MLCPO, the log-
arithm of the CPOs produced by the DPM are more
dispersed: for some trajectories it produces the best or-
dinates, which, once averaged, lead to a slightly better

ALCPO; however, if we consider a more robust sum-
mary, like the median, the N-IG mixture produces a
significantly better result.

Figure 3 displays the density estimates together
with 95% pointwise credible intervals when using the
Dirchlet and N-IG process mixtures with normal and
double exponential kernels. In accordance to the above
results, there is not much difference in terms of the
chosen nonparametric prior. However, it is interesting
to note how the double exponential kernel, while ex-
hibiting poorer performance in terms of CPO, produces
significantly sharper estimates than the normal kernel.
This feature which singles out possible modes may be
desirable in certain situations.

4.1.2 Enzyme data. The second example consists
of 245 measurements of the enzymatic activity in the
blood of unrelated patients. The values of this data set
are all positive and close to zero, ranging from 0.021
to 2.9. Richardson and Green (1997) analyzed this data
set and applied a finite mixture of normals model to es-
timate the density, even though the data are fairly close
to zero. Instead of working with real support kernels,
we perform our analysis with positive support kernels
to be more consistent with the nature of the data. In par-
ticular, we take the gamma density kernel and the log-
normal density kernel, both with the mean and standard
deviation parameterizations as displayed in cases (iii)
and (iv) at the beginning of the section.

As for the nonparametric mixing measures, we con-
sider the Dirichlet process NGG(4.977,1,0; P0) and
the N-IG process NGG(1,0.007,1/2;P0). The prior
parameters were fixed so as to obtain an expected
number of a priori components equal to 20. Again,
the specification of the corresponding N-stable pro-
cess NGG(1,0,0.523;P0) essentially coincides with
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FIG. 2. Galaxy data set: Box-plot of the logarithm of the conditional predictive ordinates for DPM and N-IG mixtures, with normal kernel
and (ς1, ς2) = (1,1).

the above N-IG process and is therefore omitted. Note
that such a value for the prior expected number of com-
ponents is much larger than the typically 2 or 3 com-
ponents estimated for this data set. As for the base
measure P0, we took f 2

0 (σ |ς) = ga(σ |ς1, ς2) with two
possible sets of values for the hyperparameters, that
is, (ς1, ς2) = (4,1) and (ς1, ς2) = (0.5,0.5). More-
over, for μ the gamma specification in (b) is adopted
with a vaguely informative hyperprior on the scale,
namely, ψ1 = ψ2 = 0.01. We remark that, as in the
previous example, these choices give rise to base mea-
sures that are not conjugate for the kernel. The Gibbs
sampler was run for 20,000 iterations with a burn-in
of 2000 sweeps, keeping one simulation of every 4th,
ending up with 4500 iterations to compute the esti-
mates.

Table 2 provides the ALCPO statistics, the MLCPO
statistics and the mode of the posterior distribution of
the number of components for the 8 = 2×2×2 combi-
nations of kernel-NRMI-(ς1, ς2), respectively. Let us
first focus on the estimated number of components.
In this case, starting from a “strongly incorrect” prior
specification of the number of components, the abil-
ity of N-IG mixtures to overcome misspecifications

becomes even more apparent. Indeed, it can be seen
that the N-IG mixture estimates at least 3 fewer com-
ponents than the DPM, for any choice of the kernels
and of the base measures hyperparameters. Having es-
tablished the better performance of the N-IG mixtures,
we have a closer look at the impact of the kernels and
hyperparameter specifications in Figure 4. We display
the corresponding complete posterior distributions of
the number of components. The gamma kernel dis-
plays a better performance in locating the number of
components with, additionally, a lower variability, re-
gardless of the hyperparameters choice. With respect
to the choice of hyperparameters in the distribution of
σ , the ones generating larger values with higher vari-
ability are superior. When looking at the density esti-
mates the differences are, as in the previous example,
less apparent. In terms of the ALCPO goodness-of-fit
statistics, the best fitting is obtained through the DPM
with lognormal kernel and (ς1, ς2) = (0.5,0.5), but the
differences with respect to the other specifications are
minimal. Nonetheless, it is worth pointing out that this
corresponds to the case which has the worst behavior in
terms of estimation of the number of components. On
the one side, this confirms that using more components
than necessary does not impact the fit in terms of den-
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FIG. 3. Galaxy data set: Posterior density estimates with (ς1, ς2) = (1,1) corresponding to the DPM (top row) and the N-IG mixture
(bottom row) with normal kernel (left column) and double exponential kernel (right column).

sity estimation. On the other hand, it represents an indi-
cation that goodness-of-fit summaries have to be han-
dled with some care to understand the numerical out-
put. If we consider the MLCPO statistic, the best fitting
is achieved by the model one would actually expect on
the basis of the analysis of the posterior distribution
of the number of components, namely, the N-IG pro-
cess mixture with gamma kernel and (ς1, ς2) = (4,1).
Moreover, its superiority is quite significant w.r.t. all
other specifications. This enforces our previous com-

ment concerning the care needed in drawing conclu-
sions from numerical summaries of the fit.

4.2 Simulation Study

We now provide an extensive simulation study
and use it also for comparing the performance of
NRMI mixtures with other density estimation meth-
ods. Marron and Wand (1992) considered a set of 15
densities with different behaviors, which are challeng-
ing to estimate. These densities are either unimodal,
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TABLE 2
Enzyme data set: Summaries of log-conditional predictive ordinates [average (ALCPO) and median (MLCPO)] and mode of the posterior

distribution of the number of components in the mixture, Rn|X, for different prior specifications. Bold numbers denote best fitting according
to the corresponding statistic

Measure Kernel (ς1, ς2) ALCPO MLCPO Mode(Rn|X)

Dirichlet Gamma (4,1) −0.227 0.204 5
(0.5,0.5) −0.218 0.126 13

Log.N. (4,1) −0.216 0.054 8
(0.5,0.5) −0.205 0.006 14

N-IG Gamma (4,1) −0.217 0.275 2
(0.5,0.5) −0.213 0.233 5

Log.N. (4,1) −0.210 0.065 5
(0.5,0.5) −0.208 0.048 8

multimodal, symmetric and/or skewed. According to
Marron and Wand (1992), the last 5 densities are
strongly multimodal and are difficult to recover with
moderate sample sizes. Therefore, we concentrate on
their first 10 densities to test the performance of NRMI
mixtures. For each of the 10 models, the simulation
study was based on N = 40 simulation experiments
and for each experiment a sample of size n = 250 was
drawn from the model.

We considered NRMI mixtures with a normal ker-
nel (i) and a N-stable process NGG(1,0,0.396;P0)

as mixing measure. This choice of the parameter γ =
0.396 implies that the a priori expected number of
components is equal to 10, which seems a reasonable
default choice. As for the base measure P0, we took
f 2

0 (σ |ς) = ga(σ |1,1), whereas for μ we adopted the
normal specification in (a). As for the latter, the hy-
perparameters of the normal-gamma prior on (ϕ1, ϕ2)

are ψ1 = 0, ψ2 = 0.01, ψ3 = 0.1 and ψ4 = 0.1. It is
important to note that these prior specifications were
the same for all 10 models and, hence, all experi-
ments: the idea is to verify its performance as a de-
fault choice rather than tailoring the model on each
specific example. As we mentioned at the beginning of
the section, since these are simulation experiments, one
can compute the relative mean integrated squared error
(RMISE) as a measure of goodness of fit. As bench-
marking nonparametric kernel density estimator, w.r.t.
which the RMISE is computed, we considered the op-
timal bandwidth given in Silverman (1986) which is
σ = s2(1.06)2n−2/5, with s2 being the sample vari-
ance. For each case the Gibbs sampler was run for
10,000 iterations with a burn-in of 1000 sweeps and
one simulation every 4th was taken for computing the
estimates.

Table 3 summarizes the results in terms of RMISE.
For comparison purposes we have also included the
RMISE obtained by Müller and Vidakovic (1998) us-
ing Bayesian wavelets and those obtained by Roeder
and Wasserman (1997) using finite mixture of normals.
In a private communication, Müller and Vidakovic in-
formed us of a minor problem with the RMISE values
originally reported in Müller and Vidakovic (1998): the
values in Table 3 are the correct ones obtained from
their model. Figure 5 displays the true density (solid
line) and the estimated densities resulting from our
NRMI mixture (dashed line) and the kernel density es-
timates with optimal bandwith (dotted line) for models
1–10. The numbers reported in Table 3 and the density
estimates in Figure 5 are averages over the 40 experi-
ments.

From Table 3 we can observe that the approach of
Roeder and Wasserman (1997) improves on the kernel
density estimator in 7 of the 10 models. In particular,
they fail to provide a good fit for those densities that are
quite spiky (models 3, 4 and 10). Also, the wavelets ap-
proach of Müller and Vidakovic (1998) have the best
behavior precisely for these spiky models producing
the smallest RMISE. The NRMI normal mixtures per-
forms significantly better than the kernel density esti-
mator in all 10 models, the highest RMISE being 0.86.
This is also apparent in Figure 5. Moreover, it reaches
the smallest RMISE in 6 of the 10 models compared
to all its competitors. However, rather than focusing on
best performances, it is important to stress that the es-
timates yielded by the approaches of R&W and M&V
are, in some cases, significantly worse than the kernel
density estimator. Hence, NRMI mixtures give the best
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FIG. 4. Enzyme data set: Posterior distribution for the number of components, Rn|X, for the N-IG process mixture: gamma kernel (top
row) and log-normal kernel (bottom row) with (ς1, ς2) = (4,1) (left column) and (ς1, ς2) = (0.5,0,5) (right column).

result in 6 cases (models 3–5, 7, 8 and 10), but, more
importantly, yield at least second-best results in all the
other cases and there is always quite some gap between
its RMISE and the one of the worse estimate. In sum-
mary, the flexibility of the NRMI mixtures makes it a
valuable alternative to more standard methods. In par-
ticular, the N-stable mixtures could be considered as a
default model, which works reasonably well regardless
of whether the density is unimodal, multimodal, spiky
or flat.

REMARK 4. NRMI mixtures with nonparametric
specification of both location and scale parameters
considered in this section correspond to the MixN-
RMI2 function in the R-package BNPdensity. Ad-
ditionally, the package also includes semi-parametric
NRMI mixtures, in which the location and the scale
are modeled, respectively, according to an NRMI and
a parametric distribution. Such a specification corre-
sponds to a common value of the smoothing parame-
ter σ for all mixture components and to locations μj ’s
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FIG. 5. Posterior density estimates for the first 10 models of Marron and Wand (1992): true density (solid line), NRMI normal mixture
estimate based on the N-stable process (dashed line), and kernel density estimate with optimal bandwith (dotted line). The estimates have
been obtained as averages over the N = 40 simulation experiments.
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TABLE 3
RMISE statistic for the first 10 models in Marron and Wand
(1992): column two displays the RMISE values for the NRMI

normal mixture model based on a N-stable process; columns three
and four report the RMISE values for the methods of Müller and

Vidakovic (1998) and Roeder and Wasserman (1997), respectively

RMISE

Model MRMI M&V R&W

1 0.39 1.99 0.07
2 0.76 0.98 0.34
3 0.18 0.28 2.91
4 0.09 0.25 1.67
5 0.05 0.43 0.44
6 0.81 1.62 0.31
7 0.13 0.38 0.23
8 0.73 1.72 0.74
9 0.86 1.42 0.54

10 0.81 0.83 2.76

generated by the NRMI. This is called the MixNRMI1
function in the package. Extensive simulation studies,
not reported here, indicate that semiparametric mix-
tures are more sensitive w.r.t. wrong prior specifica-
tions, in the sense that they tend to get stuck on wrong
values for the number of mixture components. More-
over, as one would expect given the lack of flexibility
in controlling the dispersion, some oversmoothing typ-
ically would appear.

REMARK 5. Although for comparison purposes it
is more convenient to work with simple NRMI mix-
tures as done here, extensions to more general set-
tings have been provided in the literature. For exam-
ple, Lijoi, Nipoti and Prünster (2013) define vectors
of dependent NRMIs, where the dependence originates
from a suitable construction of the underlying Pois-
son random measures: such models are readily imple-
mentable in two-sample problems and meta-analysis.
More general regression problems can also be obtained
starting from simple NRMI mixtures. For instance, a
generalization of the ANOVA dependent Dirichlet pro-
cess model (De Iorio et al., 2004) to NRMI can be writ-
ten via the hierarchical representation (22). In the nor-
mal case the first equation becomes

Xi |θi,Zi, σ
i.i.d.∼ N

(
θ ′
iZi, σ

2)
,

where Zi is the covariate vector. The second and third
equations remain the same together with a prior speci-
fication for σ . Suitable modifications of the simulation
algorithm, and thus on the BNPdensity package, can
be implemented to cover this regression case.
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